Skip to main content
. 2022 Mar 16;12(3):480. doi: 10.3390/jpm12030480

Table 8.

Overview of published works regarding the prediction of PD-L1 expression status in lung cancer CT images (2017–2021).

Authors Year Dataset Methods Performance Results (%)
Toyokawa et al. [193] 2017 Private
(394 patients)
Fisher’s exact test
Univariate/multivariate LR (CT features)
PD-L1+ statistical
association:
(p < 0.01)—convergence,
notching, spiculation,
cavitation
Wu et al. [194] 2019 Private
(350 patients)
Univariate/multivariate LR
Fisher’s exact test
Mann–Whitney U test
AUC = 78.3
TPR = 81.1
TNR = 64.1
Zhu et al. [195] 2020 Private
(127 patients)
Univariate/multivariate LR
3D DenseNet
AUC = 78.0
ACC = 77.8
TPR = 77.8
TNR = 77.4
Jiang et al. [197] 2020 Private
(399 patients)
Random forest
Logistic regression
AUC = 97.0 (≥1%)
AUC = 80.0 (≥50%)
Tian et al. [196] 2021 Private
(939 patients)
Fully connected classifier AUC = 76.0
Yang et al. [199] 2021 Private
(200 patients)
Simple temporal attention (SimTA) module AUC = 77.0 (SimTA60)
AUC = 80.0 (SimTA90)
AUC = 69.0 (RNN)
AUC = 64.0 (Radiomics)
Jiang et al. [198] 2021 Private
(125 patients)
Random forest
Decision tree
Logistic regression
AdaBoost
Support vector machine
(Internal validation)
AUC = 96.0
TNR = 80.0
TPR = 98.5
(External validation)
AUC = 85.0
TNR = 63.6
TPR = 91.3

ACC: accuracy; AUC: area under the ROC curve; LR: logistic regression; RNN: recurrent neural network; SimTAx: response prediction x days post immunotherapy; TNR: true negative rate; TPR: true positive rate.