Skip to main content
. 2022 Mar 16;12(3):480. doi: 10.3390/jpm12030480

Table 6.

Overview of published studies regarding predictive models for gene mutation status based on nodule features (2017–2021).

Authors Year Dataset Methods Performance Results (%)
Zou et al. [177] 2017 Private
(209 patients)
Multivariable analyses EGFR: AUC = 73.7
Cheng et al. [176] 2017 Private
(2146 patients)
Weighted mean difference, inverse variance EGFR: OR = 49.0
Li et al. [179] 2018 Private
(1010 patients)
Random forest/CNNs EGFR: AUC = 83.4
Koyasu et al. [178] 2019 NSCLC-radiogenomics XGBoost/random forest EGFR: AUC = 65.9
Wang et al. [180] 2019 Private
(844 patients)
CNNs EGFR: AUC = 85.0
Zhao et al. [181] 2019 TCIA and private
(879 patients)
3D DenseNet EGFR: AUC = 75.8
Moreno et al. [183] 2021 NSCLC-radiogenomics SCAV with ML/CNN EGFR: AUC = 82.0 (CNN)
KRAS: AUC = 73.9 (CNN)
Zhang et al. [182] 2021 Private
(914 patients)
Machine learning
(SVM/RF/MLP)
Deep learning
(SE-CNN/CNN/1D-CNN/AlexNet/Fine-tuned VG16/Fine-tuned VGG19)
EGFR:
AUC = 91.0 (SE-CNN)
AUC = 83.6 (SVM)
Le et al. [184] 2021 NSCLC-radiogenomics LR / KNN / RF / XGBoost EGFR: ACC = 77.8
KRAS: ACC = 83.3
Cheng et al. [187] 2021 Private
(670 patients)
Pre-trained 3D DenseNet EGFR:
AUC = 76.0
ACC = 72.5
F-score = 71.3
Zhang et al. [186] 2021 Private
(134 patients)
Logistic regression EGFR: AUC = 78.0
KRAS: AUC = 81.0
ERBB2: AUC = 87.0
TP53: AUC = 84.0
Han et al. [185] 2021 Private
(827 patients)
Logistic Regression EGFR: AUC = 75.8
ALK: AUC = 73.9

ACC: Accuracy; AUC: area under the ROC curve; KNN: K-nearest neighbors; LR: logistic regression; MLP: multilayer perceptron; OR: odds ratio; RF: random forest; SCAV: selective class average voting; SE-CNN: squeezeand-excitation convolutional neural network; SVM: support vector machine; XGBoost: extreme gradient boosting.