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ARTICLE

A multi-dimensional integrative scoring framework
for predicting functional variants in the human genome

Xihao Li,1,10 Godwin Yung,1,2,10 Hufeng Zhou,1 Ryan Sun,3 Zilin Li,1 Kangcheng Hou,4

Martin Jinye Zhang,5,6 Yaowu Liu,7 Theodore Arapoglou,1 Chen Wang,8 Iuliana Ionita-Laza,8,11,*
and Xihong Lin1,6,9,11,*
Summary
Attempts to identify and prioritize functional DNA elements in coding and non-coding regions, particularly through use of in silico func-

tional annotation data, continue to increase in popularity. However, specific functional roles can vary widely from one variant to

another, making it challenging to summarize different aspects of variant function with a one-dimensional rating. Here we propose

multi-dimensional annotation-class integrative estimation (MACIE), an unsupervised multivariate mixed-model framework capable

of integrating annotations of diverse origin to assess multi-dimensional functional roles for both coding and non-coding variants. Un-

like existing one-dimensional scoring methods, MACIE views variant functionality as a composite attribute encompassing multiple

characteristics and estimates the joint posterior functional probabilities of each genomic position. This estimate offers more comprehen-

sive and interpretable information in the presence of multiple aspects of functionality. Applied to a variety of independent coding and

non-coding datasets, MACIE demonstrates powerful and robust performance in discriminating between functional and non-functional

variants. We also show an application of MACIE to fine-mapping and heritability enrichment analysis by using the lipids GWAS sum-

mary statistics data from the European Network for Genetic and Genomic Epidemiology Consortium.
Introduction

Ever since the completion of the human genome sequence,

substantial effort has been invested into identifying and

annotating functional DNA elements. For any given genetic

variant, a diverse set of functional annotations is now avail-

able. For example, the computational tool PolyPhen1

predicts damaging effects of missense mutations. Phast-

Cons,2 PhyloP,3 and GERPþþ4 leverage comparative

sequence information to identify regions that show

evolutionary conservation. The Encyclopedia of DNA

Elements (ENCODE) has extensively mapped regions of

transcription-factor binding, chromatin structure, and

histone modification and has effectively assigned biochem-

ical functions for �80% of the genome.5 Other initiatives

such as the Roadmap Epigenomics project6 and FANTOM5

project7,8 also provide evidence for potential regulatory

variants in the human genome.

Although functional annotations vary considerably with

respect to the specific elements they evaluate and the

extent of the human genome they annotate, it is well

understood that they provide complementary lines of

evidence.9 Therefore, if researchers are to obtain a

comprehensive understanding of the biological relevance
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of genomic segments, all of the information provided by

different annotations should be jointly synthesized.

However, it remains challenging to summarize these

diverse functional annotations in an insightful and

interpretable manner.

Current algorithmic scoring frameworksutilize a varietyof

statistical andmachine-learningmethods to aggregate infor-

mation from large, diverse sets of individual annotations

into single measures of functional importance. Supervised

tools such as CADD,10 DANN,11 GWAVA,12 FATHMM-

MKL,13 and FATHMM-XF14 build machine-learning

classifiers on training sets with pre-labeled functional

statuses, e.g., fine-mapped pathogenic or disease-associated

variants labeled against benign or neutral variants. Such

supervised approaches rely strongly on the quality of labels

in the training set. Therefore, they might demonstrate

suboptimal performance when inaccurate or biased

labels are used. Unsupervised methods such as EIGEN,15

GenoCanyon,16 PINES,17 and FUN-LDA18 do not rely on

any labeled training data. They possess advantages in

studying non-coding regions, where our current lack of

knowledge often precludes gold-standard training

data labels. A third group of methods including fitCons19

and LINSIGHT20 use evolution-based approaches that
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Figure 1. Heatmap demonstrating the correlation between individual and integrative functional scores for ClinVar pathogenic and
benign non-coding variants
characterize the potential effect of natural selection at each

genomic location by using polymorphism and divergence

data. Recent reviews provide a more detailed discussion of

available functional annotation tools.21–23

Although existing methods attempt to integrate func-

tional annotations through various approaches, to the

best of our knowledge, these methods all summarize the

annotation information with a single rating. In doing so,

they implicitly assume that variant function can be

described along a single axis, whereby variants are more

functional at one end of the axis and less functional at the

other end. This assumption might be reasonable if interest

lies in predicting a specific aspect of variant function (e.g.,

regulatory behavior) and if all annotations used as input

are intended to predict that same aspect. However, if

multiple aspects of variant function are simultaneously of

interest, then it is unclear how to interpret the one-dimen-

sional consolidation of annotationsmeasuring different as-

pects of function, especiallywhen these annotations appear

to provide orthogonal information, e.g., weak correlation

between evolutionary conservation scores and regulatory
The Ameri
scores (Figure 1). Therefore, it is of interest to construct

multi-dimensional integrative scores capable of capturing

multiple facets of variant function simultaneously.

In this paper, we propose multi-dimensional annota-

tion-class integrative estimation (MACIE), an unsuper-

vised multivariate mixed-model framework capable of

synthesizing multiple categories of annotations and pro-

ducing interpretable multi-dimensional integrative scores

(Figure S1). Instead of a single rating, MACIE explicitly

defines variant function as a vector of binary outcomes,

each of which captures functionality corresponding to a

specific class of annotations. Correlations within and be-

tween the different classes of annotations are explicitly

modeled, another advancement over existing methods.

Using the expectation-maximization algorithm, MACIE

calculates the joint posterior probabilities that a genomic

position is functional (material and methods).

Because of its multivariate formulation, MACIE is able to

provide detailed and nuanced assessments of variant func-

tionality. Output from MACIE is highly interpretable as a

result of the specificity allowed by multiple functional
can Journal of Human Genetics 109, 446–456, March 3, 2022 447



classes. Additionally, the MACIE framework allows for

considerable versatility to incorporate data in a manner

that is most biologically relevant to the scientific question

of interest. We apply MACIE to multiple independent cod-

ing and non-coding testing sets and show that, compared

to existing integrative scores, MACIE scores consistently

provide robust and best or near-best performance in

discriminating between functional and non-functional

variants.
Material and methods

The MACIE generalized linear mixed model (GLMM)
Suppose there are N genetic variants in total and we are interested

in M latent annotation classes, each containing Lj annotation

scores. For example, the first class might consist of L1 ¼ 4 protein

functional scores, and the second class might consist of L2 ¼ 8

evolutionary conservation scores. For genetic variant i and

annotation class j, we denote the set of Lj annotations as yij ¼
ðyij1;.; yijLj

ÞT , such that each variant is described by L ¼ PM
j¼1Lj

annotations in total. We are interested in estimating for each

variant i the vector of binary functional statuses ci ¼ ðci1;.ciMÞ,
where cij is the unobserved latent functional status for class j.

Continuing our example, ci1 would denote membership in the

evolutionarily conserved function class, and ci2 would denote

membership in the regulatory function class. Conditional on cij

and a random effect variable bijk, we assume that the elements of

yij are independent observations, each following a GLMM. That

is, for j ¼ 1;.;M and k ¼ 1;.;Lj,

gjk
�
E
�
yijk

���cij; bijk��¼b0jk þ b1jkcij þ bijk;

where additional correlations between elements of yij are allowed

if we assume that

bij ¼
0@ bij1

«
bijLj

1AeiidMVN
�
0;SjðqÞ

�
:

The MACIE score for a given genetic variant i is defined by

p
�
cijy i

�
, that is, the posterior probability vector of the unobserved

class label ci, conditional on the observed annotations y i.

Because of thconditional independence of y i given ci and bi (the

collections of yij, cij, and bij, respectively, for j ¼ 1;.;M), an expec-

tation-maximization (EM) algorithm provides a natural

approach.24
The expectation-maximization algorithm
The complete-data log-likelihood of ðy; c;bÞ ¼ �yi; ci;bi

�N
i¼1

is

given by

log f ðy; c;bÞ ¼
XN
i¼1

 XM
j¼1

XLj
k¼1

log fjk
�
yijk

���cij; bijk;bjk;4jk

�

þ
XM
j¼1

log f
�
bij; q

�þ log pðci;gÞ
!

where b;4; q; and g are (unknown) model parameters. Because

both c and b are unobserved, we proceed with the following EM

algorithm:
448 The American Journal of Human Genetics 109, 446–456, March
1. Initiate reasonable parameter values. Denote the parameter

estimates at iteration r by
�bbðrÞ

jk ; b4ðrÞ
jk ;
bqðrÞ

; bgðrÞ
�
.

2. (E-step a) Compute the posterior distributionbf ðrÞ�
ci;bi

��yi

� ¼ bf ðrÞ�
bijy i; ci

�bpðrÞ�cijyi

�
via Bayes’ theorem:

f
�
bijy i; ci

� ¼YM
j¼1

f
�
y ij

���cij;bij

�
f
�
bij

�
R
f
�
y ij

���cij;bij

�
f
�
bij

�
dbij

p
�
cijy i

� ¼ p
�
ci; y i

�
p
�
y i

� ¼
QM

j¼1

h R
f
�
y ij

���cij;bij

�
f
�
bij

�
dbij

i
,pðciÞP

c˛f0;1gM
QM

j¼1

h R
f
�
y ij

���cij;bij

�
f
�
bij

�
dbij

i
,pðcÞ
3. (E-step b) Compute expected score functions with

respect to the posterior distribution of f
�
ci;bi

��yi

�
,

i.e., Ec;bS
�
bjk

�
; Ec;bS

�
4jk

�
; Ec;bSðqÞ; Ec;bSðgÞ, where

S
�n

bjk;4jk; q;g
o�

¼ vlogf ðy; c;bÞ=v
n
bjk;4jk; q;g

o
are the

complete data score functions of bjk;4jk;q;g, respectively.

4. (M-step) Update
�bbðrþ1Þ

jk ; b4ðrþ1Þ
jk ; bqðrþ1Þ

; bgðrþ1Þ
�
by solving the

expected score equations from step 3.

5. Iterate between steps 2–4 until convergence of all parame-

ters.

To select initial parameter values, for each functional class j, we

first perform a k-means clustering algorithm with k ¼ 2 to classify

the functional status ðcijÞ of each variant i. We then fit a linear or lo-

gistic regressionmodel for each individual annotation score used in

this class and obtained the fitted parameter estimates as initial

parameter values. We found that our results are robust to choices

of initial values. The EM algorithm proceeds until the relative

changes in all estimated parameters are sufficiently small (<10�4)

with a maximum of 200 iterations. The final converged estimatebpðcijyiÞ (output of step 2) corresponds to the MACIE score for ge-

netic variant i. Given the fitted model parameters and the full set

of annotation scores for a new genetic variant i0, the MACIE score

of variant i0 is defined as the (predicted) posterior probability vectorbp�ci0 ¼ zjyi0
�
; z˛f0;1gM . It can be calculated with one additional

iteration of the EM algorithm. Full details of the EM-algorithm deri-

vation are provided in the supplemental material and methods.
Construction of MACIE training sets
We used the proposed framework to fit the MACIE GLMMmodels

and compute MACIE scores for (1) non-synonymous coding and

(2) non-coding and synonymous coding variants separately

because the two types of variants are expected to have highly

different functional profiles.15 All non-synonymous coding anno-

tations and non-coding and synonymous coding evolutionary

conservation annotations were downloaded from EIGEN. The

non-coding and synonymous coding epigenetic annotations

were downloaded from CADD database10 v1.3.
Non-synonymous coding variants
For the non-synonymous coding training set, we randomly ex-

tracted 10% of the variants with a match in the dbNSFP data-

base.25 This database excludes synonymous variants that fall in

coding regions but do not alter protein function. Only one unique
3, 2022



variant per position was selected, and variants residing on

sex chromosomes X and Y were removed so that potential

sources of bias or lack of annotations were mitigated. The

final set included approximately 2.2 million variants. For each

variant in the training set, 4 protein substitution damage scores

(SIFT;26 PolyPhenDiv and PolyPhenVar;1 and Mutation

Assessor27) and eight evolutionary conservation scores (GERP_NR

and GERP_RS;4 PhyloP primate (PhyloPri), placental mammal

(PhyloPla), and vertebrate (PhyloVer);3 and PhastCons primate

(PhastPri), placental mammal (PhastPla), and vertebrate

(PhastVer)2) were extracted from the EIGEN database.15 Thus, we

defined the two-class MACIE model ðM ¼ 2Þ for non-synonymous

coding variants to assess damaging protein-coding function and

evolutionarily conserved function. Full information on the MA-

CIE model for non-synonymous coding variants and the corre-

sponding MACIE GLMM regression parameter estimates from

the training set are presented in the supplemental material and

methods and Tables S1 and S2. We used this model to compute

the MACIE scores for all non-synonymous variants in the human

genome.

Non-coding and synonymous coding variants
For the non-coding and synonymous coding training set, we ex-

tracted a random sample comprising 10% of the 1000 Genomes

Project variants that were located within 500 bp upstream of a

gene start site and did not possess a match in dbNSFP. We again

removed duplicated variants with multiple alternative alleles and

variants on sex chromosomes X and Y to mitigate potential bias.

The final training set included 36,431 variants. For each variant

in the training set, the same eight evolutionary conservation

scores used for coding variants were extracted from the EIGEN

database.15 A total of 28 transformed epigenetic scores were addi-

tionally extracted from the CADD database10 v.1.3; these included

including three histonemarks and 12 open chromatinmarks from

the ENCODE Project;5 three transcription factor binding-site

scores; GC content, CpG content; five chromatin-state probabili-

ties derived from the 15-state ChromHMMmodel;28 a background

selection score;29 and two physical-distance metrics.10 Thus, we

defined the two-class MACIE model ðM ¼ 2Þ for non-coding and

synonymous coding variants to assess evolutionarily conserved

function and epigenetic regulatory function. Full information on

the MACIE model for non-coding and synonymous coding vari-

ants and the corresponding MACIE GLMM regression parameter

estimates from the training set are presented in the supplemental

material and methods and Tables S1, S3, and S4. We used this

model to compute the MACIE scores for all non-coding and

synonymous coding variants in the human genome.
Results

Benchmarking the performance of MACIE with that of

other integrative scoring methods

We compared the predictive performance of MACIE

against existing variant classifiers, including CADD,10

FATHMM-XF,14 EIGEN,15 fitCons,19 LINSIGHT,20 and

DANN11 over a range of realistic variant-assessment

scenarios. Specifically, we assessed the ability of each score

to identify clinically significant variants from ClinVar;30,31

loss-of-function variants in the BRCA1 (MIM: 113705)

gene uncovered through saturation genome editing
The Ameri
(SGE);32 promoters and enhancers from the FANTOM5

project defined by cap analysis of gene expression

(CAGE);7,8 and experimentally verified functional variants

from massive parallel reporter assays (MPRAs).33,34 Some

alternative scoring methods were excluded because of

difficulties related to providing a proper comparison of

results. For example, LINSIGHT is designed to predict the

deleteriousness of non-coding variants, so we did not

include it in the comparison for non-synonymous coding

variants.

Distribution of posterior probabilities for non-coding

and synonymous coding variants in the training set

In Table S5 we provide the posterior probabilities of each

functional class averaged across all the non-coding and

synonymous coding variants in the training set. The

predicted MACIE score for a given variant can be

interpreted as the posterior probability that the variant

belongs to (0,0), neither conserved nor regulatory classes;

(1,0), the conserved but not the regulatory class; (0,1),

the regulatory but not the conserved class; and (1,1),

both the conserved and the regulatory classes. The four

MACIE scores necessarily sum up to 1. A chi-square test

comparing observed and expected percentages under inde-

pendence of evolutionary conservation and regulatory

classes gives a significant p value of less than 2:23 10�16,

suggesting that the two classes are correlated. Because the

observed percentage of functional variants that belong to

(1,1) is statistically significantly greater than the expected

percentage under independence (3.18% > 1.92%), we

find strong evidence of enrichment of regulatory activity

in conserved regions.

ClinVar pathogenic and benign variants

We first validated our method on a testing set consisting

of all variants recorded in the ClinVar database.30,31 We

extracted variant effect predictor (VEP) information from

GENCODE35 and used it to separate non-synonymous

coding variants from non-coding and synonymous coding

variants in ClinVar.We then applied the twoMACIEmodels

described above to the respective partitions. We combined

theClinVar categories ‘‘pathogenic’’ and ‘‘likely pathogenic’’

into a single pathogenic class and treated these variants as

the putatively functional class. Similarly, we combined the

ClinVar categories ‘‘benign’’ and ‘‘likely benign’’ into a sin-

gle benign class and treated these variants as the putatively

non-functional class. The remaining variants were catego-

rized as having uncertain significance.

We first tested MACIE’s ability to distinguish pathogenic

variants ðn¼ 33;714Þ from their benign counterparts

ðn¼ 14;410Þ among ClinVar non-synonymous variants

through two approaches. First, we calculated two marginal

MACIE scores: (1) MACIE-damaging protein function

score (denoted by MACIE-protein) as the sum of the

posterior probabilities of ‘‘damaging protein functional/not

conserved’’ and ‘‘damaging protein functional/conserved’’;

and (2) MACIE-conserved score as the sum of the posterior
can Journal of Human Genetics 109, 446–456, March 3, 2022 449



Figure 2. ROC curves comparing the performances of MACIE
and other functional scores in discriminating between ClinVar
pathogenic and benign non-synonymous coding variants
probabilities of ‘‘damaging protein functional/conserved’’

and ‘‘not damaging protein functional/conserved.’’ We

also considered theposterior probabilityof either ‘‘damaging

protein functional/conserved’’ (denoted by MACIE-any-

class) by summing the posterior probabilities corresponding

to at least one functional class (Table S6). This example

illustrates the versatility of MACIE’s posterior probability

outputs, which can be summed to form new probability

measures with various informative interpretations depend-

ing on the specific needs of each analysis.

Figure 2 provides the receiver operating characteristic

(ROC) curves and area under the curves (AUC) for the three

MACIE approaches and seven one-dimensional scores

for ClinVar non-synonymous variants. Of the methods

considered, MACIE-damaging protein function score

delivered the highest discrimination power (AUC ¼ 0.93),

followed by CADD (AUC ¼ 0.91), EIGEN (AUC ¼ 0.90),

and MACIE-anyclass (AUC ¼ 0.89). These four methods

substantially outperformed the supervised DANN (AUC ¼
0.78), the supervised FATHMM-XF (AUC ¼ 0.74), and the

evolution-based fitCons (AUC¼ 0.54).We observed similar

results when we distinguished between pathogenic

missense (as opposed to all non-synonymous) variants

ðn¼ 21;409Þ and their benign counterparts ðn¼ 14;035Þ
in ClinVar (Figure S2).

Next, we identified 40,109non-coding variants, including

6,551 pathogenic variants and 33,558 benign variants, from

the ClinVar database in total. For these non-coding variants,

we chose to calculate a marginal MACIE-conserved score

because ClinVar pathogenic non-coding variant labels track

closely with evolutionary conservation scores (Figure 1).

ROC curves and AUCs for discriminating between the
450 The American Journal of Human Genetics 109, 446–456, March
pathogenic and benign variants are provided in Figure S3.

The MACIE-conserved score showed comparable perfor-

mance (AUC ¼ 0.95) to the FATHMM-XF score, which

showed the highest discrimination power (AUC ¼ 0.97).

TheoutperformanceofFATHMM-XF inthis specificexample

should be expected because FATHMM-XF is a supervised

machine-learning method trained on labels that bear many

similarities to the labels defined in ClinVar, whereas MACIE

is an unsupervised method. The MACIE-conserved score

substantially outperformed the unsupervised method

EIGEN (AUC ¼ 0.84) and the evolution-based method

fitCons (AUC ¼ 0.55).

Loss-of-function non-synonymous coding variants in

BRCA1

We evaluated MACIE’s performance in predicting the

deleteriousness of non-synonymous coding variants located

within13 exons that encode functionally critical domainsof

BRCA1. We fit based a two-component Gaussian mixture

model on the saturation genome editing function scores to

classifyallBRCA1variants as loss-of-function (LOF), interme-

diate (INT), or functional (FUNC) in a decreasing order of

severity.32 Thus, FUNC corresponds to benign variants in

this experiment. We selected reported LOF non-synony-

mous coding variants ðn¼ 674Þ as the putative functional

set and designated FUNC non-synonymous coding variants

ðn¼ 1;443Þ as the putative non-functional set. Among

all the methods compared (Figure 3), the MACIE-damaging

protein function score showed the highest predictive

power (AUC ¼ 0.91), followed by EIGEN (AUC ¼ 0.88) and

MACIE-anyclass (AUC ¼ 0.88). The top three scores were

much more powerful than CADD (AUC ¼ 0.78), FATHMM-

XF (AUC ¼ 0.69), DANN (AUC ¼ 0.60), and fitCons

(AUC¼ 0.42).We observed similar results whendistinguish-

ing between BRCA1 LOF non-synonymous coding variants

ðn¼ 674Þ and ClinVar benign non-synonymous coding

variants ðn¼ 14;410Þ (Figure S4).

FANTOM5 CAGE-defined promoters and enhancers

among 1000 genomes non-coding variants

We tested the ability of MACIE to identify promoter

regions defined by the FANTOM5 project’s cap analysis

of gene expression.7,8 A total of 110,895 out of approxi-

mately 80 million non-coding variants from the 1000

Genomes Project phase 3 data36 were mapped to such

regions and therefore labeled as CAGE promoters. For

each identified CAGE promoter variant, we used the

1000 Genomes Project database to randomly select a

matched control variant (non-promoter) that possessed

the same minor-allele frequency (MAF) and same

minimum distance to any gene transcription start site

that was located at least 500 kilobase (kb) away from

the promoter variant, yielding a total number of

97,298 variants in the control set (it was not possible to

find a matched control for each CAGE variant). Similar

to the previous analysis, we calculated a marginal MA-

CIE-regulatory score by summing the two probabilities
3, 2022



Figure 3. Performance comparing MACIE and other functional
scores on BRCA1 non-synonymous coding variants
ROC curves comparing the performances of MACIE and other
functional scores in discriminating between loss-of-function
(LOF) and functional (FUNC) non-synonymous coding variants
within 13 exons that encode functionally critical domains of
BRCA1 on the basis of saturation genome editing (SGE) data.
Here the LOF class is our putative functional class, and the
FUNC class is our putative non-functional class.
corresponding to the regulatory class (denoted by MACIE-

regulatory). ROC curves and AUCs for discriminating be-

tween CAGE promoters and non-promoters are provided

in Figure 4A. MACIE-regulatory and MACIE-anyclass

scores showed the highest discrimination power (AUC ¼
0.75), followed by EIGEN with AUC ¼ 0.74. FATHMM-XF

(AUC ¼ 0.54) and fitCons (AUC ¼ 0.56) scores performed

poorly because these one-dimensional scores are unable

to capture epigenetic functionality. We also performed a

similar analysis by contrasting CAGE-identified enhancers

ðn¼ 520;987Þ versus non-enhancers ðn¼ 448;253Þ by us-

ing non-coding variants from the 1000 Genomes Project.

The results were similar, and MACIE-regulatory score dis-

played the highest predictive power and significantly out-

performed all other existing methods (Figure 4B).

MPRA-validated variants and dsQTLs in lymphoblastoid

cell lines

We used test sets from the massively parallel reporter assay

to examine the performance of MACIE for predicting cell

type- and tissue-specific regulatory variants. The MPRA

dataset included validated regulatory variants in lympho-

blastoid cell lines (LCLs).33 We paired each positive

variant ðn¼ 693Þ with four control variants from MPRA

when neither allele showed significant differential

expression at a Bonferroni-corrected p value threshold of

0.1 ðn ¼ 2;772Þ.37 Figure 5A shows that the MACIE-regula-

tory score produced the highest discrimination power
The Ameri
(AUC ¼ 0.68); the second-best performing method was

LINSIGHT (AUC ¼ 0.64).

Finally, we evaluated the performance of our proposed

method on a collection of dsQTLs that were identified

via DNase I sequencing data from human lymphoblastoid

cell lines.38 Variants possessing association p values less

than 1310�5 and residing within 100 bp of their

corresponding DNase I-hypersensitive sites were chosen

as the putatively functional set ðn ¼ 560Þ.39 The control

set of variants was randomly selected from a larger set of

common variants (MAF > 5%) falling in the top 5% of

DNase I sensitivity sites used for identifying dsQTLs in

the original study ðn ¼ 2;240Þ. We observed that the MA-

CIE-regulatory score exhibited a larger AUC (AUC ¼ 0.76)

than all other methods (Figure 5B). The MACIE-anyclass

score also delivered robust performance on MPRA-vali-

dated and dsQTL datasets.

In summary, MACIE consistently ranked as one of

the most powerful, robust and interpretable functional

annotation intergrative score methods across a variety of

settings and scientific questions. Given that all the scoring

methods in the benchmarking comparisons used a similar

set of annotations, the better performance ofMACIE across

a variety of testing sets shows that whereas one-dimen-

sional scores have gaps in functional profile coverage, a

multi-dimensional scoring method offers robust and

interpretable predictive performance. The ability of

MACIE to interrogate variant functionality from multiple

perspectives, at a level that is highly competitive with or

better than state-of-the-art methods, is unmatched by

existing integrative functional scoring methods.

MACIE prioritizes functional variants by using lipid

GWAS data

To illustrate the utility of MACIE scores in identifying

plausible functional causal variants in genetic association

studies, we applied MACIE to the publicly available lipid

GWAS data from the European Network for Genetic and

Genomic Epidemiology (ENGAGE) Consortium.40 This

dataset consists of lipid GWAS summary statistics for 9.6

million single-nucleotide variants (SNVs) across 62,166

samples (Table S7). We focused on genome-wide

significant ðp< 5310�8Þ SNVs associated with low-density

lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), triglycerides (TG), and total

cholesterol (TC). In total, for non-synonymous coding

SNVs, we found 8, 9, 5, and 10 SNVs that were predicted

to belong to the protein-damaging class with probability

greater than 0.9 for LDL-C, HDL-C, TG, and TC, respec-

tively. For non-coding and synonymous coding SNVs,

643, 377, 322, and 850 SNVs were predicted to belong to

the regulatory class with probability greater than 0.9, and

9, 8, 10, and 12 SNVs were predicted to belong to both

the evolutionarily conserved and the regulatory class

with probability greater than 0.9 for LDL-C, HDL-C, TG,

and TC, respectively. Among all SNVs, 50, 64, 39, and 61

SNVs were predicted to belong to the evolutionarily
can Journal of Human Genetics 109, 446–456, March 3, 2022 451



Figure 4. Performance comparing MACIE and other functional scores on predicting CAGE promoters and CAGE enhhancers from
1000 Genomes Project phase 3 data
ROC curves comparing the performances of MACIE and other functional scores in discriminating between (A) CAGE-identified pro-
moters and non-promoters and (B) CAGE-identified enhancers and non-enhancers among non-coding variants from 1000 Genomes
Project phase 3 data. For CAGE Enhancer predictions, LINSIGHT was excluded because it uses the FANTOM5 enhancer label as one
of the genomic features in building the LINSIGHT score.
conserved class with probability greater than 0.9 for

LDL-C, HDL-C, TG, and TC, respectively (Tables S8–S15).

Compared to the total number of marginally significant

SNVs for each trait (Table S7), the MACIE scores reduce

the number of SNVs prioritized for follow-up by an order

of magnitude, saving much cost and effort in effectively

pinpointing SNVs with relevant biological function.

For example, for LDL-C, rs7412 (chr19: 45412079 C/T;

p < 13 10�316) was the most significant SNV in APOE

(MIM: 107741). Because both MACIE-protein and MACIE-

conserved scores provided a prediction greater than 0.95,

wepredicted this knowncommonmissense SNV tobe func-

tional. These predictions highlight the multiple functional

roles of this SNV. It is also worth noting that the second-

most-significant SNV rs1065853 (chr19: 45413233 G/T;

p < 13 10�316) is in extremely high linkage disequilibrium

(LD) with the leading SNV rs7412 ðr2 > 0:8Þ (Figure 6). MA-

CIE scores indicate that rs1065853 (upstream variant of

APOC1 [MIM: 107710]) might possess a regulatory role; its

MACIE-regulatory score is greater than 0.99, possibly sug-

gesting that both the missense and regulatory variants

can be putatively causal in affecting LDL-C concentrations.

Similar results were observed for TC (Figure S5). For HDL-C,

although the single most significant SNV was rs17231506

(chr16: 56994528 C/T; p ¼ 6:883 10�316), the MACIE

prediction was less than 0.01 for both classes. By

scanning across the CETP (MIM: 118470) locus and

nearby non-coding regions associated with HDL-C, we

found that two SNVs, rs72786786 (chr16: 56985514 G/A;

p ¼ 2:523 10�253) and rs12720926 (chr16: 56998918

A/G; p ¼ 1:893 10�260), both in moderate to high LD

with the leading SNVrs17231506 (Figure S6), possess aMA-

CIE-regulatory score greater than 0.99; rs72786786 has
452 The American Journal of Human Genetics 109, 446–456, March
functional evidence, including binding proteins, motif

changes, and in ENCODE DNase and regulatory

chromatin states associated with diseases.41 Therefore,

these two SNVs might be more functionally important

than the leading SNV rs17231506 and might be prioritized

for functional follow-up. For TG, there is also a lack of

functional evidence for the leading SNV rs964184

(chr11: 116648917 G/C; p ¼ 1:743 10�157) in the APOA1/

C3/A4/A5 gene cluster region. However, SNV rs2075290

(chr11: 116653296 C/T; p ¼ 2:133 10�103), which is in

moderate LDwith rs964184 at this locus, has aMACIE-regu-

latory scoreof0.88 (FigureS7).These examples illustratehow

MACIE scores can complement previous literature and pro-

vide additional information to aid prioritization of puta-

tively functional causal variants for follow-up.
Discussion

As the amount of publicly available annotation data in-

creases and our understanding of variant functional effects

continues to grow, describing variant functionality with a

flexibleyetpractically interpretable and intuitivevocabulary

will only become more important. Existing one-dimen-

sional integrative scores cannot capture the multi-faceted

functional profile of a variant because such ratings neces-

sarily combine diverse, and possibly unrelated, sets of anno-

tations into a single outcome. Oftentimes, they also ignore

or do not fully consider the correlation between individual

annotations. Current supervised methods further demon-

strate performance profiles that are linked strongly to the

quality of training-set labels. These supervised scores might

lack robustness in the absence of gold-standard training sets.
3, 2022



Figure 5. Performance comparing MACIE and other functional scores on predicting regulatory variants in LCLs against control var-
iants
ROC curves comparing the performances of MACIE and other functional scores for the prediction of (A) validated regulatory variants in
lymphoblastoid cell lines (LCLs) frommassively parallel reporter assays (MPRAs) and (B) dsQTLs identified via DNase I sequencing data
in LCLs against control variants.
In this paper, we have proposed MACIE, an unsupervised

multivariate mixed-model framework that allows for multi-

ple, possibly correlated, binary functional statuses. This

framework offers several fundamental advancements over

existing methods. First, MACIE provides multi-dimensional

scores that measure functionality across multiple different

functional classes. As posterior predictive probabilities, these

scores are interpretable and scientifically relevant. They can

be further summarized into marginal measures such as

‘‘probability of function according to at least one class of an-

notations’’ (MACIE-anyclass). The genome-wide average of

the MACIE-anyclass score is 0.084, which is consistent

with the prediction from previous studies.20,42

Second, the MACIE model accommodates correlations

both within and between classes. It has been reported

that, although some of the available annotations measure

similar notions of functionality, others provide distinct

and complementary information.9,22 By flexibly modeling

potential, complex correlations across all the annotations,

MACIE reflects this underlying biology. In doing so, it is

better able to assign each annotation and group of annota-

tions the appropriate amount of influence.

We showed that MACIE delivered powerful and robust

performance in discriminating between functional and

non-functional variants in multiple independent testing

sets, including (1) validated, clinically relevant variants

in ClinVar, (2) SGE-verified loss-of-function variants in

BRCA1, and (3) experimentally validated functional vari-

ants in FANTOM5 and MPRA. Using lipid GWAS summary

statistics from the ENGAGE Consortium, we illustrated

that MACIE offers an effective tool for fine-mapping

studies to prioritize putative functional variants for exper-

imental follow-up. MACIE is also informative in priori-

tizing lipid-associated variants through a stratified LD-
The Ameri
score regression-heritability enrichment analysis (supple-

mental materials and methods).23,43 MACIE scores have

already been used, for example, in the identification and

characterization of inflammation and immune-related

risk variants in squamous cell lung cancer.44 Finally, the

proposed MACIE scores can be used as a weighting scheme

to further empower variant-set analyses of rare variants.45

Our proposed MACIE framework provides a multi-

dimensional functional-class extension of several existing

unsupervised single scoring frameworks, such as EI-

GEN.15 MACIE fits a mixed model to the set of annotations

for several latent functional classes and outputs the corre-

sponding posterior component probabilities, which are

highly interpretable. If we assume that there exists a single

latent dichotomous variable summarizing functional sta-

tus and that all annotations are independent on condition

of the univariate functional status, then MACIE reduces to

the GenoCanyon framework (Figure S1B).16 MACIE pro-

duces multi-dimensional functional scores and has advan-

tages over GenoCanyon, which predicts the regulatory po-

tential of genomic locations by using a single-dimensional

score. The MACIE-damaging protein function score (AUC

¼ 0.93) substantially outperformed GenoCanyon (AUC ¼
0.69) in the ClinVar coding testing set, and the MACIE-

conserved score (AUC ¼ 0.95) substantially outperformed

GenoCanyon (AUC ¼ 0.78) in the ClinVar non-coding

testing set. In addition, the performance of theMACIE-reg-

ulatory score (AUC ¼ 0.76) is comparable to that of Geno-

Canyon (AUC ¼ 0.73) in predicting regulatory function,

for example, in the dsQTL testing set.

The versatility of the MACIE approach does introduce

additionaldecisions that investigatorsneed tomake. First, re-

searchers need to decidewhich set of annotations to include

and how to assign the annotations to different classes; both
can Journal of Human Genetics 109, 446–456, March 3, 2022 453



Figure 6. LocusZoom plot for GWAS associations of LDL-C at the APOE locus
The lipid GWAS summary statistics were from the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium (n
¼ 58,381).40 TheMACIE-protein andMACIE-conserved scores for rs7412 are 0.96 and 0.97, respectively. TheMACIE-conserved andMA-
CIE-regulatory scores for rs1065853 are <0.01 and >0.99, respectively. LDL-C, low-density lipoprotein cholesterol.
the quality of the annotations as well as the accuracy of their

assignment can impactMACIE’s performance. In this paper,

weassigned theseannotationscoresonthebasisofbiological

knowledge. Second, the exponential family assumption in

the model might also require a proper transformation of

some individual annotation scores before model fitting.

Third, users need to consider the trade-offs between a more

complex model and computation time; these trade-offs

include the number of classes, the number of functional

scores in each class, and the number of variants used for

training. Such issues will become more relevant when the

MACIE framework is extended to integrate cell-type-specific,

tissue-specific, species-specific, or phenotype-related anno-

tations and to include more variants in the training set, for

example from the Trans-Omics for Precision Medicine Pro-

gram.17,18,37,46 Nevertheless, these choices again highlight

the flexibility of the MACIE approach. Unlike other one-

dimensional algorithms that rely on assumptions more

likely to be satisfied when the number of annotations is

small, theMACIEstatisticalmodel scaleswellwith increasing

annotation data. Thus, MACIE can be expected to provide

more meaningful predictions as the availability of variants

and annotation scores continues to expand and the quality

of these data improves.

A final important consideration in practical analysis con-

cerns the differences between supervised and unsupervised

methods. The performance of unsupervised scores might

lag behind that of supervised methods when training data-
454 The American Journal of Human Genetics 109, 446–456, March
sets with relevant, high-quality labels are available. We

observed this behavior when comparing MACIE to

FATHMM-XF for ClinVar non-coding variants. Future ex-

tensions of interest include development of tools capable

of integrating both supervised and unsupervised methods

to further improve prediction accuracy.37
Data and code availability

The code for training MACIE models and MACIE scores used in all

benchmarking examples are available for download at https://

github.com/xihaoli/MACIE. Precomputed MACIE scores for all

possible variants in the human genome are available for download

at https://zenodo.org/record/5755656; https://zenodo.org/record/

5756449; https://zenodo.org/record/5756479; and https://

zenodo.org/record/5756563 (DOIs: 10.5281/zenodo.5755656;

10.5281/zenodo.5756449; 10.5281/zenodo.5756479; and 10.

5281/zenodo.5756563). All genomic coordinates are given in

NCBI Build 37/UCSC hg19.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.01.017.
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