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Abstract: Background: Ventilator weaning is one of the most significant challenges in the intensive
care unit (ICU). Approximately 30% of patients fail to wean, resulting in prolonged use of ventilators
and increased mortality. There are numerous high-performance prediction models available today,
but they require a large number of parameters to predict and are thus impractical in clinical practice.
Objectives: This study aims to create an artificial intelligence (AI) model for predicting weaning time
and to identify the most simplified key predictors that will allow the model to achieve adequate
accuracy with as few parameters as possible. Methods: This is a retrospective study of to-be-weaned
patients (n = 1439) hospitalized in the cardiac ICU of Cheng Hsin General Hospital’s Department of
Cardiac Surgery from November 2018 to August 2020. The patients were divided into two groups
based on whether they could be weaned within 24 h (i.e., “patients weaned within 24 h” (n = 1042)
and “patients not weaned within 24 h” (n = 397)). Twenty-eight variables were collected including
demographic characteristics, arterial blood gas readings, and ventilation set parameters. We created
a prediction model using logistic regression and compared it to other machine learning techniques
such as decision tree, random forest, support vector machine (SVM), extreme gradient boosting, and
artificial neural network. Forward, backward, and stepwise selection methods were used to identify
significant variables, and the receiver operating characteristic curve was used to assess the accuracy
of each AI model. Results: The SVM [receiver operating characteristic curve (ROC-AUC) = 88%],
logistic regression (ROC-AUC = 86%), and XGBoost (ROC-AUC = 85%) models outperformed the
other five machine learning models in predicting weaning time. The accuracies in predicting patient
weaning within 24 h using seven variables (i.e., expiratory minute ventilation, expiratory tidal volume,
ventilation rate set, heart rate, peak pressure, pH, and age) were close to those using 28 variables.
Conclusions: The model developed in this research successfully predicted the weaning success of
ICU patients using a few and easily accessible parameters such as age. Therefore, it can be used in
clinical practice to identify difficult-to-wean patients to improve their treatment.

Keywords: machine learning; ventilator weaning; weaning indicators; weaning success prediction

1. Introduction

Ventilator weaning is one of the most significant challenges in the ICU. Thirty percent
of patients fail to wean, resulting in prolonged use of ventilators and increased mortality [1].
Each year, more than one million patients in the USA require ventilators and spend up
to USD 27 billion on them [2,3]. Long-term ventilation increases the risk of complications
such as ventilator-associated pneumonia [4], so patients should be weaned as soon as
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possible. Three of the previous studies in thee literature are concerned with artificial
neutral network (ANN)-based models. Kuo et al. gathered eight ventilation set parameters
to predict weaning outcomes with a receiver operating characteristic curve (ROC-AUC) of
83% [5]. Hsieh et al. selected 37 ventilation set parameters to predict weaning outcomes
with a ROC-AUC of 85% [6]. Hsieh et al. used 47 ventilation set parameters to predict
simple, difficult, or prolonged weaning with a ROC-AUC of 84.9–94.2% [7]. Otaguro et al.
used various models such as LightGBM as well as 57 ventilation set parameters to predict
weaning outcomes with a ROC-AUC of 95% [8]. However, these studies used a large
number of parameters for prediction, which are difficult to collect in clinical practice,
making it difficult to create an available model or decreasing the model’s accessibility. A
model with more parameters is more complicated. When developing a model, we hope
to identify the appropriate parameters that will aid in the interpretation and prediction
of test data. Although using a large number of parameters can sometimes improve a
model’s performance, some parameters may be superfluous, affecting the model’s output
and lowering its interpretability, or may not help improve its prediction performance.
Hence, we need to thoroughly assess and select the parameters that affect the model most
significantly [9]. Currently, several high-performance prediction models are available,
but they require numerous parameters for prediction and are thus impractical in clinical
practice. This study aimed to develop a simple artificial intelligence (AI) model that uses
a few parameters and identifies the most simplified key predictors that will allow the
model to achieve adequate accuracy with as few parameters as possible for predicting
weaning time.

2. Materials and Methods
2.1. Study Design and Setting

As shown in Figure 1, this research is a retrospective study, which was approved
by the Institutional Review Board under approval number A202006127, on the patients
(n = 1439) (absence of ventilator setting parameters are excluded) who were mechanically
ventilated in the cardiac intensive unit of the Department of Cardiac Surgery, Cheng Hsin
General Hospital, from November 2018 to August 2020. The patients are divided into two
groups based on whether they could be weaned within 24 h (i.e., “patients weaned within
24 h” (n = 1042) and “patients not weaned within 24 h” (n = 397)). This research analyzed
whether the patient could be weaned within 24 h.
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There was a total of 1596 patients in the cardiac intensive unit of the Department
of Cardiac Surgery. After excluding 157 patients who did not have ventilator setting
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parameters, 1439 patients remained. Patients were divided into two groups based on
whether or not they could be weaned within 24 h: “patients weaned within 24 h” (n = 1042)
and “patients not weaned within 24 h” (n = 397).

2.2. Data Source

We collected 28 variables from the ICU cases: demographic variables including gender,
age, and smoking; physiological variables including systolic blood pressure, diastolic
blood pressure, and heart rate; ventilation set parameters including ventilation rate set,
inspiration time, pressure limit high, spontaneous respiratory rate, inspiratory pressure,
PEEP, ramp, pressure limit low, inspiratory tidal volume, expiratory tidal volume, peak
pressure, mean pressure, expiratory minute ventilation, compliance, and resistance; and
arterial blood gas (ABG) readings including SpO2, pH, PCO2, HCO3, PO2, SAO2, and
base excess. Demographic information was derived from case records, physiological and
ventilation set variables were derived from respiratory therapy records, and ABG readings
were derived from the laboratory. The ventilators were classified as Evita 4, Evita XL, and
Evita 2 Dura.

2.3. Algorithms

To predict the weaning outcome, this paper used six machine learning techniques
including logistic regression (LR), decision tree (DT), random forest, extreme gradient
boosting (XGBoost), support vector machine (SVM), and ANN.

2.3.1. Logistic Regression (LR)

LR is similar to the linear one, but it is mostly used for classification instead of
regression tasks. To predict the likelihood of a data point belonging to a class, LR fits a
sigmoid curve to the training inputs. It is referred to as a regression because it predicts
the likelihood rather than the class directly [10]. This method employs the following
hyperparameters: loss function = L2, cost function = 0.02, and epsilon = 0.001.

2.3.2. Decision Trees (DT)

Decision trees are supervised algorithms designed to find a path to the target variable
using a set of decisions from the input variables. They can either be continuous (regression
trees) or categorical (classification trees). As a result, the algorithm is known as classification
and regression tree. Because decision trees are similar to decision charts and are thus easy
to interpret, they are commonly used as first-step algorithms when approaching new
problems. However, they are prone to overfitting the data and do not generalize well to
novel situations and datasets [11]. This method employs the following hyperparameter:
CP denotes the tree’s complexity parameter, which is set to 0.

2.3.3. Random Forest (RF)

This is an ensemble method that combines multiple decision trees into a final decision.
Because individual decision trees tend to overfit, random forests mitigate individual biases
by combining and weighting the outputs of multiple decision trees (regression or classifica-
tion) [12]. The hyperparameters used in this method are as follows: the number of predictors
randomly sampled at each split (mtry) = 4, the maximum number of nodes (maxnode) = 20,
and the method used to build the largest tree structure = Gini classification method.

2.3.4. eXtreme Gradient Boosting (XGBoost)

Gradient boosting is a machine learning technique for regression and classification
problems, producing a prediction model in the form of an ensemble of weak prediction
models (typically decision trees). It constructs the model in a stage-wise manner, similar to
other boosting methods, and generalizes them by allowing optimization of an arbitrary dif-
ferentiable loss function. Extreme gradient boosting (XGBoost) is a scalable and improved
version of the gradient boosting algorithm (terminology alert) designed for efficacy, com-
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putational speed, and model performance [13]. The hyperparameters used by this method
are as follows: the number of trees (or rounds) in the model (nrounds) = 10, the maximum
depth of the tree model (max_depth) = 2, the learning rate (eta) =0.3, gamma = 0.1, subsam-
pling for determining the percentage of the raw training dataset used = 0.75, the number of
columns used by each tree (colsample_bytrees) = 0.9, and the minimum sum of weights of
all observations required in a child (min_child_weight) = 2.

2.3.5. Support Vector Machine (SVM)

SVMs are extremely powerful supervised statistical modeling algorithms used for
both regression and classification. In classification tasks, SVMs find a hyperplane (imagine
a plane in a new dimension) between different classes of data, which is later used with
novel examples to classify them [14]. The hyperparameters used by this method are as
follows: type = classification, the large C in the Lagrange formulation, which determines
the penalty value for the error/division data, and cost C = 1.

2.3.6. Artificial Neural Network (ANN)

Artificial neural network is a family of algorithms covering classification tasks, regres-
sion tasks, ensemble tasks, and feature discovery. The basic architecture is consistent across
implementations: the algorithm is divided into multiple layers, beginning with the input
layer (where input examples are represented) and ending with the output layer (where the
resulting regression/classification/ensemble is represented), with optional (hidden) layers
in between [15]. The hyperparameters used by this method are size = 10 and decay = 0.2.

In ML, supervised, unsupervised, semi-supervised, and reinforcement learning are
four common learning methods for solving different tasks. Among them, supervised
learning is the most accurate but also the most labor-intensive. The advantage is that it can
be trained precisely in the process. Therefore, the following common supervised learning
models (LR, DT, RT, XGBoost, SVM, and ANN) are used for subsequent comparisons to
develop the models to predict the weaning success of ICU patients.

2.4. Statistical Analyses

For descriptive statistics, the categorical variables are “frequency distribution” and
“proportion,” and the continuous variables are “mean” and “standard deviation.” For
inferential statistics, the independent t-test and chi-square test are used. The ROC is the
primary predictor, with the true positive rate (TPR) as the x-axis and the false positive rate
as the y-axis. The higher the TPR and the better the accuracy, the closer the curve is to the
top. The greater the area under the ROC curve (ROC-AUC), the better the model. The
ROC-AUC scale runs from 0 to 1, with 1 being the best value.

2.4.1. Features Extraction

Forward, backward, and stepwise selection methods are used to select significant
variables [16]. The forward selection method adds independent variables one by one to the
model until the contribution of any independent variable is no longer statistically significant.
The backward selection method removes independent variables from the model one by
one until the model loses too much explanatory power when any independent variable is
removed. The stepwise selection method is a hybrid of the forward and backward selection
methods, and it differs in that it can both add excluded variables to the model and delete
selected variables from the model.

2.4.2. Analysis Procedure

As shown in Figure 2, after the raw data are input, the Multivariate Imputation by
Chained Equations (MICE) package is used to fill the missing values to create a complete
dataset. The dataset is then divided into two parts: training and testing. For ten-fold
cross-validation, the training dataset is divided into 10 equal parts. Part 1 is used as the
validation test data, and the remaining nine parts are used for training. Part 2 is used
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as test data for validation in the next round, and the remaining nine parts are used for
training. This procedure is repeated ten times. For prediction, six models (artificial neural
network, DT, LR, random forest, SVM, and XGBoost) were used. The results obtained after
modifications were used to create models, which were tested with the test dataset. In the
end, seven indicators (accuracy, sensitivity, specificity, precision, F1 score, ROC-AUC, and
PR-AUC) for machine learning models were used to evaluate the results of the six models.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

2.4.2. Analysis Procedure 
As shown in Figure 2, after the raw data are input, the Multivariate Imputation by 

Chained Equations (MICE) package is used to fill the missing values to create a complete 
dataset. The dataset is then divided into two parts: training and testing. For ten-fold cross-
validation, the training dataset is divided into 10 equal parts. Part 1 is used as the valida-
tion test data, and the remaining nine parts are used for training. Part 2 is used as test data 
for validation in the next round, and the remaining nine parts are used for training. This 
procedure is repeated ten times. For prediction, six models (artificial neural network, DT, 
LR, random forest, SVM, and XGBoost) were used. The results obtained after modifica-
tions were used to create models, which were tested with the test dataset. In the end, seven 
indicators (accuracy, sensitivity, specificity, precision, F1 score, ROC-AUC, and PR-AUC) 
for machine learning models were used to evaluate the results of the six models. 

 
Figure 2. Flowchart of the proposed method. 

After the raw data were input, the MICE package was used to fill the missing values 
to create a complete dataset. The dataset was then split into the training and test datasets. 
The test dataset was used to predict six models (artificial neural network, decision tree, 
logistic regression, random forest, support vector machine, and XGBoost). The modified 
results were used to create models, which were tested using the test dataset. Finally, seven 
machine learning model indicators (accuracy, sensitivity, specificity, precision, F1 score, 
ROC-AUC, and PR-AUC) were used to evaluate the results of the six models. 

MICE: Multivariate Imputation by Chained Equations 

Figure 2. Flowchart of the proposed method.

After the raw data were input, the MICE package was used to fill the missing values
to create a complete dataset. The dataset was then split into the training and test datasets.
The test dataset was used to predict six models (artificial neural network, decision tree,
logistic regression, random forest, support vector machine, and XGBoost). The modified
results were used to create models, which were tested using the test dataset. Finally, seven
machine learning model indicators (accuracy, sensitivity, specificity, precision, F1 score,
ROC-AUC, and PR-AUC) were used to evaluate the results of the six models.

MICE: Multivariate Imputation by Chained Equations
ROC-AUC: Receiver operating characteristic curve area under the curve
PR-AUC: Precision–recall curve area under the curve
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3. Results
3.1. Patient Characteristics

Table 1 lists the demographic, physiological, ventilation set, and ABG data of the
two groups. Among the demographic variables, there were significant differences in age
and smoking (p-value < 0.001). There were significant differences in all the physiological
data (p-value < 0.001) and ventilation set data (p-value < 0.001). In addition, there were
significant differences in all ABG data except pH.

Table 1. Demographic and clinical characteristics of 1439 cardiac intensive care unit patients with
planned extubation.

Variable Weaned within 24 h
(n = 1042)

Not Weaned within
24 h (n = 397) p-Value

Gender 0.069
Males 714 (68.5%) 252 (63.5%)

Females 328 (31.5%) 145 (36.5%)
age, mean ± SD 65.05 ± 12.53 68.34 ± 15.18 <0.001 *
Smoking, n (%) <0.001 *

No 805 (77.3%) 250 (63.0%)
Yes 198 (19.0%) 113 (28.5%)

Yes, quit smoking 39 (3.7%) 34 (8.6%)
Ventilation set, mean ± SD
Ventilation rate set, 30/min 12.23 ± 1.08 14.77 ± 8.77 <0.001 *

Inspiration time, breath/min 1.00 ± 0.00 4.08 ± 8.72 <0.001 *
Pressure limit high, cmH2O 40.72 ± 1.89 37.00 ± 6.75 <0.001 *
Pressure limit low, cmH2O 2.99 ± 0.40 3.91 ± 1.10 <0.001 *

Spontaneous respiratory rate, % 13.38 ± 2.92 20.22 ± 6.45 <0.001 *
Inspiratory pressure, cmH2O 20.74 ± 2.52 19.69 ± 5.84 <0.001 *

PEEP, cmH2O 5.47 ± 0.92 4.37 ± 2.69 <0.001 *
Ramp, mS 0.01 ± 0.13 0.24 ± 0.73 <0.001 *

Ventilation monitoring, mean ± SD
Inspiratory tidal volume, mL/kg 554.92 ± 84.93 422.41 ± 336.91 <0.001 *
Expiratory tidal volume, mL/kg 555.55 ± 80.85 507.98 ± 156.23 <0.001 *

Peak pressure, cmH2O 21.05 ± 2.85 211.52 ± 273.68 <0.001 *
Mean pressure, cmH2O 8.75 ± 1.33 13.37 ± 7.38 <0.001 *

Expiratory minute ventilation, L/min 7.26 ± 1.72 10.49 ± 4.13 <0.001 *
Compliance, mL/cmH2O 60.04 ± 29.42 28.78 ± 35.06 <0.001 *
Resistance, mL/cmH2O 13.68 ± 5.43 28.95 ± 33.67 <0.001 *

Arterial blood gas test, ABG, mean ± SD
SpO2, % 99.36 ± 31.84 63.59 ± 36.53 <0.001 *

pH 7.03 ± 0.18 7.04 ± 0.18 0.947
PCO2, mmHg 37.33 ± 8.15 32.03 ± 11.89 <0.001 *

HCO3, mmol/L 23.57 ± 4.06 29.36 ± 11.29 <0.001 *
PO2, mmHg 162.86 ± 96.22 72.75 ± 102.14 <0.001 *

SAO2, % 154.74 ± 140.22 230.17 ± 172.74 <0.001 *
Base Excess, mmol/L 2.99 ± 21.32 36.83 ± 49.32 <0.001 *
Others, mean ± SD

Systolic blood pressure, mmHg 124.55 ± 24.57 97.67 ± 33.42 <0.001 *
Diastolic blood pressure, mmHg 66.50 ± 26.76 93.78 ± 41.28 <0.001 *

Heart rate, bpm 82.42 ± 14.98 106.87 ± 28.78 <0.001 *
*: p-value < 0.05.

3.2. Results of the Machine Learning Models

Figure 3 and Table 2 show the ROC-AUC of the six machine learning models and the
results of their seven corresponding indicators. The top three performers among the six
machine learning models were the SVM, LR, and XGBoost models. The ROC-AUC values
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for the SVM, LR, and XGBoost models for predicting patient weaning within 24 h were
88%, 86%, and 85%, respectively, and were not significantly different from one another.
Figure 4 shows the feature importance of variables for the three machine learning models.
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Table 2. Performance comparisons of six machine learning methods.

Model Accuracy Sensitivity Specificity Precision F1 Score ROC-AUC PR-AUC

Artificial neural network 85.2% 67.5% 91.7% 75.7% 71.4% 84.0% 76.0%
Decision tree 87.7% 66.2% 93.6% 79.7% 72.4% 84.0% 79.0%

Logistic regression 83.1% 64.5% 98.3% 93.4% 76.3% 86.0% 84.0%
Random forest 86.8% 67.5% 91.7% 75.7% 71.4% 84.0% 76.0%

Support vector machine 86.8% 64.2% 98.8% 95.5% 76.8% 88.0% 70.0%
XGBoost 85.8% 62.7% 98.6% 94.3% 75.3% 85.0% 82.0%

Seven indicators (accuracy, sensitivity, specificity, precision, F1 score, ROC-AUC, and PR-AUC) for machine
learning models were used to evaluate the results of the six models (artificial neural network, decision tree, logistic
regression, random forest, support vector machine, and XGBoost). ROC-AUC: Receiver operating characteristic
curve area under the curve. PR-AUC: Precision–recall curve area under the curve.
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variables ranked by feature importance and used by the three machine learning models [(1) support
vector machine, (2) logistic regression, and (3) XGBoost] to predict patient weaning within 24 h.
Abbreviations: SRR spontaneous respiratory rate, Exp MV expiratory MV, Exp TV expiratory TV,
InspTV inspiratory tidal volume, HR heart rate, PeakPr peak pressure, MeanPr mean pressure, DBP
diastolic blood pressure, SBP systolic blood pressure.

The top three variables ranked by feature importance and used by the SVM, LR, and
XGBoost models to predict patient weaning within 24 h were compliance, spontaneous
respiratory rate (SRR), and SpO2.

3.3. Using LR to Create a New Prediction Model

As shown in Table 3, we used LR to create a new model and the forward, backward,
and stepwise selection methods to select seven significant predictors (i.e., expiratory minute
ventilation (ExpMV), expiratory tidal volume (ExpTV), ventilation rate set (VenRS), heart
rate (HR), peak pressure (PeakPr), pH, and age). As shown in Figure 5, the ROC-AUC,
sensitivity, and specificity values of the new LR model for predicting patient weaning
within 24 h were 86%, 64%, and 98.2%, respectively. These values were close to those when
28 predictors were used.

Table 3. Logistic regression coefficients of seven variables.

Variable Coefficient

Expiratory minute ventilation (L/min) 0.397
Expiratory tidal volume (mL/kg) −0.010

Ventilation rate set (30/min) 0.094
Heart rate (bpm) 0.017

Peak pressure (cmH2O) 0.069
pH 0.667
Age 0.015

Intercept −11.430
Logistic regression coefficients of seven variables for the groups with the cutoff value being 0.
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The following equation is established based on the above seven parameters with the
cutoff value being 0:

Score = −11.430 + 0.397 ∗ ExpMV − 0.010 ∗ ExpTV + 0.094 ∗ VenRS + 0.017 ∗ HR + 0.069
∗ PeakPr − 0.667 ∗ pH + 0.015 ∗ age

For example, there is a 69-year-old patient with ExpMV of 17 cmH2O, ExpTV of
390 cmH2O, VenRS of 20 30/min, HR of 104 bpm PeakPr, of 24 cmH2O, and pH of 7. To
predict weaning outcomes of the patients weaned within 24 h, we shall substitute these
values into the equation to calculate the values of Score, which is −6.91.

Score = −11.430 + 0.397 ∗ 17 − 0.010 ∗ 390 + 0.094 ∗ 20 + 0.017 ∗ 104 + 0.069 ∗ 24 − 0.667
∗7 + 0.015 ∗ 69 = −6.91

4. Discussion

This research found out that the SVM, LR, and XGBoost models using 28 variables
efficiently predicted weaning outcomes. In addition, we used LR to establish simple equa-
tions for predicting weaning outcomes and selected seven common and easily accessible
variables. The ROC-AUC values of this new model for predicting patient weaning within
24 h was 86%, which was as good as those of the models using 28 variables.

The ROC-AUC values of the model created in this research ranged from 85% to
91%, which were similar to that of 83% of the model created by Kuo et al. to predict
weaning outcomes using eight ventilation set parameters [5], 85% of the model created by
Hsieh et al. in 2019 for predicting weaning outcomes using 37 ventilation set parameters
and lab values [6], or 84.9–94.2% of the model created by Hsieh et al. in 2020 for predicting
weaning outcomes using 47 ventilation set parameters and lab values [7]. Hence, the model
created in this research could effectively predict weaning outcomes.

On the other hand, Otaguro et al. used various models such as LightGBM as well as
57 ventilation set parameters to predict weaning outcomes with a ROC-AUC of 95% [8],
and Fabregat et al. used the gradient boosting method and SVM models as well as 20
ventilation set parameters and lab values to predict weaning outcomes with ROC-AUCs of
96.1% and 98.3%, respectively [17]. They performed better than the model described in this
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paper, possibly because they used more variables for prediction and can therefore predict
weaning outcomes more accurately.

We observed that the previous models that could better predict weaning outcomes
usually require numerous parameters for effective predictions and are hence complicated.
Furthermore, gathering all of the parameters is difficult, limiting the models’ accessibility
and making them impractical in clinical practice [5–8]. As a result, we chose seven variables,
namely, ExpMV, ExpTV, VenRS, HR, peak pressure (PeakPr), pH, and age [18–24], and
used the less complicated LR method to create a simple but effective model for predicting
weaning outcomes. It will be simpler to incorporate this model into clinical practice.

As a retrospective study on cases of illness, this research had some limitations. Because
the integration levels of various information systems across the hospital are different, we
only collected limited variables and did not consider the significant variables mentioned
in all studies (e.g., the Rapid Shallow Breathing Index, respiratory rate, and APACHE II
score [19,21,22,24–35]). Cardiac variables such as left ventricular ejection fraction can be
collected, which may make determining the severity of heart diseases impossible. This
study focused on cardiac surgery. Patients who do not normally have lung diseases are
mechanically ventilated only briefly after surgical procedures and thus have a lower risk of
weaning failure, which may cause the results to be overestimated. Because this study only
used data from one hospital, it cannot be applied to other medical institutions. Data from
other hospitals can be used in the future to validate the model’s robustness and prediction
performance.

5. Conclusions

The SVM, LR, and XGBoost models using 28 variables could efficiently predict weaning
outcomes. The model developed in this research succeeded in effectively predicting the
weaning success of ICU patients using seven common and easily accessible parameters.
The ROC-AUC value of this new model for predicting patient weaning within 24 h was
86%, which was as good as those of the models using 28 variables. As a result, it can be
used in clinical practice to identify and treat difficult-to-wean patients. However, data from
other hospitals can be used in the future to validate the model’s robustness and prediction
performance. In the future, Rapid Shallow Breathing Index, respiratory rate, APACHE II
score, and cardiac variables such as left ventricular ejection fraction can be collected, and
data from other hospitals can be used to verify the robustness and predictive performance
of the model. When this model is implemented in clinical practice, its quantified values
will assist doctors in making well-informed decisions more quickly, reducing the burden
on patients, their families, medical resources, and society.
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