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Abstract: In recent years, the shipbuilding industry has experienced a growing demand for tighter
control and higher strength requirements in thick steel plate welding. Electro-gas welding (EGW) is
a high heat input welding method, widely used to improve the welding efficiency of thick plates.
Modelling the EGW process of thick steel plates has been challenging due to difficulties in accurately
depicting the heat source path movement. An EGW experiment on 30 mm thickness E36 steel
plates was conducted in this study. A semi-ellipsoid heat source model was implemented, and
its movement was mathematically expressed using linear, sinusoidal, or oscillate-stop paths. The
geometry of welding joints, process variables, and steel composition are taken from industrial scale
experiments. The resulting thermal evolutions across all heat source-path approaches were verified
against experimental observations. Practical industrial recommendations are provided and discussed
in terms of the fusion quality for E36 steel plates with a heat input of 157 kJ/cm. It was found that
the oscillate-stop heat path predicts thermal profile more accurately than the sinusoidal function and
linear heat path for EGW welding of 30 mm thickness and above. The linear heat path approach is
recommended for E36 steel plate thickness up to 20 mm, whereas maximum thickness up to 30 mm is
appropriate for sinusoidal path, and maximum thickness up to 35 mm is appropriate for oscillate-stop
path in EGW welding, assuming constant heat input.

Keywords: electro-gas welding; high heat input; heat source movement path; finite element analysis;
thermal evolution

1. Introduction

In the shipbuilding industry and offshore engineering, the size and structures of ships
are increasing rapidly [1,2], thus giving rise to a growing demand for higher control in
welding thick steel plates [3,4]. Electro-gas welding (EGW) has become an indispensable
welding method for shipbuilding enterprises due to its outstanding advantages, such as
large heat input and high welding efficiency [5]. As illustrated in Figure 1, EGW is an
automatic welding process using a special flux-cored wire with CO2 gas protection, and
used for the welding of vertical position of steel plates [6]. During the welding process,
the torch moves along the chosen weld path from bottom to top. A water-cooled copper
slider is placed on the front of the weld, and a ceramic “backing” plate is positioned at the
rear. The welding torch is also used to feed the welding metal into the groove. In thick
plates welding, the welding pool is restrained by the weld pieces, backing plate and sliding
copper shoe, so that single pass welding can be accomplished.
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inconsistent with the real EGW process, hence the predicted fusion lines do not agree with 

experimental results. 
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In 2018, Yuan et al. [13] applied a piecewise function to model the real oscillate movement 

path of gas metal arc welding. In 2019, da Silva Pereira et al. [14] implemented weave 
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Figure 1. The electro-gas welding (EGW). (a) The 3D schematic diagram of EGW equipment, (b) The
2D schematic diagram of EGW equipment, (c) Photographs of EGW equipment, (d) Photographs
of experimentation.

In EGW, heat transfer from the heat source to the plates occurs mainly through
radiation and convection [7,8]. In thick steel plate welding, the efficiency of heat transfer
in the “y” direction (with depth, Figure 1) of single pass EGW is a key factor affecting the
quality of the joint [9,10]. In 2016, Hwang, Kim and Lee [11] introduced double ellipsoidal
moving heat sources to model the temperature profile and residual stress distribution in
EGW of marine steel. However, the ellipsoidal method oversimplifies the oscillate-stop
heat source path of industrial welding process to 1 dimensional linear case, whereby the
movement path in the “y” direction is not considered. Therefore, the heat source paths are
inconsistent with the real EGW process, hence the predicted fusion lines do not agree with
experimental results.

To include an oscillate-stop heat source path within weld modelling, in 2017, Xu, Pan
and Wan [12] used a sinusoidal function to simulate metal active gas arc welding (GAW). In
2018, Yuan et al. [13] applied a piecewise function to model the real oscillate movement path
of gas metal arc welding. In 2019, da Silva Pereira et al. [14] implemented weave patterns
by path parameterization, which improved the accuracy and has been further extended
to predict defects in welding [15]. However, the effect of different heat source paths on
thermal evolution in modelling EGW of thick steel plates and further optimize heat source
paths according to thickness of steel plate has not yet been investigated systematically.

This study investigates the effect of three different heat source paths (linear, sinusoidal
and oscillate-stop) through FEA on the resulting thermal evolution in thick steel plate
welding. The results for EGW welding of E36 marine steel plates with thicknesses ranging
from 20–40 mm and a heat input of 157 kJ/cm are compared based on fusion efficiency. The
FEA models are verified by comparing against experimental observations. Finally, practical
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industrial recommendations are provided for each heat source path’s approach, according
to variation in plate thickness.

2. Materials and Model Description
2.1. Electro-Gas Welding Experiments

This study investigates the effect of heat source path on thermal evolution during
EGW of E36 marine steel plates. For the FEA modelling, experimental parameters, such as
the geometry of the welding joints, thermo-mechanical and EGW process variables, and
steel composition were considered as inputs, listed in Table 1. The temperature variation
of material properties such as density and thermal conductivity of the E36 steel plate was
also taken into account. JMatPro was implemented to calculate the material properties of
the steel [16,17] for the E36 steel composition, shown in Table 2. In addition to the five
main elements: carbon, manganese, phosphorus, and sulphur, microalloying elements such
as niobium, titanium, and aluminium were added to improve the mechanical properties
of steel. The dimensions of the steel plate model are shown in Figure 2. The thickness
of the steel plate is 30 mm, while the length and width of the steel plate are 800 mm and
250 mm, respectively.

Table 1. Parameters of welding experiments.

Heat Input
(kJ/cm)

Welding Speed
(cm/min)

Current
(A)

Voltage
(V)

Wire Diameter
(mm)

Wire Feed Rate
(m/min)

157 6.9 420 43 1.6 13

Parameters of the torch movement of horizontal oscillations

Internal stop
(s)

External stop
(s)

Amplitude
(mm)

Frequency
(s−1)

1 1.5 10 2/11
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Table 2. Chemical composition of E36 steel (wt %).

C Si Mn S P Nb Ti Al

0.08 0.27 1.45 0.002 0.01 0.014 0.014 0.034

In the electro-gas welding process of 30 mm thick steel E36, flux-cored wire JIS Z3319
DW-S60G with a diameter of 1.6 mm was used. The chemical composition and the proper-
ties of the weld deposit are presented in Tables 3 and 4.

Table 3. Chemical composition of weld deposit.

Grade C Mn Si S P Cr Ni Mo B Ti

DW-S60G 0.07 1.68 0.33 0.006 0.011 0.02 0.77 0.26 / 0.02

Table 4. Mechanical properties of weld deposit.

Yield Strength Rp0.2
(MPa)

Tensile Strength Rm
(MPa)

Elongation A
(%)

Akv at −20 ◦C
(J)

534 662 26 124, 139, 120

2.2. Three-Dimensional EGW Model for the Numerical Simulation

Heat transfer during welding is a complex process dependent on multiple thermo-
physical and geometrical factors. In EGW, heat from the heat source is dissipated to the
welding plates mainly by conduction, radiation, and convection. Thus, a balance must
be found between the rate of heat generation (speed and energy of EGW) and the rate of
dissipation, determined by the case specific geometry and chemistry.

The heat transfer equation is given as follows:

ρCp
∂T
∂t

+∇(−k∇T) = Q−Qr −Qc (1)

where ρ—density of the material; Cp—specific heat capacity; T—absolute temperature;
t—time; k—thermal conductivity; Q—heat source; Qr—radiation heat loss; Qc—convection
heat loss. During the EGW process, the peak temperature of the heat-affected zone can
reach more than 2000 ◦C, thus the temperature gradient between the steel plate and the
environment is massive, causing significant radiation. The heat dissipation terms for
radiation and convection are:

−Qr = εσ
(

T4
amb − T4

)
(2)

−Qc = h f (Tamb − T) (3)

where ε—thermal emissivity; σ—Stephan Postman’s constant: 5.67 × 10−8 [W/(m2·K4)];
Tamb—ambient temperature [K]; T—steel plate surface temperature [K]; qr—radiant heat
transfer flux [W/m2]; qc—convective heat transfer flux [W/m2]; h f —convection heat
transfer coefficient between welding parts and the environment.

A three-dimensional EGW model was implemented, as shown in Figure 3a,b. This
model uses a free tetrahedral mesh with the following principles designed for improving
the computational efficiency:

• The weld region close to the weld heat source has a larger temperature gradient and,
hence, was divided into a finer grid (minimum mesh tetrahedral edge length 7.67 mm).

• A coarser mesh (maximum mesh tetrahedral edge length 24.24 mm) was applied to
the base steel plate areas far away from the heat source, where a smaller change in
thermal gradients occurred.
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Figure 3. (a) Geometry and mesh of EGW model implemented in this study, (b) the transient
temperature distribution simulated of steel plate at 520 s, (c) schematic diagram welding joint of
pre-welding bevel, (d) welding joint of after-welding showing the fusion line.

Figure 3b illustrates the thermal profile and fusion line of a steel plate during the
EGW process at 520 s at the midsection. The thermal distribution at surface and side of the
steel plate is available from the diagram. Experimental fusion lines are used to verify the
simulation results. A schematic diagram of the pre-welding bevel and micrograph of real
joint after welding is shown in Figure 3c,d, respectively.

The filling of weld metal gradually with the movement of heat source is considered.
The study simulates the ‘activate’ and ‘inactive’ of weld metal. Geometry of weld metal is
pre-drawn in the work piece gap and properties of weld metal are activate point by point
with the heat source movement.

For the welded area of the weld metal, the material properties of the geometry are activated.
For the unwelded area of the weld metal, the material properties of the geometry are

inactivated, as shown in Figure 4.
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2.3. Heat Source Movement Path
2.3.1. Heat Source Model

The earliest and simplest heat source model is the point heat source model proposed
by Rosenthal [18] and it has been widely used in welding simulation. Rosenthal’s heat
source model applies a quasi-steady state 3D semi-infinite geometry for point source.
A velocity term was added to Rosenthal’s model to simulate heat source movement by
Lecoanet et al. [19–21]. To describe the heat source distribution, a double ellipsoidal heat
source model [22,23] was proposed by Rouquette et al., combining two different ellipses,
one in the front quadrant and the other in the rear quadrant [24,25]. Laser Welding Processes
have been simulated by a double ellipsoidal heat source model in recent years [26–28]. The
two heat source models, i.e., Gaussian, semi-ellipsoid and double ellipsoidal heat source
model, predict similar temperature distribution and distortion [29,30]. A simplified Gaus-
sian heat source model was to improve calculation efficiency by Cai and Norman [31,32].

In this study, the semi-ellipsoid heat source model was selected. The equation of
semi-ellipsoid heat source model is shown below:

q(x, y, z) =
6Q

πr3
√

π
exp

(
−

3
(

x2 + y2 + z2)
r2

)
(4)

where q(x, y, z) represents the heat flow density distribution of (x, y, z), Q is the effective
power of the arc, r is the radius of the semi-ellipsoid heating source. The schematic diagram
of semi-ellipsoid heat source is shown in Figure 5.
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2.3.2. Heat Source Movement Path

The movement of the heat source is expressed using a linear, sinusoidal and oscillate-
stop path. In this study, the movement speed in the z-axis is defined as v1 and in the y-axis
as v2. As shown in Figure 6, three welding paths are modelled. Their exact coordinate heat
source locations at each time step are expressed in terms of v1, v2 and then substituted in
Equation (4).
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1. Linear path heat source

The linear path heat source considers the welding heat source moving in the welding
direction with a welding speed of v1; the speed of the y-axis direction is zero. The expression
of welding heat flux for its movement along the welding direction is shown in Equation (5):

q(x, y, z) =
6Q

πr3
√

π
exp

−3
(

x2 + y2 + (z− v1t)2
)

r2

 (5)

The simulation of the welding heat source moves from bottom to top along the welding
direction with the welding speed during the electro gas welding process. The heat source
moves along the centre of the steel plates for different thicknesses, with a welding speed of
6.9 cm/min, as given in Table 1.

2. Sinusoidal path heat source

The heat source, moving both in the welding direction with speed v1 and in the
thickness direction with speed v2, is considered in the sinusoidal path heat source model.
The schematic diagram of the path is shown in Figure 6b.

The defined oscillate range is d, the length of the weld beam is L, the welding speed is
v1, and the oscillate speed of the heat source in the thickness direction is v2; the equation of
the welding period is:

T =
2d
v2

(6)

Total welding time:

t =
L
v1

(7)

The heat source position of the y-axis direction is considered as:

y =
d
4

sin
2πt
T

(8)
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Steel plates with three different thicknesses of 30 mm, 35 mm and 40 mm were used in
this study to investigate the applicable thickness for different heat source movement paths.
The parameters of the sinusoidal for different thickness steel plates are shown in Table 5.

Table 5. Sinusoidal path parameters of welding heat source.

No. Thickness of Plate
(mm)

Amplitude (A)
(mm)

Period (T)
(s)

Oscillate Range
(mm)

Offset (k)
(mm)

1 30 10.0 5.5 20 20
2 35 12.5 5.5 25 20
3 40 15.0 5.5 30 20

According to the parameters of the sinusoidal heat source movement path, the po-
sition of the heat source changes with time during the welding process, as described in
Equation (10). The amplitude of sinusoidal function is 10 mm, 12.5 mm and 15 mm for
three thick plates, the period of the sinusoidal cycle is 5.5 s, respectively. The oscillate range
is 20 mm, 25 mm and 30 mm. Due to the heat source needing to be close to the surface
while leaving a certain distance for technological factors, the distance of 5 mm to the top
surface and the bottom surface is appropriate.

P1(t) = A sin
(

2πt
T

)
+ k (9)

The welding heat flux of the sinusoidal path is described as:

q(x, y, z) =
6Q

πr3
√

π
exp

−3
(

x2 + (y− P1(t))
2 + (z− v1t)2

)
r2

 (10)

According to Equation (10), the position of heat source change with time for three
thickness plates are shows in Figure 7. The y-axis is the position along the thickness of
steel plates and the z-axis is the position along the welding direction from the bottom to
the top of steel plates. The movement path of the heat source under three thicknesses is
drawn using solid lines with red, blue and green colour and the three thickness of 30 mm,
35 mm and 40 mm steel plates are indicated as dotted lines with red, blue and green colour,
respectively. The positions of the heat sources for 1 s, 5.5 s, 6 s, 7 s and 11 s are marked
in Figure 7.

3. Oscillate-stop heat source

According to the characteristics of the oscillate-stop path, the heat source not only
moves from bottom to top during the welding process but also oscillates in the direction
of the depth of the melt pool, which helps the welding bevels on both sides to obtain the
same melting depth. According to the welding practice, the oscillate-stop parameters of
the heat source for different thickness steel plates are shown in Table 6.

Table 6. Oscillate-stop parameters of welding heat source.

No. Thickness
(mm)

Internal Stop
(s)

External Stop
(s)

Oscillate Range (R)
(mm)

Oscillate Center (C)
(mm)

Period (T)
(s)

1 30 1.0 1.5 20 20 5.5
2 35 1.0 1.5 25 20 5.5
3 40 1.0 1.5 30 20 5.5
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Assume that the oscillate range is R, the distance of the oscillate centre to the origin
of the coordinates is C, the period of the cycle is T, cycles is n. according to parameters of
the oscillate-stop path; the position of heat source relative to the steel plate with different
thickness in the welding period is described as Equation (12):

P2(t) =


R

1.5 t + 10− 5.5(n− 1) R
1.5 , T(n− 1) < t ≤ T(n− 1) + 1.5

C + R
2 , T(n− 1) + 1.5 < t ≤ T(n− 1) + 2.5

− R
1.5 t + 30− [5.5(n− 1) + 2.5]

(
− R

1.5

)
, T(n− 1) + 2.5 < t ≤ T(n− 1) + 4

C− R
2 , T(n− 1) + 4 < t ≤ T(n− 1) + 5.5

(11)

Regarding their thickness, the oscillate centre C = 20 mm and period T = 5.5 s are
constant, so the equation can be simplified to:

P2(t) =


R

1.5 (t− 5.5n + 5.5) + 10, 5.5n− 5.5 < t ≤ 5.5n− 4
20 + R

2 , 5.5n− 4 < t ≤ 5.5n− 3
− R

1.5 (t− 5.5n + 30) + 30, 5.5n− 3 < t ≤ 5.5n− 1.5
20− R

2 , 5.5n− 1.5 < t ≤ 5.5n

(12)

Define a function for the cycle of the equation, P(mod(t, 5.5)) means the equation cycle
one time every 5.5 s. The welding heat flux of oscillate stop path be described as:

q(x, y, z) =
6Q

πr3
√

π
exp

−3
(

x2 + (y− P2(mod(t, 5.5))2 + (z− v1t)2
)

r2

 (13)
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The position of the heat source changes with time for three thickness plates, as shown
in Figure 8.
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3. Model Verification via Experiment

To verify the accuracy of the model, a cross-section is taken along the thickness (y-axis)
of the weld joint. As shown in Figure 9, the calculated melting pool and fusion line using
different heat source path modes are compared against the experimental welding joints.
The model fusion line is taken at the material melting point, 2055 K.

(1) As shown in Figure 9b, the application of the linear heat source path did not cause
sufficiently high temperatures to melt the top and bottom of the joint; only the centre
part of joint is melted, which differs to the experimental observation.

(2) The application of the sinusoidal path (see Figure 9c) leads to a fully melted weld
joint in the thickness direction. The fusion line extended to the outside of the welding
groove, but the area covered by the fusion line is smaller than that observed in the
experiments (see Figure 9a).

(3) The application of the oscillate-stop path leads to a fully melted weld joint in the
thickness direction. Additionally, the fusion line extended to the outside of the
welding groove base metal near the fusion is melted to form a solid joint, and the area
covered by the fusion line is similar to that observed in the experiments.

Quantitative analysis is carried out to measure the coordinates of the points of inter-
section between the fusion lines and top and bottom surface (marked as A, B, C and D in
Figure 9). The coordinates for points A, B, C, and D are listed in Table 7. The difference
between simulated and experimental coordinates is calculated, defined as “error” as shown
in Table 7, where Error = (simulated results-experiment result)/experiment result. The “×”
sign refers to the lack of fusion at the given location, i.e., no fusion line in the area.
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Figure 9. Melt pool and fusion line of experiments and simulated welded joints of 30 mm thickness
steel plates, (a) experimental weld joint, (b) modelling using linear path heat source, (c) modelling
using sinusoidal path heat source, (d) modelling using oscillate-stop path heat source.

Table 7. Comparison of coordinates of selected points between simulated and experimental welding
melt pools.

Coordinate Experiment
(mm)

Linear
(mm) Error Sinusoidal

(mm) Error Oscillate-Stop
(mm) Error

A (−15.9, 30) × × (−12.5, 30) 21.4% (−14.5, 30) 8.8%
B (14.8, 30) × × (12.5, 30) 15.5% (14.5, 30) 2.0%
C (6.3, 0) × × (4.5, 0) 28.6% (6.0, 0) 4.8%
D (−6.0, 0) × × (−4.5, 0) 25.0% (−6.0, 0) 0

Note: Error = (simulated result—experiment result)/experiment result.

In the case of the linear heat source path, there are no fusion lines running through
the top to the bottom of the welded joint. For the sinusoidal heat source path and the
oscillate-stop heat source path, the welding arc not only moves from bottom to top during
the welding process but also along with the weld oscillates in the direction of the depth of
the melt pool, which helps the welding bevels on both sides to obtain the same melting
depth. The “errors” of four selected points with sinusoidal heat source are: 21.4%, 15.5%,
28.6% and 25.0%, respectively, while the error of four selected points with oscillate-stop
heat source is 8.8%, 2.0%, 4.8% and 0%, respectively. The “error” of the oscillate-stop heat
source is greatly reduced. The heat source with oscillate-stop path holding on at near
surface of steel plate for more times than sinusoidal path, which helps to transfer more heat
to the surface of the joint during the welding process.

In summary, the path of the heat source can significantly affect the thermal profile of
the weld joint, hence FEA models are essential in optimizing and predicting accurately the
thermal profile, including the fusion line and shape of the melt zone in different thickness
and path conditions.
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4. Evolution of Thermal Profile in Heat Affected Zone
4.1. Simulated Heat Source Paths

Heat source paths calculated using the linear heat source path, sinusoidal path and
oscillate-stop path are shown in Figure 10. In the figure, thermal profiles indicating heat
sources at 340 s, 349 s, and 357 s are shown as examples. The linear heat source moves
from the bottom to the top along the centre of the thickness of the steel plate, the sinusoidal
heat source moves along with the weld direction and the thickness of the weld pool at the
same time, and the oscillate-stop heat source path stays near the surface for a period of
time when oscillating to the internal and external position. The numbers in brackets on
the right side of every picture are the coordinates of the heat source centre of every picture.
The x axis alone the welding line and the y axis alone is the plate thickness direction. When
the welding time is 0 s, the heat source centre is in the starting point of the welding line (z)
and the centre of plate thickness (y); the coordinates of the heat source centre are the origin
coordinates (0, 0).
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Figure 10. Calculated thermal profiles using three different heat source paths at different welding
times of 340 s, 349 s and 357 s. (a) linear path (b) sinusoidal path, (c) oscillate-stop path.

4.2. Thermal Cycles in Heat Affected Zone

Figure 11a is a schematic diagram indicating the positions of the selected points in
the heat affected zone (HAZ). Point 1, point 6 and point 8 are located in the groove which
belongs to the molten pool, point 2, point 3, point 4, point 5 and point 7 are located in
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the base metal, the distance to the heat source of the five points is from 11 mm to 50 mm.
Figure 11b–d show the simulated thermal cycle curve of the five selected points during the
welding process with the linear path, sinusoidal heat source path and oscillate-stop heat
source path, respectively.
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Figure 11. Calculated thermal cycles at selected points in heat affect zones (HAZ), (a) position of
selected points in HAZ, (b) thermal cycle curves using linear path, (c) thermal cycle curves using
sinusoidal path, (d) thermal cycle curves using oscillate-stop path.

As illustrated in Figure 11, the temperature quickly rises when the welding heat source
approaches the selected point, reaching a peak value, and then it decreases gradually as the
welding heat source moves away from the point. The peak temperature varies according
to the distance from the welding central line to the points. As listed in Table 8, the peak
temperature of point 1 with a linear heat source path is 1932 K, which does not reach the
melting point of 2055 K. The peak temperature of point 1 with sinusoidal heat source path
is 2085 K, which exceeds the melting point by 30 K, the point 1 will be melted. The peak
temperature of point 1 with the oscillate-stop heat source path is 2156 K, which exceeds
the melting point by 106 K, compared with the sinusoidal heat source path; its fusion line
advances to a position further away from the groove to form a joint with better quality. The
peak temperature values of the selected point are listed in Table 8.
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Table 8. The peak temperature of selected point as shown in Figure 8.

Path
Point

1 (K) 2 (K) 3 (K) 4 (K) 5 (K) 6 (K) 7 (K) 8 (K)

Linear path 1932 1673 1513 1410 1065 1810 1640 2420
Sinusoidal path 2085 1848 1670 1551 1153 2021 1811 2295

Oscillate-stop path 2156 1919 1735 1609 1189 2410 1960 2223

Using the sinusoidal path and the oscillate-stop path, the distance between the heat
source and the selected points becomes closer when the heat source moves to the surface.
While the oscillate-stop path stays near the internal and external position for a period of
time in the cycle of movement. The welding arc can transfer more heat to the surface of
steel plates and advance the fusion line in the position. So, the temperature in HAZ with
the oscillate-stop path is higher than that with the sinusoidal path. EGW is a single pass
method for welding thick steel plates, so the stop-over of the heat source at a near-surface
position has great significance on the quality of the weld joint.

5. Recommended Heat Source Path Model for Simulating EGW Welding of Thick
Steel Plates

Three different heat source paths have been used for simulating EGW welding of thick
steel plates. In this section, the study will examine the effect of the heat source model on
the shape of weld pool and the fusion line, so that a different applicable heat source model
for simulating EGW thick plates can be defined.

The size of the cross section of the work piece gap is shown in Figure 12. The heat
source movement path for 20 mm, 25, 30 mm, 35 mm and 40 mm thick steel plate were
designed and listed in Tables 5 and 6 and Figures 7 and 8.
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Figure 12. The simulated welding molten pool with three heat sauce paths. Linear heat source path
model for 20 mm thickness (a), for 25 mm thickness (b); Sinusoidal path for 30 mm thickness (c), for
35 mm thickness (d); Oscillate-stop path for 35 mm thickness (e) and for 40 mm thickness (f).

Simulations were carried out on steel plates with different thicknesses and different
heat source models, as listed below. Other modelling parameters are listed in Tables 3 and 4,
and the heat input is 157 kJ/cm for all trials.
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• 20 mm, 25 mm thickness steel plates—using the linear path (Figure 12a,b);
• 30 mm, 35 mm thickness steel plates—using sinusoidal path (Figure 12c,d);
• 35 mm and 40 mm thick steel plates—using oscillate-stop path (Figure 12e,f).

For the linear path model: Figure 12a shows a fully fusion welding joint for 20 mm
thick steel plates, while Figure 12b shows the lack of fusion in the bottom of the joint for
25 mm thick steel plates. So, the maximum applicable thickness for the linear heat source
path is estimated to be 20 mm.

For the sinusoidal heat source path model: Fully fusion of the weld pool was obtained
for 30 mm thick steel plates, as shown in Figure 12c, while Figure 12d shows a lack of fusion
in the bottom of the joint for 35 mm steel plate. So, the maximum applicable thickness for
the sinusoidal function path is estimated to be under 30 mm.

For the oscillate-stop path: Figure 12e shows that a fully fusion of the weld pool is
obtained for 35 mm thick steel plates, but the lack of fusion in the bottom of the joint for
40 mm thick steel plates. So, the maximum applicable thickness for the oscillate-stop heat
source path is estimated to be around 35 mm.

6. Conclusions

1. Three different types of heat source path models (linear, sinusoidal function and
oscillate-stop) were implemented to simulate the EGW process of marine steel with a
heat input of 157 kJ/cm.

2. For EGW welding of 30 mm thickness steel plates, the model using the oscillate heat
source path predicted a more accurate thermal profile (the shape of melt pool and the
fusion line) than those using the sinusoidal and linear heat source paths.

3. The applicable heat source paths for modelling the EGW process of steel plates
with different thicknesses were investigated. The linear path model can be used
for simulating steel plate thickness up to 20 mm, a maximum thickness of 30 mm is
appropriate for the sinusoidal path, and a maximum thickness of 35 mm is appropriate
for the oscillate-stop path in EGW welding, with a heat input of 157 kJ/cm.
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