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Abstract: Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens
and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been
studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns
associated with such formulations, processing optimizations have been introduced: biocompatible
materials, environmentally friendly agents, and delivery platforms that ensure a controlled release.
In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation
in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders
the development of cost-effective, durable systems that allow a controlled release of antimicrobial
agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible
layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized
the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In
addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The
sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of
2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed
the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the
complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation,
this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The
antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact,
respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled
antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer
of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h.
The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity
towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites
could have interesting applications in medical textiles once they present controlled antimicrobial
properties, high biocompatibility and avoid the complete release of AgNPs to the environment.

Keywords: silver nanoparticles; chitosan; hexamethyldisiloxane; antimicrobial textiles; spray
deposition

1. Introduction

Textiles may provide an excellent environment for microorganisms to thrive, pre-
senting a suitable availability of nutrients, moisture, oxygen, and favorable temperature
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ranges. The functionalization of textiles with antimicrobial finishing agents has been widely
applied to achieve technical materials and avoid the deterioration caused by microorgan-
isms [1]. Increased healthcare awareness about hygiene and health issues has extended
the global market to the antimicrobial textiles field. These textiles may be employed in
several applications (e.g., wounds, sutures, and tissue engineering products) to prevent
microbial proliferation and, hence, bad odors, stains, infections, a reduction in the textile’s
mechanical properties, and cross-contamination [2].

The usage of nanocomposite-based coatings has opened several possibilities in func-
tional and high-performance textiles. Different metal-oxide (e.g., copper oxide, zinc oxide,
and titanium dioxide) and metal (e.g., gold, zinc, copper, and silver) nanoparticles (NPs)
have received significant attention as promising antimicrobial agents. These NPs possess
superior action due to the higher surface-area-to-volume ratio, inducing their antimicrobial
action via multiple mechanisms, namely by the direct interaction with the bacterial cell wall,
inhibition of the biofilm formation, activation of the intrinsic and adaptive host immune
responses, generation of reactive oxygen species (ROS) and interaction with intracellular
components (e.g., DNA and proteins) [3–6]. In this respect, silver nanoparticles (AgNPs)
have presented interesting antimicrobial properties, even in low concentrations [7,8].

Several techniques have been used to formulate textiles with AgNPs: the in situ
thermal reduction, sonication, padding, dip-coating, spray, exhaustion, layer-by-layer, and
electrospinning. However, numerous studies reported the potential uncontrolled leaching
behavior of AgNPs, becoming a relevant environmental and health problem [9–11]. There
is a need for new strategies to increase the stability of AgNPs on the fabrics.

Polyester (PES) fabrics have been largely used in various industries owing to their
excellent strength, chemical resistance, processability, quick-drying and dimensional stabil-
ity. Nevertheless, it presents a hydrophobic surface, where microorganisms can proliferate
due to the abundant adsorption of metabolic products from the skin sweat/sebaceous
glands [12]. The functionalization of PES with AgNPs can avoid the problems related
to the microorganism’s proliferation, but the strategies for AgNPs deposition rarely pro-
mote acceptable adhesion of the AgNPs due to the absence of functional groups on the
PES structure [13,14]. Surface modification techniques have been applied to introduce
other chemical groups onto the PES surface, namely photo-induced irradiation, electron
beam irradiation, enzymatic modification, alkaline hydrolysis, aminolysis, alcoholysis, and
plasma treatments [12,15,16]. However, most of the accessible methods for stabilizing the
AgNPs on PES require various functionalization steps, final treatments, drying, and/or
curing processes. Each step increases time and cost, hindering large-scale production.
Embedding NPs on the fiber polymeric matrix or reducing metallic salts to NPs in the
bulk polymeric matrix are presented as high-performance methods. However, enveloping
the particles in the fiber core significantly compromises their antimicrobial performance.
Another developed strategy is the application of a binder to improve the adhesion of NPs
onto textile substrates. Though, few reports were found in the literature using PES [17,18].
Enhancing the adhesion strength between the NPs and the PES fibers’ surface is imperative
to ensure an efficient antimicrobial action, durability and avoid the undesirable release of
metal NPs and ions [19].

Chitosan is an interesting biopolymer due to its inherent antimicrobial properties,
biodegradability, non-toxicity, blood coagulating efficiency, antistatic features, and biocom-
patibility. It has been commonly studied for textile functionalization, namely as a binder
for pigment printing, cationization of cotton, antimicrobial, anti-odor, and crease-resistant
finishing [20–22]. In particular, metals easily interact with chitosan through electrostatic
and chemical forces due to the presence of hydroxyl and amine groups [23]. Additionally,
the combined antimicrobial effect of chitosan and metals have been explored to prepare
novel nanocomposite materials with improved antimicrobial properties [24].

Organosilicon compounds have received more attention as coating agents due to
their lack of toxicity, environmental friendliness, abrasion resistance, and physiological
inertia [25]. Additionally, organosilicon compounds, including hexamethyldisiloxane
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(HMDSO), have been shown to tune the adhesion properties of a surface by exhibiting
methyl groups within the silicon-organic matrix [26,27].

Herein, a fast and cost-effective method was developed to functionalize PES fabric
with AgNPs via spray coating. Chitosan or HMDSO were sprayed in different layers, before
and after the AgNPs deposition, to promote the adhesion of NPs onto the textile, to protect
AgNPs from further oxidation, and to control the AgNPs release. In the AgNPs dispersion
preparation, commercial polyvinylpyrrolidone-AgNPs (20.0–30.0 nm in size) were used.
They were redispersed in ethanol and characterized by dynamic light scattering (DLS) and
zeta potential. The textile samples were characterized by scanning electron microscopy
(SEM) and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of textiles
was evaluated against Staphylococcus aureus and Escherichia coli. Finally, the cytotoxicity of
PES composites was assessed in HaCaT cells by the neutral red uptake assay.

2. Materials and Methods
2.1. Materials

Commercial pre-washed PES fabric (weight per unit area of 100 g·m−2) was used. The
fabric was washed using a non-ionic detergent (1.0 g·L−1) at 60 ◦C for 60 min., rinsed with
distilled water, and dried at 40 ◦C. Commercial spherical polyvinylpyrrolidone-coated
(PVP) AgNPs 99.95%, with sizes of 20–30 nm, were purchased from SkySpring Nanoma-
terials Inc, Houston, TX, USA. Chitosan, Chito Clear 42,030– 800 CPS, was purchased
from Primex, Siglufjordur, Iceland. Ethanol, acetic acid, nitric acid, HMDSO, Neutral red
(NR) solution, and Triton™ X-100 detergent solution were purchased from Sigma-Aldrich,
Taufkirchen, Germany. Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g·L−1

glucose and GlutaMAX™, fetal bovine serum (FBS), antibiotic (10,000 U·mL−1 penicillin,
10,000 µg·mL−1 streptomycin), Hanks’ balanced salt solution (HBSS) without calcium and
magnesium [HBSS (-/-)] and 0.25% trypsin·1 mM−1 EDTA were obtained from GibcoTM,
Thermo Fisher Scientific, Waltham, MA, USA. All the reagents used were of analytical or of
the highest purity grade available.

2.2. Preparation of AgNPs Dispersions

All materials were previously cleaned with nitric acid (10% (v/v)) and rinsed with
distilled water. Then, PVP-AgNPs were dispersed in ethanol (1.0 mg·mL−1) using an
ultrasonic bath (30 min, 40 Hz) and ultrasound tip (15 min, 20 Hz).

2.3. Formulation of PES Composites by Spray

The AgNPs, chitosan solution (0.25% (w/v) of chitosan in 1% (v/v) acetic acid) and
HMDSO layers were applied in both sides of the PES samples (10 × 10 cm2) via spray sys-
tem, pressurized at 1.5 bar with a distance of 5 cm. Samples with different formulations were
prepared: (i) only with AgNPs; (ii) HMDSO + AgNPs; (iii) HMDSO + AgNPs + HMDSO;
(iv) chitosan + AgNPs; (v) chitosan + AgNPs + chitosan; vi) only HMDSO; (vii) only
chitosan (Figure 1).
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2.4. Washing Fastness

The washing fastness was assessed by performing 5 washing cycles (WC) according
to EN ISO 15797 in a Datacolor Ahiba Lab Dyeing Machine (Lawrenceville, NJ, USA) at
75 ◦C, 40 rpm, for 15 min using a non-ionic surfactant (1.0 g·L−1) in a liquor bath ratio of
1/30 (v/v) [28].

2.5. Dynamic Light Scattering (DLS) Analysis

The size and zeta potential of PVP-AgNPs in the dispersion were measured us-
ing a Zeta Sizer-Nano (Malvern Instruments, Malvern, UK). Data were collected af-
ter 30 scans at 25 ± 1 ◦C, and zeta potential was measured in a moderate electrolytic
concentrated solution.

2.6. Scanning Electron Microscopy (SEM)

Morphological analyses were carried out with an ultra-high-resolution FEG-SEM,
NOVA 200 Nano, FEI Company (Hillsboro, OR, USA). Secondary electron images were
performed with an acceleration voltage of 5 kV. Backscattering electron images were realized
with an acceleration voltage of 15 kV. Samples were coated with an Au-Pd (20–80 weight %)
film using a high-resolution sputter coater, 208 HR Cressington Company (Watford, UK),
coupled to an MTM-20 Cressington High-Resolution Thickness Controller.

2.7. X-ray Photoelectron Spectroscopy (XPS)

Detailed surface atomic composition and bonding environment research was con-
ducted employing XPS PHI-TFA spectrometer (Physical Electronics Inc., Chanhassen, MN,
USA) equipped with an Al- monochromatic (7 mm) X-ray source operating at pass energy
equal 1486.6 eV, with active surface charge neutralization. Data acquisition was performed
with a vacuum better than 1 × 10−8 Pa. Spectra have been corrected to give the adventitious
C 1s spectral component (C–C, C–H) binding energy of 284.5 eV. Spectra were analyzed for
elemental composition using Multipack software.

Deconvolution into sub-peaks was performed by OriginLab software, using the Gaus-
sian fitting function and Shirley-type background subtraction. No tailing function was
considered in the peak fitting procedure.

2.8. Evaluation of Antibacterial Properties of PES Samples

Antibacterial testing was performed according to the ASTM-E2149 standard for the
determination of the antimicrobial activity of antimicrobial agents under dynamic contact
conditions. The tests were performed immediately after sample preparation with slight
modifications. Both Gram-positive and Gram-negative bacteria were used, respectively
Staphylococcus aureus (American Type Culture Collection (ATCC 25923) and Escherichia
coli (E. coli, ATCC 25922). The pre-inoculum of each bacterium was prepared in tryptic
soy broth (Merck) and after 12 h of incubation at 37 ◦C and 120 rpm, the inoculum of
each bacterium was centrifuged, the supernatant was eliminated, and the bacteria washed
with sterile phosphate buffer saline (PBS). Then, the concentration of each bacterium
was adjusted to 2 × 107 CFU·mL−1. PES samples (1 × 1.5 cm) were inoculated in 5 mL
of bacterial suspension for 3 h and 5 h at 37 ◦C and 120 rpm. Afterward, aliquots of
these suspensions were collected and used to prepare 10-fold serial dilutions, which were
cultured on agar plates for the determination of viable cells. The number of colony-forming
units (CFUs)/mL was established before (0 h) and after (3 h and 5 h) contact with the
fabrics. The results were expressed as log reductions, calculated as the ratio between the
number of surviving bacteria colonies present on the tryptic soy agar (TSA) plates, before
and after contact with the fabric. Antibacterial studies were performed in triplicate in two
independent experiments.
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2.9. Cytotoxicity

The cytotoxicity of the PES composites was evaluated in HaCaT cells, an immortalized
human keratinocyte cell line, after 24 h after exposure, by the NR uptake assay.

HaCaT cells were routinely cultured in 75 cm2 flasks using DMEM with 4.5 g·L−1

glucose and GlutaMAX™, supplemented with 10% of FBS, 100 U·mL−1 of penicillin, and
100 µg·mL−1 of streptomycin. Cells were grown at 37 ◦C, in a 5% CO2-95% air atmosphere,
and the medium was changed every 2 days. At 80–90% of confluence, cells were detached
from the culture flasks via trypsinization (0.25% trypsin·mM−1 EDTA). The cells were
seeded in 96-well plates at a density of 20,000 cells/well. Freshly prepared extracts of each
sample (previously hermetically sealed and sterilized in an autoclave at 121 ◦C, 1.2 bar for
20 min.) were used in the evaluation of cytotoxicity, accordingly with ISO 1993-5 (Biological
evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity) [29]. Briefly, the
extraction was performed in a complete cell culture medium, at a proportion of 0.1 g·mL−1

(ratio recommended for textiles), in a sterile, chemically inert, and closed container, for
24 ± 2 h, at 37 ± 1 ◦C, and under agitation. The extract was then directly used (100%
concentration) or diluted in fresh cell culture medium at different concentrations (2, 4, 8,
16, and 32-times dilutions leading to 50, 25, 12,5, 6.25, and 3.125% concentrations). After
24 h seeding, the cells were exposed to the extracts of the medical devices (0–100%) for
another 24 h. Extraction cell culture medium (without the test material) was also submitted
to the same extraction conditions and used as a control. Triton™ X-100 (1% (v/v)) was
used as positive control. The cells used in all experiments were taken between the 45th and
50th passages.

2.10. Neutral Red (NR) Uptake Assay

The cytotoxicity of the PES samples was assessed by the NR uptake assay that, based
on the capacity of living cells to incorporate and retain the supravital dye NR within
the lysosomes, provides a quantitative estimation of the number of viable cells in the
culture. After 24 h exposure to the extracts of the samples, the cell culture medium was
aspirated and a fresh cell culture medium containing NR (50 µg·mL−1) was added. Cells
were then incubated for 90 min, at 37 ◦C, in a humidified 5% CO2-95% air atmosphere.
After incubation, the cell culture medium was removed, and the NR dye retained only
by viable cells was extracted (absolute ethyl alcohol/distilled water (1:1) with 5% (v/v)
acetic acid). The absorbance was subsequently measured, at 540 nm, in a multi-well plate
reader (PowerWaveX BioTek Instruments, VT, Santa Clara, CA, USA). The percentage of
NR uptake relative to that of the control cells (0%) was used as the cytotoxicity measure.
Four independent experiments were performed in triplicate.

2.11. Statistical Analysis

All statistical calculations were performed using the GraphPad Prism 8 for Windows
(GraphPad Software, San Diego, CA, USA). The normality of the data distribution was
assessed using the KS, D’Agostino & Pearson omnibus, and Shapiro–Wilk normality tests.
One-way analysis of variance (ANOVA) was used to perform the statistical comparisons,
followed by Dunnett’s multiple comparisons test. Details of the performed statistical
analysis are described in the figure captions. Differences were considered significant for
p values lower than 0.05.

3. Results and Discussion
3.1. PES Fabrics Functionalization and Characterization

The present research focuses on the stabilization of AgNPs on PES fabrics using a
biopolymer, the chitosan, and an organosilicon compound, HMDSO, to improve the stabil-
ity of the AgNPs and control antibacterial efficacy. PES nanocomposites were prepared by
spray deposition of AgNPs and chitosan or HMDSO layers. The following structures were
prepared: (i) chitosan + AgNPs, (ii) chitosan + AgNPs + chitosan, (iii) HMDSO + AgNPs,
and (iv) HMDSO + AgNPs + HMDSO. Control samples were also prepared by loading
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the fabric only with AgNPs, HMDSO, or chitosan (Figure 1). The AgNPs dispersion was
characterized by DLS and zeta potential. The textile samples were characterized by SEM
and XPS. Furthermore, the nanocomposites were washed 5 times to predict the release of
AgNPs and the effect of the chitosan or HMDSO layers. The differences between washed
and unwashed samples were detected by XPS analysis and confirmed via antimicrobial
testing. The HMDSO and chitosan layers were meant to delay the AgNPs oxidation to a
more controlled and durable release of the Ag ions. Especially after several washing cycles.

In the first step, commercially available AgNPs were redispersed using an ultrasound
bath and ultrasound tip in absolute ethanol. The AgNPs dispersion was assessed by
DLS measurements showing an average size of 281.0 ± 1.5 nm, a polydispersity index of
0.10 ± 0.02, and suitable colloidal stability with a zeta potential value of −31.0 ± 1.2 mV.

In the second step, the PES formulations were obtained by a spray method, where
the AgNPs distribution onto the fabric and corresponding morphology were evaluated
by SEM (Figure 2). The SEM images confirm the presence of AgNPs in all samples with
no significant differences in their distribution or morphology, even in samples with an
initial layer of chitosan or HMDSO, which may be explained by the successful utilization
of the spray method for NPs deposition. The distance and the velocity of the spray flow
were the same in all samples. The AgNPs onto PES showed uniform distribution, some
agglomeration in all samples, and a quasi-spherical structure. In samples with a final layer
of chitosan, it was possible to observe that the available AgNPs linked to the fabrics’ surface
were mostly covered by chitosan (some internal areas were uncovered). It was not possible
to detect the distribution of HMDSO by SEM. No visual differences were found in samples
containing HMDSO in the performed magnifications.
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Figure 2. SEM micrographs of PES fabric with AgNPs (a,b) and with a final chitosan layer (chitosan +
AgNPs + chitosan, (c,d) at magnifications of ×1000 and ×5000.

Chemical composition analysis of the unprotected AgNPs distributed over a control
PES substrate surface was investigated before and after washing (Figure 3a). An evident
spin-orbit doublet between 366–376 eV is observed, and it is attributed to Ag 3d core levels
confirming the presence of noble nanoparticles on both PES substrates, before and after
washing, respectively. However, after repetitive washing cycles, the intensity of silver-
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related peaks undergoes a relative decrease (Figure 3a). Deconvolution also confirms that
the area under a final fit (black dashed curves) before washing is about 1.79 times larger
than after washing (Figure 3b). It can mean the only fact that an unprotected nanosilver has
been partially rinsed off during laundry. The oxidation states configuration of the remaining
silver differs from that observed for the non-washed sample. By using the formula:

Ag(0) =
Ag0

Ag0 + Ag1+ (1)

and considering peak areas, it can be estimated that a portion of metallic silver of non-
treated sample is larger (59%) than the washed one (52%). Note that neither carbon C 1s nor
oxygen O 1s peaks related to PES substrate have not been considerably modified, proving
its stability under multiple laundry cycles (Figure 3c). The oxygen/carbon atomic ratio
remains unchanged as well, being equal to 0.30 in both cases.
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Aiming to protect the chemical environment of AgNPs, and especially to persist their
population on PES substrate, two different sandwich-like spray-coated protective polymer
layers were investigated (HMDSO and Chitosan). C 1s and O 1s spectra were elaborated
to monitor the presence of HMDSO and chitosan protections after spraying. Considering
PES oxygen/carbon ratio stability before and after washing, this feature can serve as a
“presence indicator” of HMDSO and chitosan on top of PES. This parameter is different
for each case and was found to be 0.30, 0.32, and 0.34 for PES, HMDSO, and chitosan,
respectively. Slightly higher oxygen content is observed for chitosan coating, and the
lowest is attributed to silver decorated PES sample. This finding denotes a good correlation
with the Gaussian deconvolution, where a contribution of the C-O surface component,
defined by a peak area, increases following the oxygen/carbon atomic ratio. A calculated
area enclosed under the “blue” peak given in arbitrary units is as follows: PES = 0.37,
HMDSO = 0.43, chitosan = 0.49 (Figure 4a).
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Similarly, the C-O component behaves within recorded O 1s spectra. The integrated
area of the peak located around 532.7 eV (blue peak) increases its contribution into a final
fitted curve (Figure 4b). The numbers expressed in shares (%) are 32%, 38%, and 41% for
PES, HMDSO, and chitosan, respectively. These observations confirm a successful coating
of PES by HDMSO and chitosan protective layers.

Further, a new portion of nanosilver was attached to freshly created PES + HDMSO
and PES + chitosan samples. Collected XPS results related to Ag 3d5/2 core levels revealed
a high level of similarity in shape for all three unwashed samples, indicating no major
alterations in oxidation shares between Ag(0) and Ag(+1) (Figure 5a). The presence of
Ag(+1) can be related to the oxidation of the metallic silver in contact with air to AgOH,
which consequently decomposes to Ag2O [30]. After completing a sandwich-like structure
by depositing a second protective layer made of the same polymer, noble metal NPs were
not detected by XPS, additionally proving the efficiency of a spray-coating technique. The
influence of washing cycles was tested again for PES + HDMSO + AgNP + HMDSO and
PES + chitosan + AgNP + chitosan. Following the XPS data, neither the shape nor peak
intensity of C 1s was altered. Additionally, the oxygen/carbon atomic ratio remained
unchanged (Figure 5b). Additionally, a typical small Si 2p peak for HMDSO and N 1s peak
for chitosan remained with similar features before and after laundry, indicating superior
stability of sprayed protective layers.
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Figure 5. (a) XPS cut-off representing Ag 3d electronic orbital binding energy range. (b) The effect of
washing cycles on high-resolution C 1s spectra of protective polymer coatings.

3.2. Evaluation of Antibacterial Properties of PES Samples

The antibacterial activity of PES samples functionalized with AgNPs and chitosan or
HMDSO, as well as the corresponding control samples, were tested against S. aureus and
E. coli by shake flask method (Figure 6). The tests were performed at different time points,
after 3 h and 5 h of contact, to evaluate the time-kill kinetics of the AgNPs activity and the
effect of the different layers of each configuration. The antimicrobial effect of the samples,
before and after 5 WC, was also tested to assess the AgNP’s endurance.
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Figure 6. Antimicrobial action of samples against S. aureus (a) and E. coli (b) after 3 h and 5 h of
contact, before and after 5 WC.

The composites exhibited low antimicrobial efficacy against S. aureus and strong
activity against E. coli. This can be justified by the differences in the structure of the cell
walls of the two types of bacteria, once S. aureus presents a thicker peptidoglycan layer
(30 nm thickness) than the thinner structure of the E. coli cell wall (~3–4 nm thickness).
Thus, the probability of the positively charged AgNPs being immobilized in the negative
and thicker peptidoglycan layer of S. aureus bacteria is much higher than in E. coli. This
suggests that the antimicrobial effect is controlled by the capability of the silver ions and
AgNPs to disrupt the bacterial cell wall [31–33].
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Generally, the results after 5 h of contact are equal or higher than the results after
3 h of contact but the layers showed to promote different behaviors in the AgNPs action.
Starting from the results against S. aureus, after 5 h of incubation, the sample with 2 layers
of chitosan (chitosan + AgNPs + chitosan) showed the highest log reduction (2.15 ± 1.08).
Despite the higher exposition of the AgNPs in other samples, data suggests a potential
synergistic effect to have taken place between chitosan and AgNPs. Some studies have
been performed using chitosan to improve the adhesion of metal NPs onto textiles, while
improving their inherent features, such as antimicrobial activity (chitosan and NPs) [34].
However, these studies mostly focus on cotton fabrics and no examples were found using
PES. Chitosan has been described as a bacteriostatic polymer. Chitosan can interact with
the cell membrane of pathogens once it presents a negative surface charge, reducing cell
permeability to important environmental factors necessary to their viability. It can also
interact with DNA, form chelates with microorganisms’ nutrients, and form an intense film
on the cell’s surface, inhibiting their growth [35]. The remainder tested samples presented
similar results after 5 h of contact with log reduction between 1.10 and 1.76. The results
after 3 h of contact and after 5 WC did not show any relevant antibacterial efficacy against
S. aureus.

The results against E. coli provided more information about the layer’s efficacy. The
control sample with just AgNPs showed an analogous log reduction after 3 h and 5 h of
contact (7.22). A similar log reduction was obtained in the sample with an initial layer
of HMDSO (HMDSO + Ag), 7.22 and 7.27 after 3 h and 5 h of contact. After 5 WC, the
control sample exhibited 3.53 of log reduction and the HMDSO + AgNPs sample presented
2.69 after 3 h of incubation, and 4.09 and 3.99 after 5 h, respectively. These results suggest
that only one layer of HMDSO does not provide any improvement in AgNPs adhesion
over the control. However, when a final layer of HMDSO was added (HMDSO + AgNPs +
HMDSO), the sample presented a slower antimicrobial effect, with a log reduction of 4.40
after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. Again, after washing a slower
antimicrobial effect was observed. This sample showed a log reduction of 3.16 after 3 h
and a log reduction of 4.53 after 5 h, showing a superior result than the control and the
HMDSO + AgNPs samples.

Since the amount of AgNPs in the unwashed samples is the same (spray application),
the reduction in activity in the first hours of contact when a final layer of HMDSO is
present is due to the greater stabilization of the AgNPs onto the fabric but also to the
superior protection against the oxidation. The mechanism of action of AgNPs against
E. coli have shown to be closely related to the release of silver ions by (i) oxidative stress
caused by ROS, (ii) interaction of silver ions with thiol groups in proteins, and (iii) the
destruction of the bacteria cells via strong affinity between silver ions and cell membrane.
The release of silver ions and the ROS generation have been widely induced when Ag2O
is present [36,37]. In this work, the used AgNPs have an average diameter of 20–30 nm,
and after immobilization form bigger agglomerated clusters that cannot enter inside the
bacteria. Thus, the antibacterial effect seems mainly to be promoted by the ions release.

When using chitosan different effects were observed. The adhesion of AgNPs onto
the fabric was superior using an initial layer of chitosan. The sample chitosan + AgNPs
displayed a log reduction of 3.37 and 4.40 after 3 h and 5 h of contact, respectively. These re-
sults demonstrated the protective effect of chitosan over AgNPs and their superior adhesion
to the substrate. However, after 5 WC, the same sample presented a superior antimicrobial
effect, 5.22 and 5.27 of log reduction after 3 h and 5 h of contact, respectively. This can be
attributed to a dual effect: a better adhesion of AgNPs and to an increased oxidation after
washings as proved in the XPS results. Moreover, when the AgNPs layer was deposited
over the first layer of chitosan, the chitosan was dissolved and the AgNPs were wrapped
in the chitosan, justifying the inferior antimicrobial effect before washings. After washings,
some chitosan was removed, decreasing the protective effect under AgNPs, the exposition
of AgNPs increased, and consequently, the antimicrobial action also increased. Follow-
ing this evidence, the inferior but suitable antimicrobial data of the chitosan + AgNPs
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sample before washing and the superior antimicrobial effect after washing should be at-
tributed to the superior adhesion and protection of AgNPs using the initial layer of chitosan.
Lastly, when a final layer of chitosan was added, a synergistic antimicrobial effect was
also observed between chitosan and AgNPs. Despite the higher AgNPs exposition in
the chitosan + AgNPs sample, the samples chitosan + AgNPs + chitosan showed a higher
antimicrobial effect after 3 h of incubation (4.81 of log reduction) and 5 h of incubation
(7.27 of log reduction). After WC, the antimicrobial results were also relevant, but the
synergism was not that evident reporting log reductions of 3.47 and 4.88 after 3 h and 5 h
of contact, respectively.

Although the results with chitosan layers after washing were comparable to the
control samples just with AgNPs, by using chitosan it was possible to guarantee the
washing fastness of the AgNPs (the AgNPs remained on the fabric). This strategy may
prevent environmental contamination with heavy metals during the use and washing of
antimicrobial textiles, enhance the durability of the antimicrobial effects, and protects the
users from unnecessary exposure to AgNPs and, consequently, their cytotoxicity.

3.3. Evaluation of the Cytotoxicity of PES Samples Extracts

The cytotoxicity of the extracts of the PES samples was assessed after 24 h exposure,
by the NR uptake assay. For that purpose, HaCaT keratinocyte-like cells were used as an
in vitro model. No significant effects on NR uptake were detected after 24 h exposure to the
extracts of AgNPs, HMDSO + AgNPs, HMDSO + AgNPs + HMDSO, chitosan + AgNPs,
chitosan + AgNPs + chitosan, PES control + HDMSO and PES control + chitosan, at all the
tested concentrations (0–100%) (Figure 7). For PES control extract, a small but significant
reduction in NR uptake was observed for the highest tested concentrations (NR uptake
significantly decreased to 96.74 and 96.75, 24 h after exposure to 50 and 100% of PES
control extract, respectively, and when compared to control cells (0%)). Noteworthy, and
accordingly with the ISO 1993-5, the medical devices under study are considered non-
cytotoxic as the relative cell viability observed for the highest concentration of the sample
extract (100% extract) was always higher than 70% when compared to the control cells
(0%) [29].
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Figure 7. Cytotoxicity of the PES samples extracts (0–100%) evaluated in HaCat cells by the NR
uptake assay, after 24 h exposure. Results are expressed as mean ± standard deviation (SD) from
4 independent experiences, performed in triplicate. Statistical comparisons were made using one-way
ANOVA followed by Dunnett’s multiple comparisons tests (* p < 0.05 vs. 0%).
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4. Conclusions

This research envisaged the development of PES nanocomposites with controlled
antimicrobial performance against S. aureus and E. coli, using AgNPs and chitosan or
HMDSO layers. The chitosan or HMDSO layers were applied on PES fabric before and/or
after AgNPs deposition. The samples were successfully prepared by spray coating and 5
WC were conducted after deposition. Successful PES functionalization and AgNPs content
were verified by XPS and SEM analyses. The antimicrobial results showed that just an
initial layer of HMDSO does not improve the AgNPs adhesion. However, when an initial
and final layer of HMDSO was applied, AgNPs were stabilized onto PES fabric and the
treatment prevented the complete loss of AgNPs during the washings. When chitosan
was used, different results were obtained. With only one layer of chitosan, the adhesion of
AgNPs to the PES fabric was significantly improved. Moreover, when an initial and final
layer of chitosan was added, a controlled antimicrobial action was attained, and synergistic
antimicrobial effects were evidenced between chitosan and AgNPs. Here, too, superior
washing fastness was observed. Lastly, cytotoxicity studies showed the biocompatibility of
the prepared PES nanocomposites.

These nanocomposites will open new perspectives for the use of AgNPs to PES
functionalization in the healthcare sector with minimal environmental contamination
during the use and washing of antimicrobial textiles, superior durability, and controlled
antimicrobial effect.
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