Skip to main content
. 2022 Mar 25;52(14):16701–16717. doi: 10.1007/s10489-022-03342-5

Table 4.

Model settings

Algorithms Sentiment series Market indicators Historical USD/CNY rate Parameters
ARIMA X X O Order = (2,1,2)
BPNN O O O Hidden units: 52; Activation function: ReLU; Learning rate: 0.05}
ELM O O O Hidden units: 77; Activation function: sigmoid}
SVR O O O Kernel function: sigmoid; C: 100.0; γ: 0.1}
CNN O O O Convolutional layer: Conv1D, Filter: 64, Kernal size: 2; Pooling layer: MaxPooling1D, Pool size: 2; Optimizer: Adam; Activate function: ReLU
LSTM-single X X O Hidden units: 32; Learning rate: 0.0001; Epoch: 200
LSTM-market O O O Hidden units: 60; Learning rate: 0.0001; Epoch: 200
LSTM-sentiment O X O Hidden units: 50; Learning rate: 0.0001; Epoch: 200
LSTM-all X O O Hidden units: 64; Learning rate: 0.0001; Epoch:200
MF-LSTM O O O Hidden units: 50(LSTMC1), 60(LSTMC2), 64(FC layer); Learning rate: 0.0001; Epoch: 200

O means that the factor is applied, while X means not