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Abstract

Adaptive gradient methods (AGMs) have become popular in optimizing the nonconvex problems

in deep learning area. We revisit AGMs and identify that the adaptive learning rate (A-LR) used

by AGMs varies significantly across the dimensions of the problem over epochs (i.e., anisotropic

scale), which may lead to issues in convergence and generalization. All existing modified AGMs

actually represent efforts in revising the A-LR. Theoretically, we provide a new way to analyze

the convergence of AGMs and prove that the convergence rate of ADAM also depends on its

hyper-parameter є, which has been overlooked previously. Based on these two facts, we propose a

new AGM by calibrating the A-LR with an activation (softplus) function, resulting in the SADAM

and SAMSGRAD methods. We further prove that these algorithms enjoy better convergence speed

under nonconvex, non-strongly convex, and Polyak-Łojasiewicz conditions compared with ADAM.

Empirical studies support our observation of the anisotropic A-LR and show that the proposed

methods outperform existing AGMs and generalize even better than S-Momentum in multiple

deep learning tasks.
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1. Introduction

Many machine learning problems can be formulated as the minimization of an objective

function f of the form: minx ∈ ℝdf x = 1
n i = 1

n fi x , where both f and fi maybe nonconvex

in deep learning. Stochastic gradient descent (SGD), its variants such as SGD with

momentum (S-Momentum) [1, 2, 3, 4], and adaptive gradient methods (AGMs) [5, 6, 7] play

important roles in deep learning area due to simplicity and wide applicability. In particular,

AGMs often exhibit fast initial progress in training and are easy to implement in solving

large scale optimization problems. The updating rule of AGMs can be generally written as:

*Corresponding author jinbo.bi@uconn.edu (Jinbo Bi).

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it
is published in its final form. Please note that during the production process errors may be discovered which could affect the content,
and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neurocomputing. Author manuscript; available in PMC 2023 April 07.

Published in final edited form as:
Neurocomputing. 2022 April 07; 481: 333–356. doi:10.1016/j.neucom.2022.01.014.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



xt + 1 = xt − ηt
vt

⊙ mt, (1)

where ʘ calculates element-wise product of the first-order momentum mt and the learning

rate LR
ηt
vt

. There is fairly an agreement on how to compute mt, which is a convex

combination of previous mt−1 and current stochastic gradient gt, i.e., mt = β1mt−1 + (1 −

β1)gt, β1 ∈ [0,1]. The LR consists of two parts: the base learning rate (B-LR) ηt is a scalar

which can be constant or decay over iterations. In our convergence analysis, we consider

the B-LR as constant η. The adaptive learning rate 1
vt

, varies adaptively across dimensions

of the problem, where vt ∈ ℝd is the second-order momentum calculated as a combination

of previous and current squared stochastic gradients. Unlike the first-order momentum, the

formula to estimate the second-order momentum varies in different AGMs. As the core

technique in AGMs, A-LR opens a new regime of controlling LR, and allows the algorithm

to move with different step sizes along the search direction at different coordinates.

The first known AGM is ADAGRAD [5] where the second-order momentum is estimated as

vt = i = 1
t gi2. It works well in sparse settings, but the A-LR often decays rapidly for dense

gradients. To tackle this issue, ADADELTA [7], RMSPROP [8], ADAM [6] have been proposed

to use exponential moving averages of past squared gradients, i.e., vt = β2vt − 1 + 1 − β2 gt2,

β2 ∈ [0,1] and calculate the A-LR by 1
vt + ϵ  where є > 0 is used in case that vt vanishes

to zero. In particular, ADAM has become the most popular optimizer in the deep learning

area due to its effectiveness in early training stage. Nevertheless, it has been empirically

shown that ADAM generalizes worse than S-Momentum to unseen data and leaves a clear

generalization gap [9, 10, 11], and even fails to converge in some cases [12, 13]. AGMs

decrease the objective value rapidly in early iterations, and then stay at a plateau whereas

SGD and S-Momentum continue to show dips in the training error curves, and thus continue

to improve test accuracy over iterations. It is essential to understand what happens to

ADAM in the later learning process, so we can revise AGMs to enhance their generalization

performance.

Recently, a few modified AGMs have been developed, such as, AMSGRAD [12], YOGI

[14], and ADABOUND [13]. AMSGRAD is the first method to theoretically address the

non-convergence issue of ADAM by taking the largest second-order momentum estimated

in the past iterations, i.e., vt = max vt − 1, vt  where vt = β2vt − 1 + 1 − β2 gt2, and proves

its convergence in the convex case. The analysis is later extended to other AGMs

(such as RMSPROP and AMSGRAD) in nonconvex settings [15, 16, 17, 18]. YOGI

claims that the past gt2‘s are forgotten in a fairly fast manner in ADAM and proposes

vt = vt − 1 − 1 − β2 sign vt − 1 − gt2 gt2 to adjust the decay rate of the A-LR. However, the

parameter in the A-LR is adjusted to 10−3, instead of 10−8 in the default setting of

ADAM, so ϵ dominates the A-LR in later iterations when vt becomes small and can be

responsible for performance improvement. The hyper-parameter has rarely been discussed
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previously and our analysis shows that the convergence rate is closely related to є, which

is further verified in our experiments. PADAM1 [19, 15] claims that the A-LR in ADAM

and AMSGRAD are “overadapted”, and proposes to replace the A-LR updating formula by 1/

((vt)p + є) where p ϵ (0,1/2] ADABOUND confines the LR to a predefined range by applying),

Clip η
vt

, ηl, ηr , where LR values outside the interval [ηl,ηr] are clipped to the interval edges.

However, a more effective way is to softly and smoothly calibrate the A-LR rather than

hard-thresholding the A-LR at all coordinates. Our main contributions are summarized as

follows:

1. We study AGMs from a new perspective: the range of the A-LR. Through

experimental studies, we find that the A-LR is always anisotropic. This

anisotropy may lead the algorithm to focus on a few dimensions (those with

large A-LR), which may exacerbate generalization performance. We analyze the

existing modified AGMs to help explain how they close the generalization gap.

2. Theoretically, we are the first to include hyper-parameter є into the convergence

analysis and clearly show that the convergence rate is upper bounded by a

1/є2 term, verifying prior observations that є affects performance of ADAM

empirically. We provide a new approach to convergence analysis of AGMs under

the nonconvex, non-strongly convex, or Polyak-Łojasiewicz (P-L) condition.

3. Based on the above two results, we propose to calibrate the A-LR using an

activation function, particularly we implement the softplus function with a hyper-

parameter β, which can be combined with any AGM. In this work, we combine it

with ADAM and AMSGRAD to form the SADAM and SAMSGRAD methods.

4. We also provide theoretical guarantees of our methods, which enjoy better

convergence speed than ADAM and recover the same convergence rate as SGD

in terms of the maximum iteration T as O 1/ T  rather than the known result:

O log T / T  in [16]. Empirical evaluations show that our methods obviously

increase test accuracy, and outperform many AGMs and even S-Momentum in

multiple deep learning models.

2. Preliminaries

Notations.

For any vectors a, b ∈ ℝd, we use a ʘ b for element-wise product, a2 for element-wise

square, a for element-wise square root, a/b for element-wise division; we use ak to denote

element-wise power of k, and ǁaǁ to denote its l2-norm. We use 〈a,b〉 to denote their inner

product, max{a,b} to compute element-wise maximum. e is the Euler number, log(·) denotes

logarithm function with base e, and O(·) to hide constants which do not rely on the problem

parameters.

1The PADAM in [19] actually used AMSGRAD, and for clear comparison, we named it PAMSGRAD. In our experiments, we also
compared with the ADAM that used the A-LR formula with p, which we named PADAM.
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Optimization Terminology.

In convex setting, the optimality gap, f(xt) − f∗, is examined where xt is the iterate

at iteration t, and f∗ is the optimal value attained at x∗ assuming that f does have a

minimum. When f(xt) − f∗ ≤ δ, it is said that the method reaches an optimal solution with δ-

accuracy. However, in the study of AGMs, the average regret 1
T t = 1

T f xt − f∗  (where the

maximum iteration number T is pre-specified) is used to approximate the optimality gap to

define δ-accuracy. Our analysis moves one step further to examine if f 1
T t = 1

T xt − f∗ ≤ δ

by applying Jensen’s inequality to the regret.

In nonconvex setting, finding the global minimum or even local minimum is NP-hard, so

optimality gap is not examined. Rather, it is common to evaluate if a first-order stationary

point has been achieved [20, 12, 14]. More precisely, we evaluate if E ∇f xt
2 ≤ δ (e.g.,

in the analysis of SGD [1]). The convergence rate of SGD is O 1/ T  in both non-strongly

convex and nonconvex settings. Requiring O 1/ T ≤ δ yields the maximum number of

iterations T = O(1/δ2). Thus, SGD can obtain a δ-accurate solution in O(1/δ2) steps in

non-strongly convex and nonconvex settings. Our results recover the rate of SGD and

S-Momentum in terms of T.

Assumption 1. The loss fi and the objective f satisfy:

1. L-smoothness. ∀x, y ∈ ℝd, ∀i ∈ 1, …, n , ∇fi x − ∇fi y ≤ L x − y .

2. Gradient bounded. ∀x ∈ ℝd, ∀i ∈ 1, …, n , ∇fi x ≤ G, G ≥ 0.

3. Variance bounded. ∀x ∈ ℝd, t ≥ 1, E gt = ∇f xt , E gt − ∇f xt
2 ≤ σ2.

Definition 1. Suppose f has the global minimum, denoted as f∗ = f(x∗). Then for any

x, y ∈ ℝd,

1. Non-strongly convex. f y ≥ f x + ∇f x T y − x .

2. Polyak-Łojasiewicz (P-L) condition. ∃λ > 0 such that ∇f x 2 ≥ 2λ f x − f∗ .

3. Strongly convex. ∃ μ > 0 such that f y ≥ f x + ∇f x T y − x + μ
2 y − x 2.

3. Our New Analysis of Adam

First, we empirically observe that ADAM has anisotropic A-LR caused by є, which may

lead to poor generalization performance. Second, we theoretically show ADAM method is

sensitive to є, supporting observations in previous work.

3.1. Anisotropic A-LR.

We investigate how the A-LR in ADAM varies over time and across problem dimensions, and

plot four examples in Figure 1 (more figures in Appendix) where we run ADAM to optimize

a convolutional neural network (CNN) on the MNIST dataset, and ResNets or DenseNets on
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the CIFAR-10 dataset. The curves in Figure 1 exhibit very irregular shapes, and the median

value is hardly placed in the middle of the range, the range of A-LR across the problem

dimensions is anisotropic for AGMs. As a general trend, the A-LR becomes larger when vt

approaches 0 over iterations. The elements in the A-LR vary significantly across dimensions

and there are always some coordinates in the A-LR of AGMs that reach the maximum 108

determined by є (because we use є = 10−8 in ADAM).

This anisotropic scale of A-LR across dimensions makes it difficult to determine the B-LR,

η. On the one hand, η should be set small enough so that the LR η
vt + ϵ  is appropriate, or

otherwise some coordinates will have very large updates because the corresponding A-LR’s

are big, likely resulting in performance oscillation [21]. This may be due to that exponential

moving average of past gradients is different, hence the speed of mt diminishing to zero is

different from the speed of vt diminishing to zero. Besides, noise generated in stochastic

algorithms has nonnegligible influence to the learning process. On the other hand, very

small η may harm the later stage of the learning process since the small magnitude of mt

multiplying with a small step size (at some coordinates) will be too small to escape sharp

local minimal, which has been shown to lead to poor generalization [22, 23, 24]. Further, in

many deep learning tasks, stage-wise policies are often taken to decay the LR after several

epochs, thus making the LR even smaller. To address the dilemma, it is essential to control

the A-LR, especially when stochastic gradients get close to 0.

By analyzing previous modified AGMs that aim to close the generalization gap, we find that

all these works can be summarized into one technique: constraining the A-LR, 1/ vt + ϵ ,

to a reasonable range. Based on the observation of anisotropic A-LR, we propose a more

effective way to calibrate the A-LR according to an activation function rather than hard-

thresholding the A-LR at all coordinates, empirically improve generalization performance

with theoretical guarantees of optimization.

3.2. Sensitive to є.

As a hyper-parameter in AGMs, ϵ is originally introduced to avoid the zero denominator

issue when vt goes to 0, and has never been studied in the convergence analysis of AGMs.

However, it has been empirically observed that AGMs can be sensitive to the choice of є in

[17, 14]. As shown in Figure 1, a smaller є = 10−8 leads to a wide span of the A-LR across

the different dimensions, whereas a bigger є = 10−3 as used in YOGI, reduces the span. To

better learn the effect caused by sensitive є, we conduct experiments in multiple datasets and

results are shown in Table 1 and 2. The setting of є is the main force causing anisotropy,

unsatisfied, there has no theoretical result explains the effect of є on AGMs. Inspired by our

observation, we believe that the current convergence analysis for ADAM is not complete if

omitting є.

Most of the existing convergence analysis follows the line in [12] to

first project the sequence of the iterates into a minimization problem as

xt + 1 = xt − η
vt

mt = minx vt1/4 x − xt − η
vt

mt , and then examine if vt1/4 xt + 1 − x∗

decreases over iterations. Hence, є is not discussed in this line of proof because it is
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not included in the step size. In our later convergence analysis section, we introduce an

important lemma, bounded A-LR, and by using the bounds of the A-LR (specifically, the

lower bound µ1 and upper bound µ2 both containing є for ADAM), we give a new general

framework of prove (details in Appendix) to show the convergence rate for reaching an x

that satisfies E ∇f xt
2 ≤ δ in the nonconvex setting. Then, we also derive the optimality

gap from the stationary point in the convex and P-L settings (strongly convex).

Theorem 3.1. [Nonconvex] Suppose f(x) is a nonconvex function that satisfies Assumption

1. Let ηt = η = O 1
T , ADAM has

min
t = 1, …, T

E ∇f xt
2 ≤ O 1

ϵ2 T
+ d

ϵT + d
ϵ2T T

.

Theorem 3.2. [Non-strongly Convex] Suppose f(x) is a convex function that satisfies

Assumption 1. Assume that ∀t, E xt − x∗ ≤ D, for any m ≠ n, E xm − xn ≤ D∞, let

ηt = η = O 1
T , ADAM has convergence rate f xt − f∗ ≤ O d

ϵ2 T
, where xt = 1

T t = 1
T xt.

Theorem 3.3. [P-L Condition] Suppose f(x) has P-L condition (with parameter λ) holds

under convex case, satisfying Assumption 1. Let ηt = η = O 1
T2 , ADAM has the convergence

rate: E f xT + 1 − f∗ ≤ 1 −
2λμ1
T2

T
E f x1 − f∗ + O 1

T ,

The P-L condition is weaker than strongly convex, and for the strongly convex case, we also

have:

Corollary 3.3.1. [Strongly Convex] Suppose f(x) is µ-strongly convex function

that satisfies Assumption 1. Let ηt = η = O 1
T2 , ADAM has the convergence rate:

E f xT + 1 − f∗ ≤ 1 −
2μμ1
T2

T
E f x1 − f∗ + O 1

T

This is the first time to theoretically include є into analysis. As expected, the convergence

rate of ADAM is highly related with є. A bigger є will enjoy a better convergence rate since

є will dominate the A-LR and behaves like SMomentum; A smaller є will preserve stronger

“adaptivity”, we need to find a better way to control є.

4. The Proposed Algorithms

We propose to use activation functions to calibrate AGMs, and specifically focus on using

softplus funciton on top of ADAM and AMSGRAD methods.
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4.1. Activation Functions Help

Activation functions (such as sigmoid, ELU, tanh) transfer inputs to outputs are widely

used in deep learning area. As a well-studied activation function, softplus x = 1
β log 1 + eβx

is known to keep large values unchanged (behaved like function y = x) while

smoothing out small values (see Figure 2 (a)). The target magnitude to be smoothed

out can be adjusted by a hyper-parameter β ∈ ℝ. In our new algorithms, we introduce

softplus vt = 1
β log 1 + eβ ⋅ vt  to smoothly calibrate the A-LR. This calibration brings

the following benefits: (1) constraining extreme large-valued A-LR in some coordinates

(corresponding to the small-values in vt) while keeping others untouched with appropriate β.

For the undesirable large values in the A-LR, the softplus function condenses them smoothly

instead of hard thresholding. For other coordinates, the A-LR largely remains unchanged;

(2) removing the sensitive parameter є because the softplus function can be lower-bounded

by a nonzero number when used on non-negative variables, softplus ⋅ ≥ 1
β log2.

After calibrating vt with a softplus function, the anisotropic A-LR becomes much more

regulated (see Figure 3 and Appendix), and we clearly observe improved test accuracy

(Figure 2 (b) and more figures in Appendix). We name this method “SADAM” to represent

the calibrated ADAM with softplus function, here we recommend using softplus function but

it is not limited to that, and the later theoretical analysis can be easily extended to other

activation functions. More empirical evaluations have shown that the proposed methods

significantly improve the generalization performance of ADAM and AMSGRAD.

4.2. Calibrated AGMs

With activation function, we develop two new variants of AGMs: SADAM and SAMSGRAD

(Algorithms 1 and 2), which are developed based on ADAM and AMSGRAD respectively.

Algorithm 1 SADAM

Input: x1 ∈ ℝd, learning rate

ηt t = 1
T , parameters 0 ≤ β1, β2 < 1,

β .
Initialize m0 = 0, v0 = 0
for t = 1 to T do

Compute stochastic gradient gt
mt = β1mt − 1 + 1 − β1 gt
vt = β2vt − 1 + 1 − β2 gt2

xt + 1 = xt −
ηt

softplus vt
⊙ mt

end for
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Algorithm 2 SAMSGRAD

Input: x1 ∈ ℝd, learning rate

ηt t = 1
T , parameters 0 ≤ β1, β2 < 1,

β .
Initialize m0 = 0, v0 = 0
for t = 1 to T do

Compute stochastic gradient gt
mt = β1mt − 1 + 1 − β1 gt
vt = β2vt − 1 + 1 − β2 gt2

vt = max vt − 1, vt

xt + 1 = xt −
ηt

softplus vt
⊙ mt

end for

The key step lies in the way to design the adaptive functions, instead of using the

generalized square root function only, we apply softplus(·) on top of the square root of the

second-order momentum, which serves to regulate A-LR’s anisotropic behavior and replace

the tolerance parameter є by the hyper-parameter β used in the softplus function.

In our algorithms, the hyper-parameters are recommended as β1 = 0.9, β2 = 0.999.

For clarity, we omit the bias correction step proposed in the original ADAM. However,

our arguments and theoretical analysis are applicable to the bias correction version

as well [6, 25, 14]. Using the softplus function, we introduce a new hyper-parameter

β, which performs as a controller to smooth out anisotropic A-LR, and connect

the ADAM and S-Momentum methods automatically. When β is set to be small,

SADAM and SAMSGRAD perform similarly to S-Momentum; when β is set to be big,

softplus vt = 1
β log 1 + eβ ⋅ vt ≈ 1

β log eβ ⋅ vt = vt, and the updating formula becomes

xt + 1 = xt −
ηt
vt

⊙ mt, which is degenerated into the original AGMs. The hyper-parameter

β can be well tuned to achieve the best performance for different datasets and tasks. Based

on our empirical observations, we recommend to use β = 50.

As a calibration method, the softplus function has better adaptive behavior than simply

setting. More precisely, when є is large or β is small, ADAM and AMSGRAD amount to

S-Momentum, but when є is small as commonly suggested 10−8 or β is taken large, the

two methods are different because comparing Figure 1 and 3 yields that SADAM has more

regulated A-LR distribution. The proposed calibration scheme regulates the massive range

of A-LR back down to a moderate scale. The median of A-LR in different dimensions is

now well positioned to the middle of the 25–75 percentile zone. Our approach opens up a

new direction to examine other activation functions (not limited to the softplus function) to

calibrate the A-LR.

The proposed SADAM and SAMSGRAD can be treated as members of a class of AGMs that

use the softplus (or another suitable activation) function to better adapt the step size. It can
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be readily combined with any other AGM, e.g., Rmsrop, YOGI, and PADAM. These methods

may easily go back to the original ones by choosing a big β.

5. Convergence Analysis

We first demonstrate an important lemma to highlight that every coordinate in the A-LR

is both upper and lower bounded at all iterations, which is consistent with empirical

observations (Figure 1), and forms the foundation of our proof.

Lemma 5.1. [Bounded A-LR] With Assumption 1, for any t ≥ 1, j ∈ [1,d], β2 ∈ [0,1], and
in ADAM, β in SADAM, anisotropic A-LR is bounded in AGMs, ADAM has (µ1,µ2)-bounded
A-LR:

μ1 ≤ 1
vt, j + ϵ ≤ μ2,

SADAM has (µ3,µ4)-bounded A-LR:

μ3 ≤ 1
softplus vt, j

≤ μ4,

where 0 < µ1 ≤ µ2, and 0 < µ3 ≤ µ4

Remark 5.2. Besides the square root function and softplus function, the A-LR calibrated
by any positive monotonically increasing function can be bounded. All of the bounds can
be shown to be related to є or β (see Appendix). Bounded A-LR is an essential foundation
in our analysis, we provide a different way of proof from previous works, and the proof
procedure can be easily extended to other gradient methods as long as bounded LR is
satisfied.

Remark 5.3. These bounds can be applied to all AGMs, including ADAGRAD. In fact, the
lower bounds actually are not the same in ADAM and ADAGRAD, because ADAM will have
smaller vt, j due to moment decay parameter β2. To achieve a unified result, we use the

same relaxation to derive the fixed lower bound µ1.

We now describe our main results of SADAM (and SAMSGRAD) in the nonconvex case, we

clearly show that similar to Theorem 3.1, the convergence rate of SADAM is related to the

bounds of the A-LR. Our methods have improved the convergence rate of ADAM when

comparing self-contained parameters є and β.

Theorem 5.4. [Nonconvex] Suppose f(x) is a nonconvex function that satisfies Assumption

1. Let ηt = η = O 1
T , SADAM method has

min
t = 1, …, T

E ∇f xt 2 ≤ O β2
T + dβ

T + dβ2
T T .
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Remark 5.5. Compared with the rate in Theorem 3.1, the convergence rate of SADAM relies

on β, which can be a much smaller number (β = 50 as recommended) than 1
ϵ  (commonly є =

10−8 in AGMs), showing that our methods have a better convergence rate than ADAM. When
β is huge, SADAM’s rate is comparable to the classic ADAM. When β is small, the convergence

rate will be O 1
T  which recovers that of SGD [1].

Corollary 5.5.1. Treat є or β as a constant, then the ADAM, SADAM (and SAMSGRAD)

methods with fixed L,σ,G,β1, and η = O 1
T , have complexity of O 1

T , and thus call for

O 1
δ2  iterations to achieve δ-accurate solutions.

Theorem 5.6. [Non-strongly Convex] Suppose f(x) is a convex function that satisfies

Assumption 1. Assume that E xt − x∗ ≤ D, ∀t, and E xm − xn ≤ D∞, ∀ m ≠ n, let

ηt = η = O 1
T , SADAM has f xt − f∗ ≤ O 1

T , where xt = 1
T t = 1

T xt.

The accurate convergence rate will be O d
ϵ2 T

 for ADAM and O dβ2
T  for SADAM with fixed

L, σ, G, β1, D, D∞. Some works may specify additional sparsity assumptions on stochastic

gradients, and in other words, require that 
t = 1
T

j = 1
d gt, j ≪ dT  [5, 12, 15, 19] to

reduce the order from d to d. Some works may use the element-wise bounds σj or Gj, and

apply j = 1
d σj = σ, and j = 1

d Gj = G to hide d. In our work, we do not assume sparsity, so

we use σ and G throughout the proof. Otherwise, those techniques can also be used to hide d
from our convergence rate.

Corollary 5.6.1. If є or β is treated as constants, then ADAM, SADAM (and SAMSGRAD)

methods with fixed L,σ,G,β1, and η = O 1
T  in the convex case will call for O 1

δ2  iterations

to achieve δ-accurate solutions.

Theorem 5.7. [P-L Condition] Suppose f(x) satisfies the P-L condition (with parameter λ)

and Assumption 1 in the convex case. Let ηt = η = O 1
T2 , SADAM has:

E f xT + 1 − f∗ ≤ 1 −
2λμ3
T2

T
E f x1 − f∗ + O 1

T .

Corollary 5.7.1. [Strongly Convex] Suppose f(x) is µ-strongly convex function that satisfies

Assumption 1. Let ηt = η = O 1
T2 , SADAM has the convergence rate:

E f xT + 1 − f∗ ≤ 1 −
2μμ3
T2

T
E f x1 − f∗ + O 1

T .
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In summary, our methods share the same convergence rate as ADAM, and enjoy even better

convergence speed if comparing the common values chosen for the parameters є and β. Our

convergence rate recovers that of SGD and S-Momentum in terms of T for a small β.

6. Experiments

We compare SADAM and SAMSGRAD against several state-of-the-art optimizers including

S-Momentum, ADAM, AMSGRAD, YOGI, PADAM, PAMSGRAD, ADABOUND, and AMSBOUND.

More results and architecture details are in Appendix.

Experimental Setup.

We use three datasets for image classifications: MNIST, CIFAR-10 and CIFAR-100 and

two datasets for LSTM language models: Penn Treebank dataset (PTB) and the WikiText-2

(WT2) dataset. The MNIST dataset is tested on a CNN with 5 hidden layers. The CIFAR-10

dataset is tested on Residual Neural Network with 20 layers (ResNets 20) and 56 layers

(ResNets 56) [9], and DenseNets with 40 layers [11]. The CIFAR-100 dataset is tested on

VGGNet [26] and Residual Neural Network with 18 layers (ResNets 18) [9]. The Penn

Treebank dataset (PTB) and the WikiText-2 (WT2) dataset are tested on 3-layer LSTM

models [27].

We train CNN on the MNIST data for 100 epochs, ResNets/DenseNets on CIFAR-10 for

300 epochs, with a weight decay factor of 5 × 10−4 and a batch size of 128, VGGNet/

ResNets on CIFAR-100 for 300 epochs, with a weight decay factor of 0.025 and a batch

size of 128 and LSTM language models on 200 epochs. For the CIFAR tasks, we use a

fixed multi-stage LR decaying scheme: the B-LR decays by 0.1 at the 150-th epoch and

225-th epoch, which is a popular decaying scheme used in many works [28, 18]. For the

language tasks, we use a fixed multi-stage LR decaying scheme: the B-LR decays by 0.1 at

the 100-th epoch and 150-th epoch. All algorithms perform grid search for hyperparameters

to choose from {10,1,0.1,0.01,0.001,0.0001} for B-LR, {0.9,0.99} for β1 and {0.99,0.999}

for β2. For algorithm-specific hyper-parameters, they are tuned around the recommended

values, such as p ∈ 1
8 , 1

16  in PADAM and PAMSGRAD. For our algorithms, β is selected from

{10,50,100} in SADAM and SAMSGRAD, though we do observe fine-tuning β can achieve

better test accuracy most of time. All experiments on CIFAR tasks are repeated for 6 times

to obtain the mean and standard deviation for each algorithm.

Image Classification Tasks.

As a sanity check, experiment on MNIST has been done and its results are in Figure 4,

which shows the learning curve for all baseline algorithms and our algorithms on both

training and test datasets. As expected, all methods can reach the zero loss quickly, while for

test accuracy, our SAMSGRAD shows increase in test accuracy and outperforms competitors

within 50 epochs.

Using the PyTorch framework, we first run the ResNets 20 model on CIFAR10 and results

are shown in Table 3. The original ADAM and AMSGRAD have lower test accuracy in

comparison with S-Momentum, leaving a clear generalization gap exactly same as what is
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previously reported. For our methods, SADAM and SAMSGRAD clearly close the gap, and

SADAM achieves the best test accuracy among competitors. We further test all methods with

CIFAR10 on ResNets 56 with greater network depth, and the overall performance of each

algorithm has been improved. For the experiments with DenseNets, we use a DenseNet with

40 layers and a growth rate k = 12 without bottleneck, channel reduction, or dropout. The

results are reported in the last column of Table 3, SAMSGRAD still achieves the best test

performance, and the proposed two methods largely improve the performance of ADAM and

AMSGRAD and close the gap with S-Momentum.

Furthermore, two popular CNN architectures: VGGNet [26] and ResNets18 [9] are tested on

CIFAR-100 dataset to compare different algorithms. Results can be found in Figure 5 and

repeated results are in Appendix. Our proposed methods again perform slightly better than

S-Momentum in terms of test accuracy.

LSTM Language Models.

Observing the significant improvements in deep neural networks for image classification

tasks, we further conduct experiments on the language models with LSTM. For comparing

the efficiency of our proposed methods, two LSTM models over the Penn Treebank dataset

(PTB) [29] and the WikiText-2 (WT2) dataset [30] are tested. We present the single-model

perplexity results for both our proposed methods and other competitive methods in Figure 6

and our methods achieve both fast convergence and best generalization performance.

In summary, our proposed methods show great efficacy on several standard benchmarks in

both training and testing results, and outperform most optimizers in terms of generalization

performance.

7. Conclusion

In this paper, we study adaptive gradient methods from a new perspective that is driven by

the observation that the adaptive learning rates are anisotropic at each iteration. Inspired

by this observation, we propose to calibrate the adaptive learning rates using an activation

function, and in this work, we examine softplus function. We combine this calibration

scheme with ADAM and AMSGRAD methods and empirical evaluations show obvious

improvement on their generalization performance in multiple deep learning tasks. Using

this calibration scheme, we replace the hyper-parameter є in the original methods by a

new parameter β in the softplus function. A new mathematical model has been proposed

to analyze the convergence of adaptive gradient methods. Our analysis shows that the

convergence rate is related to є or β, which has not been previously revealed, and the

dependence on є or β helps us justify the advantage of the proposed methods. In the future,

the calibration scheme can be designed based on other suitable activation functions, and

used in conjunction with any other adaptive gradient method to improve generalization

performance.
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Appendix

A.1. Architecture Used in Our Experiments

Here we mainly introduce the MNIST architecture with Pytorch used in our empirical study,

ResNets and DenseNets are well-known architectures used in many works and we do not

include details here.

layer layer setting

F.relu(self.conv1(x)) self.conv1 = nn.Conv2d(1, 6, 5)

F.max pool2d(x, 2, 2)

F.relu(self.conv2(x)) self.conv2 = nn.Conv2d(6, 16, 5)

x.view(−1, 16*4)

F.relu(self.fc1(x)) self.fc1 = nn.Linear(16*4*4, 120)

x= F.relu(self.fc2(x)) self.fc2 = nn.Linear(120, 84)

x = self.fc3(x) self.fc3 = nn.Linear(84, 10)

F.log softmax(x, dim=1)

B.2. More Empirical Results

In this section, we perform multiply experiments to study the property of anisotropic A-LR

exsinting in AGMs and the performance of softplus function working on A-LR. We first

show the A-LR range of popular ADAM-type methods, then present how the parameter β in

SADAM and SAMSGRAD reduce the range of A-LR and improve both training and testing

performance.

B.2.1. A-LR Range of AGMs

Besides the A-LR range of ADAM method, which has shown in main paper, we further want

to study more other ADAM-type methods, and do experiments focus on AMSGRAD, PADAM,

and PAMSGRAD on different tasks (Figure B.2.1, B.2.2, and B.2.3). AMSGRAD also has

extreme large-valued coordinates, and will encounter the “small learning rate dilemma” as

well as ADAM. With partial parameter p, the value range of A-LR can be largely narrow

down, and the maximum range will be reduced around 102 with PADAM, and less than 102

with PAMSGRAD. This reduced range, avoiding the “small learning rate dilemma”, may help

us understand what “trick” works on ADAM’s A-LR can indeed improve the generalization

performance. Besides, the range of A-LR in YOGI, ADABOUND and AMSBOUND will be reduced

or controlled by specific є or clip function, we don’t show more information here.

B.2.2. Parameter β Reduces the Range of A-LR

The main paper has discussed about softplus function, and mentions that it does help to

constrain large-valued coordinates in A-LR while keep others untouched, here we give more

empirical support. No matter how does β set, the modified A-LR will have a reduced range.

By setting various β’s, we can find an appropriate β that performs the best for specific tasks
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on datasets. Besides the results of A-LR range of SADAM on MNIST with different choices of

β, we also study SADAM and SAMSGRAD on ResNets 20 and DenseNets.

Here we do grid search to choose appropriate β from {10,50,100,200,500,1000}. In

summary, with softplus fuction, SADAM and SAMSGRAD will narrow down the range of

A-LR, make the A-LR vector more regular, avoiding ”small learning rate dilemma” and

finally achieve better performance.

B.2.3. Parameter β Matters in Both Training and Testing

After studying existing ADAM-type methods, and effect of different β in adjusting A-LR, we

focus on the training and testing accuracy of our softplus framework, especially SADAM and

SAMSGRAD, with different choices of β.

Figure B.2.1:
A-LR range of AMSGRAD (a), PADAM (b), and PAMSGRAD (c) on MNIST.

Figure B.2.2:
A-LR range of AMSGRAD (a), PADAM (b), and PAMSGRAD (c) on ResNets 20.
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Figure B.2.3:
A-LR range of AMSGRAD (a), PADAM (b), and PAMSGRAD (c) on DenseNets.

Figure B.2.4:
The range of A-LR: 1/softplus vt  over iterations for different choices of β. The maximum

ranges in all figures are compressed to a reasonable smaller value compared with 108.
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Figure B.2.5:
The range of A-LR: 1/softplus vt , vt = max vt − 1, vt  over iterations for SAMSGRAD on

MNIST with different choice of β. The maximum ranges in all figures are compressed to a

reasonable smaller value compared with those of AMSGRAD on MNIST
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Figure B.2.6:
The range of A-LR: 1/softplus vt  over iterations for SADAM on ResNets 20 with different

choices of β.

Figure B.2.7:
The range of A-LR: 1/softplus vt , vt = max vt − 1, vt  over iterations for SAMSGRAD on

ResNets 20 with different choices of β.

Tong et al. Page 17

Neurocomputing. Author manuscript; available in PMC 2023 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure B.2.8:
The range of A-LR: 1/softplus vt  over iterations for SADAM on DenseNets with different

choice of β.

Figure B.2.9:
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The range of A-LR: 1/softplus vt , vt = max vt − 1, vt  over iterations for SAMSGRAD on

DenseNets with different choices of β.

Figure B.2.10:
Performance of SADAM on CIFAR-10 with different choice of β.
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Figure B.2.11:
Performance of SAMSGRAD on CIFAR-10 with different choice of β.

C.3. CIFAR100

Two popular CNN architectures are tested on CIFAR-100 dataset to compare different

algorithms: VGGNet [26] and ResNets18 [9]. Besides the figures in main text, we have

repeated experiments and show results as follows. Our proposed methods again perform

slightly better than S-Momentum in terms of D.4. Theoretical Analysis Details

Table C.3.1:

Test Accuracy(%) of CIFAR100 for VGGNet.

Method 50th epoch 150th epoch 250th epoch best perfomance

S-Momentum 59.09 ± 2.09 61.25 ± 1.51 76.14 ± 0.12 76.43 ± 0.15

ADAM 60.21 ± 0.81 62.98 ± 0.10 73.81 ± 0.17 74.18 ± 0.15

AMSGRAD 61.00 ± 1.17 63.27 ± 1.18 74.04 ± 0.16 74.26 ± 0.18

PADAM 53.62 ± 1.70 56.02 ± 0.86 75.85 ± 0.20 76.36 ± 0.16

PAMSGRAD 52.49 ± 3.07 57.39 ± 1.40 75.82 ± 0.31 76.26 ± 0.30

ADABOUND 60.27 ± 0.99 60.36 ± 1.71 75.86 ± 0.23 76.10 ± 0.22

AMSBOUND 59.88 ± 0.56 60.11 ± 1.92 75.74 ± 0.23 75.99 ± 0.20

ADAM+ 43.59 ± 2.71 44.46 ± 4.39 74.91 ± 0.36 75.58 ± 0.33

AMSGRAD+ 44.45 ± 2.83 45.61 ± 3.67 74.85 ± 0.08 75.56 ± 0.24

SADAM 58.59 ± 1.60 61.27 ± 1.67 76.35 ± 0.18 76.64 ± 0.18
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Method 50th epoch 150th epoch 250th epoch best perfomance

SAMSGRAD 59.16 ± 1.20 60.86 ± 0.39 76.27 ± 0.23 76.47 ± 0.26

Table C.3.2:

Test Accuracy(%) of CIFAR100 for ResNets18.

Method 50th epoch 150th epoch 250th epoch best perfomance

S-Momentum 59.98 ± 1.31 63.32 ± 1.61 77.19 ± 0.36 77.50 ± 0.25

ADAM 63.40 ± 1.42 66.18 ± 1.02 75.68 ± 0.49 76.14 ± 0.24

AMSGRAD 63.16 ± 0.47 66.59 ± 1.42 75.92 ± 0.26 76.32 ± 0.11

PADAM 56.28 ± 0.87 58.71 ± 1.66 77.18 ± 0.21 77.51 ± 0.19

PAMSGRAD 54.34 ± 2.21 58.81 ± 1.95 77.41 ± 0.17 77.67 ± 0.14

ADABOUND 61.13 ± 0.84 64.30 ± 1.84 77.18 ± 0.38 77.50 ± 0.29

AMSBOUND 61.05 ± 1.59 62.04 ± 2.10 77.08 ± 0.19 77.34 ± 0.13

ADAM+ 46.5 ± 2.12 48.68 ± 4.06 76.86 ± 0.36 77.19 ± 0.28

AMSGRAD+ 49.06 ± 3.23 50.75 ± 2.45 76.58 ± 0.21 76.91 ± 0.12

SADAM 59.00 ± 1.09 62.75 ± 1.03 77.26 ± 0.30 77.61 ± 0.19

SAMSGRAD 59.63 ± 1.27 63.44 ± 1.84 77.31 ± 0.40 77.70 ± 0.31

D.4. Theoretical Analysis Details

We analyze the convergence rate of ADAM and SADAM under different cases, and derive

competitive results of our methods. The following table gives an overview of stochastic

gradient methods convergence rate under various conditions, in our work we provide a

different way of proof compared with previous works and also associate the analysis with

hyperparameters of ADAM methods.

D.4.1. Prepared Lemmas

We have a series of prepared lemmas to help with optimization convergence rate analysis,

and some of them maybe also used in generalization error bound analysis.

Lemma D.4.1. For any vectors a, b, c ∈ ℝd, < a, b ⊙ c > = < a ⊙ b, c > = < a ⊙ b, c ⊙ b >,

here ʘ is element-wise product, b is element-wise square root.

Proof.

< a, b ⊙ c > = <
a1
⋮
ad

,
b1c1

⋮
bdcd

> = a1b1c1 + ⋯ + adbdcd
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< a ⊙ b, c > = <
a1b1

⋮
adbd

,
c1
⋮
cd

> = a1b1c1 + ⋯ + adbdcd

< a ⊙ b, c ⊙ b > = <

a1 b1
⋮

ad bd

,

b1c1
⋮

bdcd

> = a1b1c1 + ⋯ + adbdcd

◻

Lemma D.4.2. For any vector a, we have.

a2 ∞ ≤ a2 . (2)

Lemma D.4.3. For unbiased stochastic gradient, we have

E gt
2 ≤ σ2 + G2 . (3)

Proof. From gradient bounded assumption and variance bounded assumption,

E gt 2 = E gt − ∇f xt + ∇f xt 2

= E gt − ∇f xt 2 + ∇f xt 2

≤ σ2 + G2 .

◻

Lemma D.4.4. All momentum-based optimizers using first momentum mt = β1mt−1 + (1 −

β1)gt will satisfy

E mt
2 ≤ σ2 + G2 . (4)

Proof. From the updating rule of first momentum estimator, we can derive

mt = i = 1
t 1 − β1 β1

t − igi . (5)

Let Γt =
i = 1

t
β1

t − i =
1 − β1

t

1 − β1
, by Jensen inequality and Lemma D.4.3,
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E mt 2 = E i = 1
t 1 − β1 β1

t − igi
2

= Γt2E
i = 1

t 1 − β1 β1
t − i

Γt
gi

2

≤ Γt2

i = 1

t
1 − β1 2β1

t − i

Γt
E gi 2 ≤ Γt 1 − β1 2

i = 1

t
β1

t − i σ2 + G2

≤ σ2 + G2 .

◻

Lemma D.4.5. Each coordinate of vector vt = β2vt − 1 + 1 − β2 gt2 will satisfy

E vt, j ≤ σ2 + G2,

where j ∈ [1,d] is the coordinate index.

Proof. From the updating rule of second momentum estimator, we can derive

vt, j = i = 1
t 1 − β2 β2

t − igi, j2 ≥ 0. (6)

Since the decay parameter β2 ∈ 0, 1 , i = 1
t 1 − β2 β2

t − i = 1 − β2
t ≤ 1. From Lemma D.4.3,

E vt, j = E i = 1
t 1 − β2 β2

t − igi, j2 ≤
i = 1
t

1 − β2 β2
t − i σ2 + G2 ≤ σ2 + G2 .

◻

And we can derive the following important lemma:

Lemma D.4.6. [Bounded A-LR] For any t ≥ 1, j ∈ [1,d], β2 ∈ [0,1], and fixed є in ADAM and
β defined in softplus function in SADAM, the following bounds always hold:

ADAM has (µ1,µ2)− bounded A-LR:

μ1 ≤ 1
vt, j + ϵ ≤ μ2; (7)

SADAM has (µ3,µ4)− bounded A-LR:

μ3 ≤ 1
softplus vt, j

≤ μ4; (8)

where 0 < µ1 ≤ µ2, 0 < µ3 ≤ µ4. For brevity, we use µl,µu denoting the lower bound and upper
bound respectively, and both ADAM and SADAM will be analysis with the help of (µl,µu).
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Proof. For ADAM, let μ1 = 1
σ2 + G2 + ϵ

, μ2 = 1
ϵ , then we can get the result in (7).

For SADAM, notice that softplus (·) is a monotone increasing function, and vt, j is both

upper-bounded and lower-bounded, then we have (8), where μ3 = 1
1
β log 1 + eβ ⋅ σ2 + G2 ,

μ4 = 1
1
β log 1 + eβ ⋅ 0

= β
log2 .◻

Lemma D.4.7. Define zt = xt + β
1 − β1

xt − xt − 1 , ∀t ≥ 1 β1 ∈ 0, 1 . Let ηt = η, then the

following updating formulas hold: Gradient-based optimizer

zt = xt, zt + 1 = zt − ηgt; (9)

ADAM optimizer

zt + 1 = zt + ηβ1
1 − β1

1
vt − 1 + ϵ − 1

vt + ϵ ⊙ mt − 1 − η
vt + ϵ ⊙ gt; (10)

SADAM optimizer

zt + 1 = zt + ηβ1
1 − β1

1
softplus vt − 1

− 1
softplus vt

⊙ mt − 1

− η
softplus vt

⊙ gt .
(11)

Proof. We consider the ADAM optimizer and let β1 = 0, we can easily derive the gradient-

based case.

zt + 1 = xt + 1 +
β1

1 − β1
xt + 1 − xt

zt + 1 = zt + 1
1 − β1

xt + 1 − xt −
β1

1 − β1
xt − xt − 1

= zt − 1
1 − β1

η
vt + ϵ ⊙ mt +

β1
1 − β1

η
vt − 1 + ϵ ⊙ mt − 1

= zt +
ηβ1

1 − β1
1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1 − η

vt + ϵ ⊙ gt .

Similarly, consider the SADAM optimizer:
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zt + 1 = zt + 1
1 − β1

xt + 1 − xt −
β1

1 − β1
xt − xt − 1

= zt − 1
1 − β1

η
softplus vt

⊙ mt +
β1

1 − β1
η

softplus vt − 1
⊙ mt − 1

= zt +
ηβ1

1 − β1
1

softplus vt − 1
− 1

softplus vt
⊙ mt − 1 − η

softplus vt
⊙ gt .

◻

Lemma D.4.8. As defined in Lemma D.4.7, with the condition that vt ≥ vt−1, i.e., AMSGRAD

and SAMSGRAD, we can derive the bound of distance of zt + 1 − zt 2 as follows:

ADAM optimizer

E zt + 1 − zt
2 ≤

2η2β1
2 σ2 + G2

1 − β1
2 E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2

+ 2η2μ2
2 σ2 + G2

(12)

SADAM optimizer

E zt + 1 − zt
2 ≤

2η2β1
2 σ2 + G2

1 − β1
2 E

j = 1

d 1
softplus vt − 1, j

2

− 1
softplus vt, j

2

+ 2η2μ4
2 σ2 + G2

(13)

Proof. Adam case:

E zt + 1 − zt 2 = E
ηβ1

1 − β1
1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1 − η

vt + ϵ ⊙ gt
2

≤ 2E
ηβ1

1 − β1
1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1

2
+ + 2E η

vt + ϵ ⊙ gt
2

≤
2η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

2
+ 2η2μ2

2 σ2 + G2

≤
2η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ 2η2μ2

2 σ2 + G2

The first inequality holds because ǁa−bǁ2 ≤ 2ǁaǁ2 + 2ǁbǁ2, the second inequality holds

because Lemma D.4.3 and D.4.4 and Lemma D.4.6, the third inequality holds because (a −

b)2 ≤ a2 − b2 when a ≥ b, and in our assumption, we have vt ≥ vt−1 holds.
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SADAM case:

E zt + 1 − zt 2 = E
ηβ1

1 − β1
1

softplus vt − 1
− 1

softplus vt
⊙ mt − 1 − η

softplus vt
⊙ gt

2

≤ 2E
ηβ1

1 − β1
1

softplus vt − 1
− 1

softplus vt
⊙ mt − 1

2

+ 2E η
softplus vt

⊙ gt
2

≤
2η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

− 1
softplus vt, j

2

+ 2η2μ4
2 σ2 + G2

≤
2η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

2
− 1

softplus vt, j

2

+ 2η2μ4
2 σ2 + G2

Because the softplus function is monotone increasing function, therefore, the third inequality

holds as well.◻

Lemma D.4.9. As defined in Lemma D.4.7, with the condition that vt ≥ vt−1, we can derive
the bound of the inner product as follows:

ADAM optimizer

−E ∇f zt − ∇f xt , η
vt + ϵ ⊙ gt ≤ 1

2L2η2μ2
2 β1

1 − β1

2
σ2 + G2 + 1

2η2μ2
2

σ2 + G2 ;
(14)

SADAM optimizer

−E ∇f zt − ∇f xt , η
softplus vt

⊙ gt ≤ 1
2L2η2μ4

2 β1
1 − β1

2
σ2 + G2

+ 1
2η2μ4

2 σ2 + G2 .
(15)

Proof. Since the stochastic gradient is unbiased, then we have E[gt] = ∇f(xt).

ADAM case:
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−E ∇f zt − ∇f xt , η
vt + ϵ ⊙ gt

≤ 1
2E ∇f zt − ∇f xt

2 + 1
2E η

vt + ϵ ⊙ gt
2

≤ L2
2 E zt − xt 2 + 1

2E η
vt + ϵ ⊙ gt

2

= L2
2

β1
1 − β1

2
E xt − xt − 1 2 + 1

2E η
vt + ϵ ⊙ gt

2

= L2
2

β1
1 − β1

2
E η

vt − 1 + ϵ ⊙ mt − 1
2

+ 1
2E η

vt + ϵ ⊙ gt
2

≤ 1
2L2η2μ2

2 β1
1 − β1

2
σ2 + G2 + 1

2η2μ2
2 σ2 + G2

The first inequality holds because 1
2a2 + 1

2b2 ≥ − < a, b >, the second inequality holds for

L-smoothness, the last inequalities hold due to Lemma D.4.4 and D.4.6.

Similarly, for SADAM, we also have the following result:

−E ∇f zt − ∇f xt , η
softplus vt

⊙ gt

≤ 1
2E ∇f zt − ∇f xt 2 + 1

2E η
softplus vt

⊙ gt
2

≤ L2
2 E zt − xt 2 + 1

2E η
softplus vt

⊙ gt
2

= L2
2

β1
1 − β1

2
E xt − xt − 1 2 + 1

2E η
softplus vt

⊙ gt
2

= L2
2

β1
1 − β1

2
E η

softplus vt
⊙ mt − 1

2
+ 1

2E η
softplus vt

⊙ gt
2

≤ 1
2L2η2μ4

2 β1
1 − β1

2
σ2 + G2 + 1

2η2μ4
2 σ2 + G2 .

◻

D.4.2. ADAM Convergence in Nonconvex Setting

Proof. All the analyses hold true under the condition: vt ≥ vt−1. From L-smoothness and

Lemma D.4.7, we have

f zt + 1 ≤ f zt + ∇f zt , zt + 1 − zt + L
2 zt + 1 − zt 2

= f zt +
ηβ1

1 − β1
∇f zt , 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1

− ∇f zt , η
vt + ϵ ⊙ gt + L

2 zt + 1 − zt 2
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Take expectation on both sides,

E f zt + 1 − f zt ≤
ηβ1

1 − β1
E ∇f zt , 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1

−E ∇f zt , η
vt + ϵ ⊙ gt + L

2 E zt + 1 − zt 2

=
ηβ1

1 − β1
E ∇f zt , 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1

−E ∇f zt − ∇f xt , η
vt + ϵ ⊙ gt − E ∇f xt , η

vt + ϵ ⊙ gt

+ L
2 E zt + 1 − zt 2

Plug in the results from prepared lemmas, then we have,

E f zt + 1 ≤ f zt ≤
ηβ1

1 − β1
E ∇f zt , 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1

+ 1
2L2η2μ2

2 β1
1 − β1

2
σ2 + G2 + 1

2η2μ2
2 σ2 + G2 − E ∇f xt , η

vt + ϵ ⊙ gt

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

Applying the bound of mt and ∇f(zt),

E f zt + 1 ≤ f zt ≤
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+ 1
2L2η2μ2

2 β1
1 − β1

2
σ2 + G2 + 1

2η2μ2
2 σ2 + G2 − E ∇f xt , η

vt + ϵ ⊙ gt

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

By rearranging,

E ∇ xt , 1
vt + ϵ ⊙ gt ≤ E f zt − f zt + 1 +

ηβ1
1 − β1

G σ2 + G2E
j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+ 1
2L2η2μ2

2 β1
1 − β1

2
σ2 + G2 + 1

2η2μ2
2 σ2 + G2

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

For the LHS above:
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E ∇f xt , 1
vt + ϵ ⊙ gt ≥ E

j ∇f xt jgt, j ≥ 0
μ1∇f xt jgt, j +

j ∇f xt jgt, j < 0
μ2∇f xt jgt, j

≥
j ∇f xt jgt, j ≥ 0

μ1∇f xt j
2 +

j ∇f xt jgt, j < 0
μ2∇f xt j

2

≥ μ1 ∇f xt
2

Then we obtain:

ημ1 ∇f xt
2 ≤ E f zt − f zt + 1 +

ηβ1
1 − β1

G σ2 + G2E
j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+ 1
2L2η2μ2

2 β1
1 − β1

2
σ2 + G2 + 1

2η2μ2
2 σ2 + G2

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

Divide ηµ1 on both sides:

∇f xt 2 ≤ 1
ημ1

E f zt − f zt + 1 +
β1

1 − β1 μ1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+ 1
2μ1

L2ημ2
2 β1

1 − β1

2
σ2 + G2 + 1

2μ1
ημ2

2 σ2 + G2

+
Lηβ1

2 σ2 + G2

1 − β1 2μ1
E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+

Lημ2
2

μ1
σ2 + G2

Summing from t = 1 to T, where T is the maximum number of iteration,

t = 1

T
∇f xt 2 ≤ 1

ημ1
E f z1 − f∗ +

β1
1 − β1 μ1

G σ2 + G2E
j = 1

d 1
v0, j + ϵ − 1

vT , j + ϵ

+ T
2μ1

L2ημ2
2 β1

1 − β1

2
σ2 + G2 + T

2μ1
ημ2

2 σ2 + G2

+
Lηβ1

2 σ2 + G2

1 − β1 2μ1
E

j = 1

d 1
v0, j + ϵ

2
− 1

vT , j + ϵ

2
+

TLημ2
2

μ1
σ2 + G2

Since v0 = 0, μ2 = 1
ϵ , we have

t = 1

T
∇f xt 2 ≤ 1

ημ1
E f z1 − f∗ +

β1d
1 − β1 μ1

G σ2 + G2 μ2 − μ1

+ T
2μ1

L2ημ2
2 β1

1 − β1

2
σ2 + G2 + T

2μ1
ημ2

2 σ2 + G2

+
Lηβ1

2 σ2 + G2

1 − β1 2μ1
μ2

2 − μ1
2 +

TLημ2
2

μ1
σ2 + G2
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Divided by 1
T ,

1
T t = 1

T
∇f xt

2 ≤ 1
ημ1T E f z1 − f∗ +

β1d
1 − β1 μ1T G σ2 + G2 μ2 − μ1

+ T
2μ1

L2ημ2
2 β1

1 − β1

2
σ2 + G2 + 1

2μ1
ημ2

2 σ2 + G2

+
Lηβ1

2d σ2 + G2

1 − β1 2μ1T
μ2

2 − μ1
2 +

Lημ2
2

μ1
σ2 + G2

≤ 1
ημ1T E f z1 − f∗ +

β1d
1 − β1 μ1T μ2 − μ1

+ 1
2μ1

L2ημ2
2 β1

1 − β1

2
+

ημ2
2

2μ1
+

Lηβ1
2d μ2

2 − μ1
2

1 − β1 2μ1T
+

Lημ2
2

μ1
σ2 + G2

The second inequality holds because G σ2 + G2 ≤ σ2 + G2.

Setting η = 1
T , let x0 = x1, then z1 = x1, f(z1) = f(x1) we derive the final result:

min
t = 1, …, T

E ∇f xt 2 ≤ 1
μ1 T E f x1 − f∗ +

β1d
1 − β1 μ1T μ2 − μ1

+
L2μ2

2

2μ1 T
β1

1 − β1

2
+

μ2
2

2μ1 T +
Lβ1

2d μ2
2 − μ1

2

1 − β1 2μ1T T
+

Lμ2
2

μ1 T σ2 + G2

=
C1

T +
C2
T +

C3
T T

where

C1 = 1
μ1

f x1 − f∗ +
L2μ2

2

2μ1
β1

1 − β1

2
+

μ2
2

2μ1
+

Lμ2
2

μ1
σ2 + G2

C2 =
β1 μ2 − μ1 d

1 − β1 μ1
,

C3 =
Lβ1

2d μ2
2 − μ1

2

1 − β1 μ1
.

With fixed L,σ,G,β1, we have C1 = O 1
ϵ2 , C2 = O d

ϵ , C3 = O d
ϵ2 .

Therefore,

Tong et al. Page 30

Neurocomputing. Author manuscript; available in PMC 2023 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min
t = 1, …, T

E ∇f xt
2 ≤ O 1

ϵ2 T
+ d

ϵT + d
ϵ2T T

◻

Thus, we get the sublinear convergence rate of ADAM in nonconvex setting, which recovers

the well-known result of SGD ([1]) in nonconvex optimization in terms of T.

Remark D.4.10. The leading item from the above convergence is C1/ T , є plays an essential

role in the complexity, and we derive a more accurate order O 1
ϵ2 T

. At present, є is

always underestimated and considered to be not associated with accuracy of the solution
([14]). However, it is closely related with complexity, and with bigger є, the computational

complexity should be better. This also supports the analysis of A‐LR: 1
vt + ϵ  of ADAM in our

main paper.

In some other works, people use σi or Gi to show all the element-wise bound, and then by

applying j = 1
d σi: = σ, j = 1

d Gi: = G to hide d in the complexity. Here in our work, we

didn’t specify write out σi or Gi, instead we use σ,G through all the procedure.

D.4.3. SADAM Convergence in Nonconvex Setting

As SADAM also has constrained bound pair (µ3,µ4), we can learn from the proof of ADAM

method, which provides us a general framework of such kind of adaptive methods.

Similar to the ADAM proof, from L-smoothness and Lemma D.4.7, we have

Proof. All the analyses hold true under the condition: vt ≥ vt−1. From L-smoothness and

Lemma D.4.7, we have

f zt + 1 ≤ f zt + ∇f zt , zt + 1 − zt + L
2 zt + 1 − zt 2

= f zt +
ηβ1

1 − β1
∇f zt , 1

softplus vt − 1
− 1

softplus vt
⊙ mt − 1

− ∇f zt , η
softplus vt

⊙ gt + L
2 zt + 1 − zt 2

Taking expectation on both sides, and plug in the results from prepared lemmas, then we

have,
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E f zt + 1 − f zt

≤
ηβ1

1 − β1
E ∇f zt , 1

softplus vt − 1
− 1

softplus vt
⊙ mt − 1

−E ∇f zt , η
softplus vt

⊙ gt + L
2 E zt + 1 − zt 2

≤
ηβ1

1 − β1
E ∇f zt , 1

softplus vt − 1
− 1

softplus vt
⊙ mt − 1

−E ∇f zt , η
softplus vt

⊙ gt

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

2
− 1

softplus vt, j

2
+ Lη2μ4

2 σ2 + G2

=
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
softplus vt − 1, j

− 1
softplus vt, j

−E ∇f zt − ∇f xt , η
softplus vt

⊙ gt − E ∇f xt , η
softplus vt

⊙ gt

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

2
− 1

softplus vt, j

2
+ Lη2μ4

2 σ2 + G2

≤
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
softplus vt − 1, j

− 1
softplus vt, j

+
L2η2μ4

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ4
2

2 σ2 + G2 − E ∇f xt , η
softplus vt

⊙ gt

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

2
− 1

softplus vt, j

2
+ Lη2μ4

2 σ2 + G2

By rearranging,

E ∇f xt , η
softplus vt

⊙ gt

≤ E f zt − f zt + 1 +
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
softplus vt − 1, j

− 1
softplus vt, j

+
L2η2μ4

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ4
2

2 σ2 + G2

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

2
− 1

softplus vt, j

2
+ Lη2μ4

2 σ2 + G2

For the LHS above:
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E ∇f xt , 1
softplus vt

⊙ gt ≥ E
j ∇f xt, j gt, j ≥ 0

μ3∇f xt, j gt, j +
j ∇f xt, j gt, j < 0

μ4∇f xt, j gt, j

≥
j ∇f xt, j gt, j ≥ 0

μ3∇f xt, j
2 +

j ∇f xt, j gt, j < 0
μ4∇f xt, j

2

≥ μ3 ∇f xt
2

Then we obtain:

ημ3 ∇f xt 2 ≤ E f zt − f zt + 1 +
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
softplus vt − 1, j

− 1
softplus vt, j

+
L2η2μ4

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ4
2

2 σ2 + G2

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
softplus vt − 1, j

2
− 1

softplus vt, j

2
+ Lη2μ4

2 σ2 + G2

Divide ηµ3 on both sides and then sum from t = 1 to T, where T is the maximum number of

iteration,

t = 1

T
∇f xt 2 ≤ 1

ημ3
E f z1 − f∗ +

β1
1 − β1 μ3

G σ2 + G2E
j = 1

d 1
softplus v0, j

− 1
softplus vT , j

+
L2ηTμ4

2

2μ31
β1

1 − β1

2
σ2 + G2 +

ημ4
2T

2μ3
σ2 + G2

+
Lηβ1

2 σ2 + G2

1 − β1 2μ3
E

j = 1

d 1
softplus v0, j

2
− 1

softplus vT , j

2
+

Lημ4
2T σ2 + G2

μ3

Since, v0 =0, 1
softplus 0 = μ4, we have

t = 1

T
∇f xt 2 ≤ 1

ημ3
E f z1 − f∗ +

β1d
1 − β1 μ3

G σ2 + G2 μ4 − μ3

+
L2ηTμ4

2

2μ3
β1

1 − β1

2
σ2 + G2 +

ημ4
2T

2μ3
σ2 + G2

+
Lηβ1

2d σ2 + G2

1 − β1 2μ3
μ4

2 − μ3
2 +

Lημ4
2T σ2 + G2

μ3

Divided by 1
T ,
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1
T t = 1

T
∇f xt 2 ≤ 1

ημ3T E f z1 − f∗ +
β1d

1 − β1 μ3T G σ2 + G2 μ4 − μ3

+
L2ημ4

2

2μ3
β1

1 − β1

2
σ2 + G2 +

ημ4
2

2μ3
σ2 + G2

+
Lηβ1

2d σ2 + G2

1 − β1 2μ3T
μ4

2 − μ3
2 +

Lημ4
2 σ2 + G2

μ3

≤ 1
ημ3T E f z1 − f∗ +

β1d
1 − β1 μ3T μ4 − μ3

+
L2ημ4

2

2μ3
β1

1 − β1

2
+

ημ4
2

2μ3
+

Lηβ1
2d

1 − β1 2μ3T
μ4

2 − μ3
2 +

Lημ4
2

μ3
σ2 + G2

Setting η = 1
T , let x0 = x1, then z1 = x1, f(z1) = f(x1) we derive the final result for SADAM

method:

min
t = 1, …, T

E ∇f xt 2 ≤ 1
μ3 T E f x1 − f∗ +

β1d
1 − β1 μ3T μ4 − μ3

+
L2μ4

2

2μ3 T
β1

1 − β1

2
+

μ4
2

2μ3 T +
Lβ1

2d μ4
2 − μ3

2

1 − β1 2μ3T T
+

Lμ4
2

μ3 T σ2 + G2

=
C1

T +
C2
T +

C3
T T

where

C1 = 1
μ3

f x1 − f∗ +
L2μ4

2

2μ3
β1

1 − β1

2
+

μ4
2

2μ3
+

Lμ4
2

μ3
σ2 + G2

C2 =
β1 μ4 − μ3 d

1 − β1 μ3
,

C3 =
Lβ1

2d μ4
2 − μ3

2

1 − β1 2μ3
.

With fixed L,σ,G,β1, we have C1 = O(β2), C2 = O(dβ), C3 = O(dβ2).

Therefore,

min
t = 1, …, T

E ∇f xt 2 ≤ O β2
T + dβ

T + dβ2
T T

◻
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Thus, we get the sublinear convergence rate of SADAM in nonconvex setting, which is

the same order of ADAM and recovers the well-known result of SGD [1] in nonconvex

optimization in terms of T.

Remark D.4.11. The leading item from the above convergence is C1/ T , β plays an

essential role in the complexity, and a more accurate convergence should be O
βlog 1 + eβ

T .

When β is chosen big, this will become O β2
T , somehow behave like ADAM’s case as

O 1
ϵ2 T

, which also guides us to have a range of β; when β is chosen small, this will become

O 1
T , the computational complexity will get close to SGD case, and β is a much smaller

number compared with 1/є, proving that SADAM converges faster. This also supports the
analysis of range of A-LR: 1/softplus vt  in our main paper.

D.4.4. Non-strongly Convex

In previous works, convex case has been well-studied in adaptive gradient methods.

AMSGRAD and later methods PAMSGRAD both use a projection on minimizing objective

function, here we want to show a different way of proof in non-strongly convex case. For

consistency, we still follow the construction of sequence {zt}.

Starting from convexity:

f y ≥ f x + ∇f x T y − x .

Then, for any x ∈ ℝd, ∀t ∈ [1,T],

∇f x , xt − x∗ ≥ f xt − f∗, (16)

where f∗ = f(x∗), x∗ is the optimal solution.

Proof. ADAM case:

In the updating rule of ADAM optimizer, xt + 1 = xt −
ηt

vt + ϵ ⊙ mt, setting stepsize to be fixed,

ηt = η, and assume vt ≥ vt−1 holds. Using previous results,
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E zt + 1 − x∗ 2

= E zt +
ηβ1

1 − β1
1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1 − η

vt + ϵ ⊙ gt − x∗
2

= E zt − x∗ 2 + E
ηβ1

1 − β1
1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1 − η

vt + ϵ ⊙ gt
2

+2E
ηβ1

1 − β1
1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1, zt − x∗ − 2E η

vt + ϵ ⊙ gt, zt − x∗

≤ E zt − x∗ 2 + 2
η2β1

2

1 − β1 2E 1
vt − 1 + ϵ − 1

vt + ϵ ⊙ mt − 1
2

+ 2η2E 1
vt + ϵ ⊙ gt

2

+2
ηβ1

1 − β1
E 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1, zt − x∗ − 2ηE 1

vt + ϵ ⊙ gt, zt − x∗

≤ E zt − x∗ 2 + 2
η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1 + ϵ

2
− 1

vt + ϵ

2
+ 2η2μ2

2 σ2 + G2

+2
ηβ1

1 − β1
E 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1, zt − x∗ − 2ηE 1

vt + ϵ ⊙ gt, zt − x∗

The first inequality holds due to ǁa−bǁ2 ≤ 2ǁaǁ2 +2ǁbǁ2, the second inequality holds due to

Lemma D.4.3, D.4.4, D.4.6.

Since, < a, b > ≤ 1
2ηa2 + η

2b2,

2E 1
vt − 1 + ϵ − 1

vt + ϵ ⊙ mt − 1, zt − x∗

≤ 1
η E 1

vt − 1 + ϵ − 1
vt + ϵ ⊙ mt − 1

2
+ ηE zt − x∗ 2

≤ 1
η σ2 + G2 E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ ηE zt − x∗ 2

From the definition of zt and convexity,

∇f xt , xt − x∗ ≥ f xt − f∗ ≥ 0
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−2ηE 1
vt + ϵ ⊙ gt, zt − x∗

= − 2ηE 1
vt + ϵ ⊙ gt, xt − x∗ +

β1
1 − β1

xt − xt − 1

= − 2ηE 1
vt + ϵ ⊙ gt, xt − x∗ −

2ηβ1
1 − β1

E 1
vt + ϵ ⊙ gt, xt − xt − 1

= − 2ηE 1
vt + ϵ ⊙ gt, xt − x∗ −

2η2β1
1 − β1

E 1
vt + ϵ ⊙ gt,

1
vt − 1 + ϵ ⊙ mt − 1

≤ − 2ημ1 ∇f xt , xt − x∗ +
2η2β1μ2

2

1 − β1
σ2 + G2

≤ − 2ημ1 f xt − f∗ +
2η2β1μ2

2

1 − β1
σ2 + G2

Plugging in previous two inequalities:

E zt + 1 − x∗ 2

≤ E zt − x∗ 2 + 2
η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1 + ϵ

2
− 1

vt + ϵ

2
2η2μ2

2 σ2 + G2

+
β1 σ2 + G2

1 − β1
E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+

η2β1
1 − β1

E zt − x∗ 2

−2ημ1 f xt − f∗ +
2η2β1μ2

2

1 − β1
σ2 + G2

By rearranging:

2ημ1 f xt − f∗

≤ E zt − x∗ 2 − E zt + 1 − x∗ 2 + 2
η2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1 + ϵ

2
− 1

vt + ϵ

2

+2η2μ2
2 σ2 + G2 +

β1 σ2 + G2

1 − β1
E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+

η2β1
1 − β1

E zt − x∗ 2

+
2η2β1μ2

2

1 − β1
σ2 + G2

Divide 2ηµ1 on both sides,
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f xt − f∗ ≤ 1
2ημ1

E zt − x∗ 2 − E zt + 1 − x∗ 2 +
ηβ1

2 σ2 + G2

1 − β1 2μ1
E

j = 1

d 1
vt − 1 + ϵ

2
− 1

vt + ϵ

2

+
ημ2

2

μ1
σ2 + G2 +

β1 σ2 + G2

2ημ1 1 − β1
E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2

+
ηβ1

2μ1 1 − β1
E zt − x∗ 2 +

ηβ1μ2
2

1 − β1 μ1
σ2 + G2

Assume that ∀t, E xt − x∗ ≤ D, for any m ≠ n, E xm − xn ≤ D∞ hold, then E[ǁzt − x∗ǁ2]

can be bounded.

E z1 − x∗ 2 = E x1 − x∗ 2 ≤ D2 (17)

E zt − x∗ 2 = E xt − x∗ + β1
1 − β1

xt − xt − 1
2

≤ 2E xt − x∗ 2 + 2β1
2

1 − β1
2E xt − xt − 1

2

≤ 2D2 + 2β1
2

1 − β1
2D∞

2 .

(18)

Thus:

f xt − f∗ ≤ 1
2ημ1

E zt − x∗ 2 − E zt + 1 − x∗ 2 +
ηβ1

2 σ2 + G2

1 − β1 2μ1
E

j = 1

d 1
vt − 1 + ϵ

2
− 1

vt + ϵ

2

+
ημ2

2

μ1
σ2 + G2 +

β1 σ2 + G2

2ημ1 1 − β1
E

j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2

+
ηβ1D2

μ1 1 − β1
+

ηβ1
3D∞2

μ1 1 − β1 3 +
ηβ1μ2

2

1 − β1 μ1
σ2 + G2

Summing from t = 1 to T,
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t = 1

T
f xt − f∗ ≤ 1

2ημ1
E z1 − x∗ 2 − E zT − x∗ 2 +

ηβ1
2 σ2 + G2

1 − β1 2μ1
E

j = 1

d 1
v0 + ϵ

2
− 1

vT + ϵ

2

+
ημ2

2T
μ1

σ2 + G2 +
β1 σ2 + G2

2ημ1 1 − β1
E

j = 1

d 1
v0, j + ϵ

2
− 1

vT , j + ϵ

2

+
ηβ1D2T

μ1 1 − β1
+

ηβ1
3D∞2 T

μ1 1 − β1 3 +
ηβ1μ2

2T
1 − β1 μ1

σ2 + G2

≤ 1
2ημ1

D2 +
ηβ1

2d σ2 + G2

1 − β1 2μ1
μ2

2 − μ1
2 +

ημ2
2T

μ1
σ2 + G2 +

β1d σ2 + G2

2ημ1 1 − β1
μ2

2 − μ1
2

+
ηβ1D2T

μ1 1 − β1
+

ηβ1
3D∞2 T

μ1 1 − β1 3 +
ηβ1μ2

2T
1 − β1 μ1

σ2 + G2

The second inequality is based on the fact that, when iteration t reaches the maximum

number T, xt is the optimal solution, zT = x∗.

By Jensen’s inequality,

1
T t = 1

T
f xt − f∗ ≥ f xt − f∗,

where xt = 1
T t = 1

T xt.

Then,

f xt − f∗ ≤ D2
2ημ1T +

ηβ1
2d σ2 + G2

1 − β1 2μ1T
μ2

2 − μ1
2 +

ημ2
2

μ1
σ2 + G2 +

β1d σ2 + G2

2ημ1 1 − β1 T μ2
2 − μ1

2

+
ηβ1D2

μ1 1 − β1
+

ηβ1
3D∞2

μ1 1 − β1 3 +
ηβ1μ2

2

1 − β1 μ1
σ2 + G2

By plugging the stepsize η = O 1
T , we complete the proof of ADAM in non-strongly convex

case.

f xt − f∗ ≤ D2
2μ1 T +

β1
2d σ2 + G2

1 − β1 2μ1T T
μ2

2 − μ1
2 +

μ2
2

μ1 T σ2 + G2 +
β1d σ2 + G2

2μ1 1 − β1 T μ2
2 − μ1

2

+
β1D2

μ1 1 − β1 T +
β1

3D∞2

μ1 1 − β1 3 T
+

β1μ2
2

1 − β1 μ1 T σ2 + G2

= O 1
T + O 1

T T = O 1
T .

◻
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Remark D.4.12. The leading item of convergence order of ADAM should be O C
T , where

C = D2
2μ1

+
μ2

2

μ1
σ2 + G2 +

β1d σ2 + G2

2μ1 1 − β1
μ2

2 − μ1
2 +

β1D2

μ1 1 − β1
+

β1
3D∞2

μ1 1 − β1 3 +
β1μ2

2

1 − β1 μ1
σ2 + G2 .

With fixed L, σ, G, β1, D, D∞, C = O d
ϵ2 , which also contains as well as dimension d, here

with bigger є, the order should be better, this also supports the discussion in our main paper.

The analysis of SADAM is similar to ADAM, by replacing the bounded pairs (µ1,µ2) with

(µ3,µ4), we briefly give convergence result below.

Proof. SADAM case:

f xt − f∗ ≤ D2
2ημ3T +

ηβ1
2d σ2 + G2

1 − β1 2μ3T
μ4

2 − μ3
2 +

ημ4
2

μ3
σ2 + G2 +

β1d σ2 + G2

2ημ3 1 − β1 T μ4
2 − μ3

2

+
ηβ1D2

μ3 1 − β1
+

ηβ1
3D∞2

μ3 1 − β1 3 +
ηβ1μ4

2

1 − β1 μ3
σ2 + G2

By plugging the stepsize η = O 1
T , we get the convergence rate of SADAM in non-strongly

convex case.

f xt − f∗ ≤ D2
2μ3 T +

β1
2d σ2 + G2

1 − β1 2μ3T T
μ4

2 − μ3
2 +

μ4
2

μ3 T σ2 + G2 +
β1d σ2 + G2

2μ3 1 − β1 T μ4
2 − μ3

2

+
β1D2

μ3 1 − β1 T +
β1

3D∞2

μ3 1 − β1 3 T
+

β1μ4
2

1 − β1 μ3 T σ2 + G2

= O 1
T + O 1

T T = O 1
T .

For brevity,

f xt − f∗ = O 1
T .

◻

Remark D.4.13. The leading item of convergence order of SADAM should be O C
T , where

C = D2
2μ3

+
μ4

2d
μ3

σ2 + G2 +
β1d σ2 + G2

2μ3 1 − β1
μ4

2 − μ3
2 +

β1D2

μ3 1 − β1
+

β1
3D∞2

μ3 1 − β1 3 +
β1μ4

2

1 − β1 μ3
σ2 + G2 .

With fixed L,σ,G,β1,D,D∞, C = O dβlog 1 + eβ = O dβ2 , with small β, the SADAM will

be similar to SGD convergence rate, and β is a much smaller number compared with 1/є,
proving that SADAM method perfoms better than ADAM in terms of convergence rate.
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D.4.5. P-L Condition

Suppose that strongly convex assumption holds, we can easily deduce the P-L condition (see

Lemma D.4.14), which shows that P-L condition is much weaker than strongly convex

condition. And we further prove the convergence of ADAM-type optimizer (ADAM and

SADAM) under the P-L condition in non-strongly convex case, which can be extended to

the strongly convex case as well.

Lemma D.4.14. Suppose that f is continuously diffentiable and strongly convex with

parameter γ. Then f has the unique minimizer, denoted as f∗ = f(x∗). Then for any x ∈ ℝd,

we have

∇f x 2 ≥ 2γ f x − f∗ .

Proof. From strongly convex assumption,

f∗ ≥ f x + ∇f x T x∗ − x + γ
2 x∗ − x 2

≥ f x + min
ξ

∇f x Tξ + γ
2 ξ 2

= f x − 1
2γ ∇f x 2

Letting ξ = x∗ − x, when ξ = − ∇f x
γ , the quadratic function can achieve its minimum.◻

We restate our theorems under PL condition.

Theorem D.4.15. Suppose f(x) satisfies Assumption 1 and PL condition (with parameter λ)

in non-strongly convex case and vt ≥ vt−1. Let ηt = η = O 1
T ,

ADAM and SADAM have convergence rate

E f xt − f∗ ≤ O 1
T .

Proof. ADAM case:

Starting from L-smoothness, and borrowing the previous results we already have

E f zt + 1 − f zt ≤
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − E ∇f xt , η
vt + ϵ ⊙ gt

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2
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E ∇f xt , 1
vt + ϵ ⊙ gt ≥ μ1 ∇f xt

2

Therefore, we get:

E f zt + 1 − f zt ≤
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − ημ1 ∇f xt
2

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

From P-L condition assumption,

E f zt + 1 ≤ E f zt +
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − 2λημ1E f xt − f∗

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

From convexity,

f zt + 1 ≥ f xt + 1 +
β1

1 − β1
< ∇f xt + 1 , xt + 1 − xt >

= f xt + 1 +
β1

1 − β1
< ∇f xt + 1 , η

vt + ϵ ⊙ mt >

From L-smoothness,

f zt ≤ f xt +
β1

1 − β1
< ∇f xt , xt − xt − 1 > + L

2
β1

1 − β1

2
xt − xt − 1 2 .

Then we can obtain
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E f xt + 1 +
β1

1 − β1
E < ∇f xt + 1 , η

vt + ϵ ⊙ mt >

≤ E f xt +
β1

1 − β1
E < ∇f xt , xt − xt − 1 > + L

2
β1

1 − β1

2
E xt − xt − 1 2

+
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − 2λημ1E f xt − f∗

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

= E f xt +
β1

1 − β1
E < ∇f xt , η

vt − 1 + ϵ ⊙ mt − 1 > + Lη2
2

β1
1 − β1

2
E 1

vt − 1 + ϵ ⊙ mt − 1
2

+
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − 2λημ1E f xt − f∗

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

By rearranging,

E f xt + 1 ≤ E f xt +
β1η

1 − β1
E < ∇f xt m 1

vt − 1 + ϵ ⊙ mt − 1 > − E < ∇f xt + 1 , 1
vt + ϵ ⊙ mt >

+ Lη2
2

β1
1 − β1

2
E 1

vt − 1 + ϵ ⊙ mt − 1
2

+
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − 2λημ1E f xt − f∗

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

From the fact ± < a, b > ≤ 1
2a2 + 1

2b2, and Lemma D.4.1, D.4.4,

E < ∇f xt , 1
vt − 1 + ϵ ⊙ mt − 1 > = E < ∇f xt + 1 ⊙ 1

vt − 1 + ϵ , mt ⊙ 1
vt − 1 + ϵ >

≤
G2μ2

2 +
σ2 + G2 μ2

2 ≤ σ2 + G2 μ2

Similar,
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−E < ∇f xt + 1 , 1
vt + ϵ ⊙ mt > = − E < ∇f xt + 1 ⊙ 1

vt − 1 + ϵ , mt ⊙ 1
vt − 1 + ϵ >

≤
G2μ2

2 +
σ2 + G2 μ2

2 ≤ σ2 + G2 μ2

Then,

E f xt + 1 ≤ E f xt +
2β1ημ2
1 − β1

σ2 + G2 +
Lη2μ2

2

2
β1

1 − β1

2
σ2 + G2

+
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2 − 2λημ1E f xt − f∗

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

E f xt + 1 − f∗ ≤ 1 − 2λημ1 E f xt − f∗ +
2β1ημ2
1 − β1

σ2 + G2 +
Lη2μ2

2

2
β1

1 − β1

2
σ2 + G2

+
ηβ1

1 − β1
G σ2 + G2E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ

+
L2η2μ2

2

2
β1

1 − β1

2
σ2 + G2 +

η2μ2
2

2 σ2 + G2

+
Lη2β1

2 σ2 + G2

1 − β1 2 E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

≤ 1 − 2λημ1 E f xt − f∗ +
2β1ημ2
1 − β1

+
Lη2μ2

2

2
β1

1 − β1

2

+
ηβ1

1 − β1
E

j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ +
L2η2μ2

2

2
β1

1 − β1

2
+

η2μ2
2

2

+
Lη2β1

2

1 − β1 2E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

The last inequality holds because G σ2 + G2 ≤ σ2 + G2.

Let

θ = 1 − 2λημ1
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Θt =
2β1ημ2
1 − β1

+
Lη2μ2

2

2
β1

1 − β1

2
+

ηβ1
1 − β1

E
j = 1

d 1
vt − 1, j + ϵ − 1

vt, j + ϵ +
L2η2μ2

2

2
β1

1 − β1

2

+
η2μ2

2

2 +
Lη2β1

2

1 − β1 2E
j = 1

d 1
vt − 1, j + ϵ

2
− 1

vt, j + ϵ

2
+ Lη2μ2

2 σ2 + G2

then we have

E f xt + 1 − f∗ ≤ θE f xt − f∗ + Θt .

Let Φt = E f xt − f∗ , then Φ1 = E f x1 − f∗ ,

Φt + 1 ≤ θΦt + Θt ≤ θ2Φt − 1 + θΘt − 1 + Θt
⋯

≤ θtΦ1 + θt − 1Θ1 + ⋯ + θΘt − 1 + Θt

≤
θ < 1

θtΦ1 + Θ1 + ⋯ + Θt − 1 + Θt .

Let t = T,

ΦT + 1 ≤ θTΦ1 + Θ1 + ⋯ + ΘT − 1 + ΘT

≤ θTΦ1 +
2β1ημ2T

1 − β1
+

Lη2μ2
2T

2
β1

1 − β1

2
+

ηβ1
1 − β1

E
j = 1

d 1
v0, j + ϵ − 1

vT , j + ϵ

+
L2η2μ2

2T
2

β1
1 − β1

2
+

η2μ2
2T

2

+
Lη2β1

2

1 − β1 2E
j = 1

d 1
v0, j + ϵ

2
− 1

vT , j + ϵ

2
+ Lη2μ2

2T σ2 + G2

≤ θTΦ1 +
2β1ημ2T

1 − β1
+

Lη2μ2
2T

2
β1

1 − β1

2
+

ηβ1d
1 − β1

μ2 − μ1 +
L2η2μ2

2T
2

β1
1 − β1

2

+
η2μ2

2T
2 +

Lη2β1
2d

1 − β1 2 μ2
2 − μ1

2 + Lη2μ2
2T σ2 + G2

= θTΦ1 + O ηT + O η2T + O η + O η2

From the above inequality, η should be set less than O 1
T  to ensure all items in the RHS

small enough.

Set η = 1
T2 , then θ = 1 − 2λημ1 = 1 −

2λμ1
T2
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ΦT + 1 = θTΦ1 + O 1
T + O 1

T3 + O 1
T2 + O 1

T4

= θTΦ1 + O 1
T 0

With appropriate η, we can derive the convergence rate under P-L condition (strongly

convex) case.

The proof of SADAM is exactly same as ADAM, by replacing the bounded pairs (µ1,µ2) with

(µ3,µ4), and we can also get:

ΦT + 1 ≤ θTΦ1 + Θ1 + ⋯ + ΘT − 1 + ΘT

≤ θTΦ1 +
2β1ημ4T

1 − β1
+

Lη2μ4
2T

2
β1

1 − β1

2
+

ηβ1
1 − β1

E
j = 1

d 1
softplus v0, j

− 1
softplus vT , j

+
L2η2μ4

2T
2

β1
1 − β1

2
+

η2μ4
2T

2

+
Lη2β1

2

1 − β1 2E
j = 1

d 1
softplus v0, j

2
− 1

softplus vT , j

2
+ Lη2μ4

2T σ2 + G2

≤ θTΦ1 +
2β1ημ4T

1 − β1
+

Lη2μ4
2T

2
β1

1 − β1

2
+

ηβ1d
1 − β1

μ4 − μ3 +
L2η2μ4

2T
2

β1
1 − β1

2

+
η2μ4

2T
2 +

Lη2β1
2d

1 − β1 2 μ4
2 − μ3

2 + Lη2μ4
2T σ2 + G2

= θTΦ1 + O ηT + O η2T + O η + O η2

By setting appropriate η, we can also prove the SADAM converges under PL condition (and

strongly convex).

Set η = O 1
T2 ,

E f xT + 1 − f∗ ≤ 1 −
2λμ3
T2

T
E f x1 − f∗ + O 1

T .

Overall, we have proved ADAM algorithm and SADAM in all commonly used conditions,

our designed algorithms always enjoy the same convergence rate compared with ADAM,

and even get better results with appropriate choice of β defined in softplus function. The

proof procedure can be easily extended to other adaptive gradient algorithms, and theoretical

results support the discussion and experiments in our main paper.
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Figure 1:
Range of the A-LR in ADAM over iterations in four settings: (a) CNN on MNIST, (b)

ResNet20 on CIFAR-10, (d) ResNet56 on CIFAR-10, (d) DenseNets on CIFAR-10. We plot

the min, max, median, and the 25 and 75 percentiles of the A-LR across dimensions (the

elements in 1
vt + ϵ)
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Figure 2:
Behavior of the softplus function, and the test performance of our SADAM algorithm.
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Figure 3:
Behavior of the A-LR in the SADAM method with different choices of β (CNN on the MNIST

data).
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Figure 4:
Training loss and test accuracy on MNIST.
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Figure 5:
Training loss and test accuracy of two CNN architectures on CIFAR-100.
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Figure 6:
Perplexity curves on the test set on 3-layer LSTM models over PTB and WT2 datasets
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Table 1:

Test Accuracy(%) of ADAM for different є.

є ResNets 20 ResNets 56 DenseNets ResNet 18 VGG

10−1 92.51 ± 0.13 94.29 ± 0.10 94.78 ± 0.19 77.21 ± 0.26 76.05 ± 0.27

10−2 92.88 ± 0.21 94.15 ± 0.17 94.35 ± 0.10 76.64 ± 0.24 75.69 ± 0.16

10−4 92.03 ± 0.21 93.62 ± 0.18 94.15 ± 0.12 76.19 ± 0.20 74.45 ± 0.19

10−6 92.99 ± 0.22 93.56 ± 0.15 94.24 ± 0.24 76.09 ± 0.20 74.20 ± 0.33

10−8 91.68 ± 0.12 92.82 ± 0.09 93.32 ± 0.06 76.14 ± 0.24 74.18 ± 0.15
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Table 2:

Test Accuracy(%) of AMSGRAD for different є.

є ResNets 20 ResNets 56 DenseNets ResNet 18 VGG

10−1 92.80 ± 0.22 94.12 ± 0.07 94.92 ± 0.10 77.26 ± 0.30 75.84 ± 0.16

10−2 92.89 ± 0.07 94.20 ± 0.18 94.43 ± 0.22 76.23 ± 0.26 75.37 ± 0.18

10−4 91.85 ± 0.10 93.50 ± 0.14 94.02 ± 0.18 76.30 ± 0.31 74.44 ± 0.16

10−6 91.98 ± 0.23 93.54 ± 0.16 94.17 ± 0.10 76.14 ± 0.16 74.17 ± 0.28

10−8 91.70 ± 0.12 93.10 ± 0.11 93.71 ± 0.05 76.32 ± 0.11 74.26 ± 0.18
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Table 3:

Test Accuracy(%) of CIFAR-10 for ResNets 20, ResNets 56 and DenseNets.

Method B-LR є β ResNets 20 ResNets 56 DenseNets

S-Momentum [9, 11] - - - 91.25 93.03 94.76

ADAM [14] 10−3 10−3 - 92.56 ± 0.14 93.42 ± 0.16 93.35 ± 0.21

YOGI [14] 10−2 10−3 - 92.62 ± 0.17 93.90 ± 0.21 94.38 ± 0.26

S-Momentum 10−1 - - 92.73 ± 0.05 94.11 ± 0.15 95.03 ± 0.15

ADAM 10−3 10−8 - 91.68 ± 0.12 92.82 ± 0.09 93.32 ± 0.06

AMSGRAD 10−3 10−8 - 91.7 ± 0.12 93.10 ± 0.11 93.71 ± 0.05

PADAM 10−1 10−8 - 92.7 ± 0.10 94.12 ± 0.12 95.06 ± 0.06

PAMSGRAD 10−1 10−8 - 92.74 ± 0.12 94.18 ± 0.06 95.21 ± 0.10

ADABOUND 10−2 10−8 - 91.59 ± 0.24 93.09 ± 0.14 94.16 ± 0.10

AMSBOUND 10−2 10−8 - 91.76 ± 0.16 93.08 ± 0.09 94.03 ± 0.11

ADAM+ 10−1 0.013 - 92.89 ± 0.13 92.24 ± 0.10 94.54 ± 0.13

AMSGRAD+ 10−1 0.013 - 92.95 ± 0.17 94.32 ± 0.10 94.58 ± 0.18

SADAM 10−2 - 50 93.01 ± 0.16 94.26 ± 0.10 95.19 ± 0.18

SAMSGRAD 10−2 - 50 92.88 ±0.10 94.32 ± 0.18 95.31 ± 0.15
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