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Abstract

Continuous passive sensing of daily behavior from mobile devices has the potential to identify 

behavioral patterns associated with different aspects of human characteristics. This paper presents 

novel analytic approaches to extract and understand these behavioral patterns and their impact on 

predicting adaptive and maladaptive personality traits. Our machine learning analysis extends 

previous research by showing that both adaptive and maladaptive traits are associated with 

passively sensed behavior providing initial evidence for the utility of this type of data to study 

personality and its pathology. The analysis also suggests directions for future confirmatory studies 
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into the underlying behavior patterns that link adaptive and maladaptive variants consistent with 

contemporary models of personality pathology.
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Prediction

1. Introduction

Personality refers to an individual’s typical patterns of motivations, thoughts, feelings, 

and behavior that serve the functional roles of adaptively navigating the environment [18, 

71]. As such, personality pathology (i.e., personality disorder) refers to typical patterns 

of motivations, thoughts, feelings, and behavior that are persistently and pervasively 

maladaptive, such that they result in dysfunctional patterns of day-to-day behavior [48]. 

These maladaptive patterns of behavior are thought to account for associations between 

personality pathology and poor psychosocial and physical health outcomes [19, 46, 69]. 

Clinical psychology and psychiatry are undergoing a paradigm shift from classifying 

personality pathology using a finite set of discrete categorical diagnoses to continuously 

distributed dimensional traits, and growing evidence suggests traits are more valid, reliable, 

and clinically useful [29]. Despite these recent advances, little is known about the 

specific, everyday, behavioral expressions of pathological traits that may contribute to poor 

psychosocial functioning and outcomes.

Most research on dimensional models has relied on cross-sectional, global self-report 

data, which are not well-suited to measure the dynamic moment-to-moment processes 

underlying personality and its pathology [24, 70]. Although the use of ecological momentary 

assessment (EMA) and intensive longitudinal studies to collect data from people in their 

naturalistic settings has remedied some of these issues, heavy reliance on self reports, which 

can be prone to bias and lack of engagement, can affect the reliability and validity of the 

collected data [58]. Passive sensing via a participant’s smartphone or wearable devices has 

the potential to address these concerns through continuous and contextualized measures 

of behavior [40]. Smartphone sensing combined with machine learning has been used to 

predict personality traits from smartphone devices [27]. However, to our knowledge, no 

existing research has investigated the associations between passive sensing and maladaptive 

personality traits or compared adaptive and maladaptive traits by extracting the shared and 

unique behavioral patterns associated with each of them.

2. Background and Related Work

2.1. Adaptive vs. Maladaptive Personality Traits

Traditional psychiatric classifications, as reflected in the American Psychiatric Associations’ 

Diagnostic and Statistical Manual for Mental Disorders [2] and the World Health 

Organization’s International Classification of Disease (ICD), have conceptualized 

personality pathology categorically, under diagnoses such as borderline personality disorder, 
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schizoid personality disorder, and narcissistic personality disorder. Each diagnosis describes 

a “type” that is based on meeting a certain number of criteria from a checklist of symptoms. 

However, categorical personality disorder diagnoses have critical weaknesses, including 

poor validity, low reliability, and limited clinical utility [57, 68]. Such issues have prompted 

a shift towards dimensional trait models of personality pathology that outperform categorical 

models psychometrically and may have greater clinical utility [34].

The dimensional approach is further supported by empirical and conceptual parallels 

between these maladaptive traits and the trait dimensions that have emerged from over 

a century of studying adaptive personality structure [38, 72]. Indeed, for each of the big 

five traits, personality’s most prominent model, maladaptive traits have been identified 

that can be understood to cover the same behavioral content, albeit often keyed towards 

the opposite direction. See Figure 1 for elaboration of these traits and their descriptions. 

For example, whereas adaptive personality research finds Extraversion, which manifests in 

sociability, assertiveness, positive emotions, and energy, the maladaptive variant emphasizes 

Detachment which manifests in social withdrawal, passivity, lack of positive emotions, and 

lethargy. Correspondence between these sets of traits suggests that instead of maladaptive 

personality having discrete principles and properties that differentiate it from normal range 

personality (i.e., being a separate category), the two operate along shared underlying 

dimensions or spectra. In other words, while there is a continuum of functioning from 

adaptive to maladaptive, the two share the same fundamental traits. In recent years, 

variations on trait-based models of personality disorder classification and diagnosis have 

been included in the DSM-5 (provisionally, as an alternative approach in need of more study 

[66]) and the ICD-11 (officially [44]). In fact, it has been argued that maladaptive trait 

models can serve as useful structures for organizing all of psychopathology [33].

2.2. Assessing Personality Traits from Self Reports

What is thought to link an individual’s personality to their level of psychosocial functioning 

and health are the dynamic and contextualized patterns of behavior they engage in. For 

example, a person who scores high on trait Detachment may be less motivated to socialize, 

so they may contact fewer people or go out in public less during the day than most 

people, which in turn contributes to poor relationships and low mood. Yet, most research 

on dimensional models has relied on cross-sectional, global self-report data, which are not 

well-suited to measure the dynamic moment-to-moment processes underlying personality 

and its pathology [24, 70]. Cross-sectional data is unable to capture the temporal aspect 

of maladaptive behaviors that unfold from moment-to-moment. To a large extent, issues 

with cross-sectional data can be remedied with intensive longitudinal study designs, such 

as ecological momentary assessment (EMA). EMA (sometimes referred to as experience 

sampling methodology or ambulatory assessment) can be used to assess people intensively 

and repeatedly in their naturalistic settings, thereby increasing ecological validity, reducing 

biases of retrospection, and capturing multiple points along an unfolding dynamic process. 

Each of these address the limitations of traditional global self-report scales. However, EMA 

typically uses self-report data which relies on the person being conscious of the behaviour 

and willing to report it–but many of the maladaptive patterns people engage in may be 

outside of awareness [11].
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2.3. Assessing Personality Traits from Passively Sensed Behavior

Because self-report EMA study designs require participants to fill out multiple surveys 

per day or week, the burden to participants’ in terms of time and effort limits the 

number of data points that can feasibly be collected throughout the day [58]. Passive 

sensing, or automatic data collection via a participant’s smartphone or other device, is 

a methodological approach that has the potential to address these concerns [37]. It can 

provide continuous, contextualized, temporally sensitive, and direct measures of behavior 

(not reliant on participant report). Such an approach collects personality relevant information 

like frequency of texting and phone calls, average time spent in each location, and number 

of bluetooth devices scanned, which can be aggregated into higher order variables related 

to psychological constructs [21, 40, 64]. These nearly unbroken streams of high-resolution 

data on what people actually do during the day (not just what they are aware of) have the 

potential to offer new insights into maladaptive patterns linked to personality pathology.

One challenge associated with passive sensing, is that the type of data it produces, 

characterized by large numbers of variables, often overlapping, with unknown associations 

with behavioral outcomes, is not well suited to the statistical models traditionally applied 

in psychology research (i.e., mostly based on the general linear model). Such models often 

have a core assumption of relatively modest associations among predictors, can practically 

only handle a few variables, and assume a linear relationship between traits and behaviors 

that is often not met statistically or expected theoretically. In contrast machine learning has 

a number of tools available that can address these concerns. Decision-tree based regression 

algorithms such as XGBoost and random forest overcome the limitations of traditional 

analyses [9, 12]. Additionally the quantity of features derived from passive sensing cannot 

reasonably be included in traditional statistical analyses, especially since the number of 

features can often exceed the number of observations [55]. Decision trees can account for 

correlations among vast quantities of variables to identify predictive behaviors, and are also 

reported to be more stable than a typical step-wise approach used for variable selection in 

traditional analyses [39, 55]. Finally random forests are non-parametric and can be used 

to detect complex, non-linear associations [9, 39]. Machine learning can also be used to 

explore certain combinations of passive sensor features that are particularly predictive of 

certain trait levels. Characteristic combinations of daily behaviors are undetectable with 

covariance-based models in psychology or typical “black box” classification algorithms, but 

these combinations may reveal more nuanced patterns that contribute to a person’s health 

and well-being.

Prior research provides initial evidence that passive sensing can provide meaningful 

information about individual differences in adaptive and maladaptive functioning. Studies 

have shown that attributes and events related to categorical DSM diagnoses (e.g., depression, 

psychotic episodes [6, 10, 47], and adaptive personality traits [1, 5, 14, 26, 27, 41, 54, 51] 

can be predicted from smartphone sensors from some degree, although these associations 

have been modest in size. Some machine learning methods have been used in previous 

research to predict personality including support vector classifiers, regularized regression 

models, and decision tree algorithms, but our study is the first to our knowledge to 

apply association mining to identify feature combinations linked to personality traits. 
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A few studies have investigated associations between heart rate measured by wearable 

devices and aspects of personality like emotional responses [22, 45, 17], but none have 

examined how personality traits relate to ambulatory heart rate. Given the transition towards 

conceptualizing personality pathology as dimensional variants of adaptive personality 

traits, linking smartphone sensor features to empirically-derived adaptive and maladaptive 

trait models has the potential to deepen our understanding of how personality shapes 

psychosocial functioning and important outcomes.

2.4. Modeling behavior at the person-level and day-level

A key consideration for modeling behavior from any time-series data, including smartphone 

sensors, is what level of analysis to focus on. Psychological research typically uses person-
level models that measures personality-related tendencies with a single index, most often 

the mean, that summarizes a person’s behavior over time and across situations. Another 

approach is to include each repeated observation (e.g., daily samplings) in the analysis 

into an observation or day-level model. Day-level models capture behaviors that tend to 

characterize a given day for someone with a certain trait standing. Importantly, sets of 

behavior that tend to occur over time and across situations (person-level) are not necessarily 

expressed together on a given day (day-level). For example, more disinhibited people have 

more problems with concentration and engage in more impulsive behaviors overall, but 

they do not necessarily struggle with concentration more and act more impulsively on the 

same day. Thus, both levels of analysis offer distinct insights into adaptive and maladaptive 

personality. In addition to operationalizing behavior differently, each approach comes with 

different methodological trade offs. Person-level models will have far fewer observations 

than day-level models which can negatively impact the performance of machine learning 

models. Day-level models, however, do not account for differences in the number of 

observations for each person (e.g., number of days with complete data) which can bias the 

associations between traits and behaviors if they vary widely across individuals. There are 

multi-level, covariance-based models that can accommodate this nested data structure (i.e., 

observations within persons) to simultaneously preserve day-to-day variation and eliminate 

bias, but there are not currently comparable machine learning techniques. Thus, an important 

decision for studies using machine learning to predict personality pathology from passive 

sensing data is whether to model behavior at the person- or day-level.

2.5. Current Study

The current study leverages a combination of passive sensing, machine learning, and data 

mining algorithms to identify patterns of behavior across the main spectra of adaptive 

and maladaptive personality traits. We also compared results from person-level and day-

level models to help inform analytic decisions in future research. This study is strictly 

exploratory and we did not set out to test specific hypotheses; rather, we aimed to highlight 

key methodological issues for the field moving forward, generate new hypotheses about 

the everyday behavior patterns that maintain (or prevent) problems, and demonstrate the 

opportunities for these methods to enrich existing empirical models of personality pathology.
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3. Methods

To explore the potential of passive sensing to reveal the dynamics of personality pathology, 

we designed and employed a series of analytical methods, including prediction and 

association rule mining. These methods allow us to 1) identify and rank behavioral features 

related to each personality dimension and 2) measure the level of the behavioral features 

associated with those dimensions. The following sections first provide an overview of our 

data processing pipeline followed by a description of the analytic methods.

3.1. Data Processing

3.1.1. Feature extraction—To extract behavioral features from raw sensor data, we 

first divided each data stream into daily intervals (12:00am - 11:59pm). We aggregated the 

raw data and extracted different statistical measures such as minimum, maximum, mean, 

standard deviation as well as more complex behavioral features such as movement patterns 

and type, and duration of activities. We used RAPIDS, an open-source framework for 

extracting day-level behavioral features from mobile and wearable devices [62]. Details of 

the extracted features are documented in [20].

To create person-level features, we calculated the mean, minimum, maximum, and standard 

deviation of each individual’s daily features. The test-retest reliability of the person-level 

features from week one to week two was acceptable (mean r = .53, median r = .58). Full 

reliability results are in the supplementary materials.

3.1.2. Handling missing values—Datasets gathered from mobile sensor devices often 

suffer from a significant fraction of missing data due to issues such as poor communication, 

power depletion, and hardware failure. The missing rate across all 658 day-level features in 

our dataset was 58.2%.

For handling the missing values in day-level features, we took a two-step approach. The 

first step was removing participants and features with excessive missing data. If all sensor 

data from a participant on a certain day was missing, we deleted the participant’s data 

for that day. We then removed features with a missing rate over 60%. This percentage 

was chosen based on the average proportion of missing values among all feature columns 

(57.2%). We also removed features with values outside of plausible ranges (e.g., negative 

value for distance travelled in a day). A total of 348 features were removed due to excessive 

missingness. The second step was imputing the remaining missing values. Because of 

the large blocks of missing data, we used multiple imputation techniques to increase the 

precision of missing data estimates [49]. Multiple imputation techniques can only work 

under the assumption that the data are missing at random (MAR) or the more stringent 

missing completely at random (MCAR). We believe that the MCAR assumption fits our data 

because sensor readings can fail randomly due to many different and non-systematic factors, 

including network error, faulty sensor, and phone battery issues [7]. We used scikit-learn 

with multiple imputation 1 and first implemented single imputation methods resulting in 

multiple complete datasets. Then, we trained the ML algorithms on each of those complete 

1 https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html 
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dataset to build models. Finally, we pooled the results by averaging the estimates from 

each model by computing the total variance over the repeated analyses, and estimating the 

average error. To avoid the data leakage in the leave-one-out cross-validation (LOOCV) 

stage, we imputed the training and testing set separately in each iteration of LOOCV as 

shown in Figure 2.

Only the non-missing day-level features were used to derive person-level features. Before 

calculating those features, we removed participants with less than three days of data (n = 

14). After calculating person-level descriptive statistics from each participant’s data, there 

were 2632 features with a missing rate of 24.4%. After removing features with more than 

40% missing values, 1664 person-level features remained. The percentage was chosen based 

on the average proportion of missing rates among all features (47.1%). Because there was 

considerably fewer missing values in the person-level features compared to the day-level, 

we used a single imputation method. Specifically, we imputed the missing features with 

a constant value smaller than the minimum value of each feature, i.e., min – 0.01. This 

imputation method is appropriate for our data as it has a low effect on the center and scale 

of the observable values after the min-max normalization, i.e., the missing values become 

0 after normalization and the respective features will be ignored by the machine learning 

algorithm [12].

3.2. Analysis Pipeline

To investigate passive sensing capabilities in predicting adaptive and maladaptive traits, we 

developed an analysis pipeline including machine learning, feature ranking, and association 

rule mining.

3.2.1. Machine learning—The structure of our machine learning pipeline is shown in 

Fig 2. The pipeline is built on a nested cross-validation, including an outer loop and an 

inner loop. The outer loop is a leave-one-participant-out cross-validation, which provides an 

estimate of the model’s performance. The inner loop is a 5-fold Grid Search cross-validation 

used for parameter tuning. Both day-level and person-level machine learning models share 

the same general pipeline.

We used adaptive and maladaptive trait measures from the self-reports as ground truth 

for performance analysis of the machine learning algorithms. We compare the predictive 

performance of Lasso regression (Lasso), Random Forest (RF), XGBoost (XGB) and 

baseline models. Random Forest and XGBoost were chosen for modeling because of 

their ability to model potential nonlinear associations between behaviors and continuous 

personality trait values. Both methods use regression trees as base learners, but they have 

different strategies to prevent overfitting and performance improvement. RF uses Bagging 

(Bootstrap Aggregation) to reduce performance variance by first creating subsamples of the 

training set and then averaging the model performance resulted from each subsample [8, 

52]. RF has a certain degree of randomness, which helps avoid overfitting and improves 

generalizability relative to a single tree model. XGB, on the other hand, uses an iterative 

learning strategy called Boosting that weighs the model outcomes based on the prediction 

results of the previous iteration [12]. The error is reduced in each iteration by giving correct 
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predictions lower weights and incorrect predictions higher weights. We used these two 

complementary models to reduce prediction errors and to build models that support a stable 

hypothesis generation process for further analyses. Both methods output feature importance 

as part of the model building process. In a nested cross-validation process, we selected the 

highly ranked features in each iteration and used them to identify the final set of behavioral 

features that distinguish personality traits. As a basis of comparison for the performance 

of the nonlinear, tree-based machine learning models, we evaluated the performance of a 

linear Lasso regression. Lasso is a modification of linear regression with penalty term to 

help in reducing overfitting. The Lasso regression, however, does not output the feature 

importance like RF and XGB. We aggregated the beta coefficients from Lasso regression 

to measure the linear correlation between input sensor features and personality within the 

nested cross-validation. We applied scikit-learn implementation2 for Lasso and RF, and a 

public python implementation for XGB3. In addition, we built the baseline model to predict 

the mean target traits without taking any features into account using DummyRegressor class 

in scikit-learn4.

3.2.2. Feature selection—The large number of extracted features compared to the 

relatively small number of participants in our dataset required dimensionality reduction 

through feature selection. Our feature selection proceeded in two steps. First, we identified 

redundant features by calculating the Pearson correlation between all feature pairs. 

Correlation coefficient is an indicator of the linearity strength in the relationship between 

two features, and as such, a high correlation between two features indicates they will 

have nearly the same effect on the dependent variable. For our analyses, we considered 

correlations above .50 to indicate possible linear dependence. From each highly correlated 

pair of features, we kept the feature that correlated more strongly with the dependent 

variable (adaptive and maladaptive traits) and dropped the feature with lower correlation.

3.2.3. Validation—We applied leave-one-person-out cross-validation (LOOCV) to our 

dataset to evaluate the power of sensor features to predict personality traits [63]. LOOCV 

is a specific type of k-fold cross-validation, where the number of folds is equal to the 

number of participants in our dataset. In each iteration, data from n-1 participants is used for 

training, and the model is tested on the nth participant. LOOCV is a robust way to test the 

generalizability of a model that contains personal data. However, LOOCV is also the most 

computationally expensive, especially given that the data imputation and feature selection 

process is within the cycle of LOOCV [32].

3.2.4. Parameter tuning—We used Grid Search cross-validation to optimize the 

hyperparameters for machine learning models. We applied the Grid Search within each 

iteration of the LOOCV process. The training set of the LOOCV was split into the 

training set and validation set in the Grid Search CV. The Grid Search method tries every 

possible combination of hyperparameters from a given parameter space and selects the set of 

parameters that provides the best performance on the training set.

2 https://scikit-learn.org/stable/index.html 
3 https://xgboost.readthedocs.io/en/stable/index.html 
4 https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html 
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3.2.5. Feature ranking—Each iteration in the LOOCV process assigns an importance 

value to each feature in the training process. A higher importance value for a feature 

indicates a larger contribution to the prediction process. We logged these values during 

training and aggregated the overall ranks of each feature at the end of the process. Sensor 

features were also ranked according to their frequency of being selected as well as their 

averaged importance across rounds in the LOOCV. For each training algorithm (RF or 

XGB), we considered features with frequency and importance greater than the median to be 

high ranked features selected by that algorithm. We then selected the highly-ranked features 

that were shared across both algorithms. Those features were then ranked according to the 

following formulas:

f(Impi) =
1 if Impi > 0;
0 otℎerwise .

(1)

RS =
i 1

N (ImpRFi i 1
N f(ImpRFi) ImpXGBi i 1

N f(ImpXGBi))
N (2)

where Imp is the importance value of the sensor feature, and N is the number of iteration in 

the LOOCV, which equals the number of participants.

3.2.6. Performance Measures—To measure the performance of the models, we used 

the mean squared error (MSE) and the mean absolute error (MAE), both of which calculate 

the average distance between the predicted and observed values in the data [59]. MSE is 

the average of the squared difference between the predicted value and the observed value, 

MAE is the average of the absolute difference between the predicted value and the observed 

value. MAE is straightforward to understand and treats all prediction errors proportionately. 

Although MSE is less intuitive, it penalizes poor predictions by squaring the error. We 

therefore used both measures to give a more accurate picture of the prediction performance. 

To calculate the overall performance, we averaged the MSE and MAE results from the 

LOOCV process.

3.2.7. Association Rules Mining—To take another approach to identify behavioral 

patterns associated with personality traits, we applied Apriori, a well-known frequency-

based method for analyzing transactional data and producing association rules that explain 

the frequency (support) and significance (confidence) of the observed patterns [28, 30]. We 

applied the Apriori method on both person-level and day-level features. In the association 

rules analysis, a collection of one or more items is called an itemset. If an itemset contains 

k items, it is called a k-itemset. Our analysis used the dataset containing participant’s data 

and the frequently selected features in an iterative process to extract the 1 to k-itemsets. 

Since Apriori requires discrete data, we categorized the features and personality trait values 

into three ranges of low, moderate, and high. The sensor features were normalized into the 

0 and 1 range and discretized into low (0 – 0.25), moderate (0.25 – 0.75), and high (0.75 

– 1). Personality traits ranged from 0 to 4 and were discretized into low (0 −1), moderate 

(1 – 3), and high (3 – 4). Our decision for this categorization was based on two empirical 
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observations. First, the computational cost was significantly reduced using three categories 

for each trait. Second, the personality traits at both ends (high or low values) were associated 

with behavioral features more significantly than the middle level, so we merged the 1-2 and 

2-3 into the median level (a neutral option). The distribution of participants in each group 

is shown in Figure 4. Each feature with its corresponding levels was then entered as items 

into the frequent item-set mining step of the Apriori algorithm. This step generates itemsets, 

including combinations of features and the relative frequency they occur together for a 

person with a given trait standing or that tend to co-occur on the same day. For example, 

a 2-itemset can contain low location entropy and high frequent outgoing calls features that 

appear together 15 times (i.e., days) in the entire dataset. In the next step, the Apriori 

algorithm generated a set of association rules from those frequent itemsets. An association 

between X and Y (X → Y) exists if items in X and Y frequently appear together. Support is 

the proportion of data samples that contain both X and Y, while confidence is the proportion 

of samples containing X that also contain Y [25]. A rule must achieve a minimum level of 

support and confidence to be considered significant. Figure 3 shows our approach in using 

Apriori to extract frequent behavior patterns from highly ranked features.

4. Data collection

4.1. Participants and Procedures

Community members were recruited through posted flyers for a study of personality, daily 

stress, and social interactions. For inclusion, participants had to be between the ages of 18 

and 40 and were not currently receiving treatment for psychosis or a psychotic disorder. 

Preliminary screening was used to recruit a gender-balanced sample and to ensure adequate 

representation of a range of personality pathology and interpersonal problems. The sample 

was also selected to balance individuals who had received recent mental health treatment 

within the past year with those who had not. Individuals were pre-screened using items 

from the Inventory of Interpersonal Problems - Personality Disorder Scales [42] and were 

recruited in an approximately 1-1-1 representation of low, moderate, and high levels of 

interpersonal difficulties within gender, treatment status, and the overall sample. For this 

study, we only analyzed a subset of participants that had smartphone sensor data.

The total sample size for our analyses was 128. Participants were mostly white (78%; 9% 

Asian; 9% Black/African-American), roughly balanced on gender (54% female), with an 

average age of 27.7 (SD = 6.6). Most participants had received mental health treatment in 

the past (23%) or were currently receiving treatment (37%).

Participation involved completing a battery of baseline assessments in an initial laboratory 

session followed by a 14-day EMA protocol including self-reports and passive sensor data 

collection. Participants received $50 for the baseline session. Those who answered 90% or 

greater of the surveys during the EMA protocol earned an additional $160. This amount 

was prorated by week for those who completed less than 90% of the surveys overall. 

Participation was also incentivized with random drawings for prizes, with chance of winning 

proportionally tied to rate of participation.

Yan et al. Page 10

Future Gener Comput Syst. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2. Self-report measures

Self-report measures of adaptive and maladaptive traits were completed during the initial 

laboratory session. During this session, participants were also provided instruction from a 

research assistant regarding the EMA procedures and the required smartphone applications 

were installed on their personal Android or iOS smartphone. Smartphone sensor data was 

collected using an application called AWARE described in the next section. Because the 

focus of this study is on examining the associations between dispositional personality traits 

and passive sensing features, we did not use the self-report EMA surveys.

4.2.1. Personality traits—Personality traits were assessed using the self-report 

International Personality Item Pool - NEO-120 [31], which is a 120-item inventory 

designed to map onto the widely used NEO-Personality Inventory-Revised [16] traits in an 

abbreviated and open-source format. For each item, participants rated the extent to which a 

characteristic applies to them (e.g., “I am someone who is outgoing”) on a scale from “Very 

Inaccurate” (0) to “Very Accurate” (4). The IPIP-NEO-120 was scored to provide a score 

for the five trait domains of Extraversion, Agreeableness, Conscientiousness, Emotional 

Stability, and Openness. Reliability for the trait scales was high (mean McDonald’s Omega 

= .88; range = .84 ~ .91).

4.2.2. Maladaptive traits—Maladaptive traits were assessed using the Comprehensive 

Assessment of Traits Relevant to Personality Disorder (CAT-PD; [53]). The CAT-PD is 

a 216-item self-report inventory, which asks participants to describe how they behave 

in general compared to others (e.g., “I get angry easily”). Participants rated each item 

on a scale from (0) “Very Untrue of Me” to (4) “Very True of Me.” The CAT-PD 

assesses 33 narrow maladaptive trait scales. Scores for these narrow trait scales were 

averaged to calculate the five, broad maladaptive trait domains that map on to the 

normative personality traits [72]). Specifically, these are Antagonism (maladaptive low 

Agreeableness), Detachment (maladaptive low Extraversion), Disinhibition (maladaptive 

low Conscientiousness), Negative Affectivity (maladaptive low Emotional Stability), and 

Psychoticism (maladaptive Openness). Reliability for the five maladaptive trait scales was 

good (mean McDonald’s Omega = .92; range = .90 ~ .95).

4.3. Descriptive statistics

Density distributions of self-reported personality trait levels are shown in Figure 5. Overall, 

participants reported levels of adaptive traits above the midpoint of the scale (M = 2.63) and 

levels of maladaptive traits below the midpoint (M = 1.25). These distributions show that 

there was considerable variance between people representing a wide range of functioning.

Consistent with the broader literature showing the correspondence between adaptive and 

maladaptive traits, the strongest bivariate correlations were between the expected constructs 

(Figure 6). Agreeableness, Extraversion, Conscientiousness, and Emotional Stability 

were strongly negatively correlated with their maladaptive counterparts of Antagonism, 

Detachment, Disinhibition, and Negative Affectivity respectively. Unlike the other trait 

pairs, Psychoticism and Openness were positively–not negatively–correlated. This result is 
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in line with previous research showing that the associations between these traits tend to be 

inconsistent and moderate in size [65, 67].

4.4. Passive sensing

Data from participant’s smartphone sensors was collected via the AWARE application [23]. 

AWARE runs in the background on both iOS and Android platforms and continuously 

collects data from phone channels. For this study, we used battery data, phone call logs, 

GPS, microphone sensors, and phone screen lock/unlock data. Collection of battery, call 

logs, and screen status sensors were event-based, such that a data sample or observation is 

created in the database when a change (event) is detected (e.g., a phone call is made). GPS 

and microphone sensors were sampled at regular intervals. Specifically, GPS sensors were 

sampled every 180 seconds and the microphone sensors recorded audio for one minute with 

three minutes of pause in between samplings. Participants were also provided with a Fitbit 

Blaze smartwatch to collect physiological measures related to heart rate, steps, and sleep 

via AWARE. Heart rate and movement data were sampled in one minute intervals. Sleep 

features were estimated from a combination of movement and heart-rate patterns. Seventy-

three participants used an iOS equipped smartphone and 55 used an Android smartphone. 

On average, 12 days of sensor data were collected from every participant (SD = 1.5). Out 

of 128 participants with passive sensing data, data from 128 participants was used for the 

day-level modeling and data from 114 was used for person-level modeling.

5. Results

5.1. Adaptive and Maladaptive Trait Prediction

Although the purpose of our study was not to develop models that optimized prediction, 

we indexed model performance to evaluate these methods for studying personality and to 

better understand the relationship between passive sensing features and personality traits. 

As shown in Figure 7, all of the models had modest predictive accuracy, but the RF and 

XBG models outperformed the Lasso regression models. This suggests that associations 

between personality and behavior may be nonlinear and may not be adequately captured by 

traditional linear regression models. The accuracy of the RF and XGB models for predicting 

each trait were very similar, with the RF models performing slightly better. We also found 

that the pairs of corresponding maladaptive and adaptive traits tended to have comparable 

levels of prediction errors. For example, Agreeableness and Antagonism had the lowest 

average prediction error (MAE=0.36, MSE=0.24), while Emotional Stability and Negative 

Affectivity had the highest average error (MAE=0.52, MSE=0.42). The overall patterns 

of performance for predicting different traits were comparable for the day-level and person-

level models. The person-level models were somewhat less accurate in predicting traits, 

likely due to including fewer observations than the day-level models. We also compared 

each of the three methods (Lasso, RF, XGB) to a baseline model based on the expected 

value of the distribution (i.e., mean only model). As can be seen in the boxplot in Figure 8, 

the average performance of the Lasso, RF, and XGB models did not consistently improve 

upon the prediction of the baseline model. Thus, on the aggregate, all passive sensing 

features provided little increment in the prediction of these broad traits. Nevertheless, this 

does not preclude more circumscribed trait and feature associations.
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5.2. Frequently selected behavioral features and their relationship to adaptive and 
maladaptive traits

A total of 52 high-ranking features were selected by the LOOCV machine learning and 

feature selection processes (out of 177, 14%) across the person- and day-level models. 

Ranking scores were calculated using Formula 2 (see Table 1). Recall that the high ranking 

scores indicate that the behavioral feature had both a high overall feature importance and 

was frequently selected during the iterative training process. More high-ranking features 

were selected by the person-level models (n = 27) compared to the day-level models (n = 

18) and only 7 features were selected by both modeling approaches. Table 1 provides a 

description for each sensor feature, which model(s) it was selected by, and the abbreviations 

used to represent those features throughout the results section. Figure 9 shows feature 

ranking scores and correlations between sensor features and personality traits from both the 

person- and day-level models. For presentation clarity, we removed the features with ranking 

scores and/or correlations equal to 0 in the person- and day-level models. The y-axis lists the 

important and frequently selected features in pairs with the ranking score followed by the 

correlation of that feature for both day- and person-level features.

As noted above, most features were only highly ranked in either the person- or day-level 

models, not both. Different inferences can be made from results at each level; features 

that predict traits at the person-level summarize variation in behaviors that are expressed 

consistently across days and situations whereas features at the day-level indicate behaviors 

that are expressed consistently from within a given day. In the few instances in which 

the same feature was selected by the person- and day- level models, the rankings/Lasso 

regression coefficients were comparable. For ease of reading, we do not differentiate 

between features selected at the person- or day-level in describing the results below, but 

this information can be found in Table 2 and Figure 9.

There were some features that were associated with generally adaptive or maladaptive 

tendencies. Shorter durations of time with the phone unlocked (SR3/SR4) was associated 

with adaptive traits and longer unlock durations was associated with maladaptive traits. 

Shorter phone unlocks may indicate brief social communications whereas more extended 

time with the phone unlocked suggests different behavior such as gaming or internet 

browsing. Adaptive traits tended to be associated with the shortest duration of time 

spent in a significant location (LOC5), the number of scans of the most scanned WiFi 

device (WiFi1), more frequent detection of human voice in the surrounding environment 

(AUD3), and the number of phone unlocks (SR1)–however, the direction of associations 

with the latter varied by trait (e.g., Agreeableness and Openness were associated with 

fewer unlocks and Extraversion, Conscientiousness, and Emotional Stability with more 

unlocks). Maladaptive traits, on the other hand, tended to be associated with a higher 

heart rate (HR1-5), spending less time awake in bed (SL3), spending longer durations of 

time in REM sleep (SL7), and both higher and lower variation in time spent at significant 

locations (LOC4). Some features were predictive of specific adaptive/maladaptive trait pairs. 

Importantly, in nearly every case, the associations with each paired trait were in opposite 

directions in line with the idea that they manifest in opposite extremes of behavior in 

everyday life. Table 2 shows the common highly ranked sensor features shared by each 
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pair of adaptive and maladaptive traits. Agreeableness and Antagonism (the maladaptive 

counterpart of Agreeableness) were both associated with low variation in the duration of 

calls (CAL1, CAL2) and number of distinct contacts (CAL7) . These results suggest that 

more cooperative and sympathetic people may have more regular social contact with more 

people whereas those who are more hostile and rude may have inconsistent social contact 

and with fewer people. High Extraversion was associated with longer calls (CAL3, CAL8), 

shorter phone unlocks (SR3; i.e., possibly using the phone more for social communication), 

and spending less time in bed consistent with sociability and energy characteristic of 

this trait, whereas high Detachment (the maladaptive counterpart of Extraversion) was 

associated with shorter calls and longer phone unlocks consistent with less social activity. 

Emotional Stability and Negative Affectivity (the maladaptive counterpart of Emotional 

Stability) were associated with call length, environmental noise (i.e., not human voice or 

silence), and distance travelled. These results suggest that more emotionally stable people 

make longer calls, tend to spend time in more quiet or social environments, and move 

around more throughout the day. In contrast, less emotionally stable people make shorter 

calls, spend time in noisy places, and are more sedentary. Against the expected opposite 

behavioral tendencies, both Emotional Stability and Negative Affectivity were associated 

with higher heart rate. Both Conscientiousness and Disinhibition were associated with 

patterns of sedentariness (ST2, ST3) and length of stay at significant locations (LOC5). 

Interestingly, both high Conscientiousness and high Disinhibition were associated with less 

time being sedentary but more conscientious people were sedentary for more consistent 

lengths of time whereas disinhibited people were sedentary for inconsistent lengths of 

time. High Conscientiousness was associated with shorter stays at significant locations and 

Disinhibition with longer stays. Finally, only variability in noise exposure (AUD1) was 

associated with Openness and Psychoticism. In line with evidence that these traits are 

not opposite poles of a trait continuum but are instead better thought of as maladaptive 

variants of one another, this result could indicate that more open people and those higher on 

Psychoticism both tended to spend time in a wide range of environments throughout the day.

5.3. Mining collective behavioral patterns associated with adaptive and maladaptive traits

Whereas the decision tree models and feature ranking showed the predictive power of 

various features, the Apriori models described associations between traits and characteristic 

combinations of sensor features that tended to co-occur between people or within people 

from day-to-day. Supporting the potential of this method for studying personality, we found 

that some levels of every trait could be predicted from feature combinations. Similar to the 

decision tree models, the mined patterns of features associated with different trait levels 

were almost entirely different in the person- and day-level models of the same trait. This 

suggests that trait-relevant behaviors that co-occur from person-to-person might be different 

than those that co-occur from day-to-day. For example, if aggregating behavior over multiple 

days, people low in Disinhibition tend to sleep for short periods of time (SL4), spend time 

in less noisy environments (AUD6), and are less sedentary (ST4) on average (person-level), 

but the co-occurence of these tendencies on any given day (day-level) is not characteristic 

of low Disinhibition. Instead, a typical day for those low in Disinhibition is marked by 

consistent social contact (CAL1), low heart rate (HR1), and shorter stays at significant 

locations (LOC5). Contrary to expectations, there was very little overlap in combinations 
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of features associated with theoretically corresponding levels of adaptive and maladaptive 

traits (e.g., high Agreeableness and low Antagonism) in the person- or day-level models. 

These results raise the possibility that there are nuanced differences between adaptive and 

maladaptive variants that were not captured by the decision-tree models. The data, code and 

more results are publicly available at https://github.com/HAI-lab-UVA/AAPECS.

6. Discussion

There is growing evidence for conceptualizing personality pathology using dimensional 

traits in a unified model with adaptive personality, but there is a need to better understand 

the everyday manifestations of these traits that contribute to functioning and dysfunction. 

Towards this end, we applied multiple machine learning methods to sensor data collected 

from mobile and wearable devices and found that (1) adaptive and maladaptive traits can 

only modestly be predicted from smartphone sensor data though (2) there are behavior 

patterns that link adaptive and maladaptive variants consistent with contemporary models 

of personality pathology. This study adds to the literature showing smartphone sensor 

data captures personality-relevant patterns of behavior. We extended previous research 

by showing maladaptive traits are associated with several features derived from this 

type of data, providing initial evidence for the utility of passive sensing to study 

pathological personality. In addition to using regularized Lasso regression and decision 

tree models applied in previous work, we used association mining methods to show that 

specific combinations of features are associated with personality traits. We offer tentative 

interpretations of our results for hypothesis generating purposes, but emphasize that more 

work is needed to test these hypotheses.

6.1. Limited global trait prediction from sensors

In comparing the initial machine learning models (RF, XGB) to a baseline model using only 

the mean, we found little to no predictive power of the global traits from the sensors. This 

is consistent with prior work finding very modest prediction of broad traits from passive 

sensors (CITE) and is largely to be expected given the very broad and complex nature of 

these traits, which are highly distal constructs from the specific sensor features (see e.g., 

Mohr et al., 2017). Indeed, our goal was not to optimize prediction of traits, but rather 

to flesh out methods that would be useful for identifying associated patterns of features 

and behaviors in daily life. Thus, we see this finding as unsurprising and consistent with 

prior work, and should serve as a strong indication that fully capturing broad and complex 

constructs like higher-order personality traits using only passive sensing, at least with 

currently available tools, is unlikely to succeed. Nevertheless, we found that the methods 

we used did identify a number of interesting features and behaviors that are informative for 

understanding adaptive and maladaptive trait manifestation in daily life, and we consider 

these specific findings in the spirit of generating hypotheses and future studies.

6.2. Traits vary in how well they can be predicted from sensors

Our results indicate that some features are generally more (or less) associated with 

personality—only 52% of the features we extracted met our selection criteria. Very few 

features from certain sensors (e.g., WiFi, activity detection, Bluetooth) were selected by the 
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machine learning processes suggesting they may be less useful for studying personality. 

Screen time, heart rate, sleep, and location-based metrics, on the other hand, tended 

to exhibit important associations with adaptive and maladaptive personality across the 

different machine learning models. In particular, adaptive traits were most associated 

with social and contextualized activity features whereas maladaptive traits were generally 

predicted by duration of phone unlock episodes and physiological features (i.e., heart 

rate, sleep). Nearly all adaptive traits were associated with brief screen unlocks, time 

spent in environments with human voice, consistency of call lengths, and time spent at 

regularly-visited locations and around familiar WiFi devices. Maladaptive traits, on the 

other hand, were associated with extended screen time, higher heart rate throughout the 

day, amount of time spent awake in bed, and the consistency of time spent at different 

locations. We interpret longer durations of phone unlock episodes to possibly reflect 

engagement in recreational activities such as gaming or internet browsing and short unlock 

episodes to reflect texting or other brief, social communications. Taken together, the 

feature selection results and specific associations between features and traits suggest that 

engagement with other people and the environment may be especially related to adaptive 

functioning and typical physiological responses and heavy, recreational phone use may be 

especially important indicators of maladaptive functioning. We also showed that some traits 

are generally more (or less) predictable from passively sensed behavior. In the decision 

tree models, the most predictable trait pairs were Disinhibition/Conscientiousness and 

Antagonism/Agreeableness and the least predictable were Negative Affectivity/Emotional 

Stability. One reason certain traits were better predicted may be the nature of what can 

be detected by smartphone and FitBit sensors; namely, behavioral manifestations of traits 

rather than thoughts or emotions. Disinhibition and Conscientiousness reflect individual 

differences in impulse control and goal-directedness, which may be tracked well with 

features indexing behavioral (in)consistency (e.g., entropy/variability of calls or movement) 

and indicators of distractibility (e.g., phone unlocks). In contrast, Negative Affectivity and 

Emotional Stability encompass variation in typical emotional experiences that may not be 

expressed in overt, recognizable behaviors. In line with this possibility, human observers 

(like the passively sensed “observer”) struggle to detect Negative Affectivity/Emotional 

Stability in others and tend to be the least accurate in perceptions of these traits compared 

to other traits (i.e., lower inter-rater agreement and self-informant agreement; Connelly et 

al., [15]; Vazire et al., [61]). The high predictability of Antagonism and Agreeableness 

was less expected because these traits are generally defined by social intentions that are 

internally experienced rather than expressed by observable, detectable behaviors. Our results 

suggest that there may be behavioral manifestations of the tendency to be at odds with others 

(Antagonism) or to cooperate (Agreeableness) that may not have been considered in prior 

theorizing and research.

6.3. Evidence for behavioral indicators that span adaptive and maladaptive trait 
dimensions

Figure 10 shows the association rules between sensor features and personality traits. 

Our results bring a new perspective to the continuity between adaptive and pathological 

personality by identifying behavioral content that characterizes the full range of functioning 

in different trait dimensions. The corresponding adaptive and maladaptive traits were 
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strongly correlated with one another as expected, and the machine learning models selected 

several important features in common for most trait pairs. Overlap between features 

extracted across adaptive and maladaptive models suggest these behaviors are especially 

strong indicators of the underlying trait. These indicators, in turn, can help us understand 

what people do in everyday life that accounts for the link between personality and life 

outcomes. For example, several features were important indicators of the trait continuum 

from Disinhibition to Conscientiousness. These traits encompass individual differences in 

the motivation and ability to maintain focus on long-term goals and are strongly associated 

with academic and work success. It is thought that people who score high on Disinhibition 

do poorly in school and work because they struggle to complete tasks and tend to act 

impulsively whereas people who score high on Conscientiousness generally have better 

outcomes because they are able to focus on tasks and control their impulses. We found 

that people who scored high on Disinhibition tended to spend less time awake in bed, 

have shorter periods of being sedentary, and make calls of inconsistent durations, which 

may reflect difficulty staying still and a tendency to engage in more erratic social behavior. 

In contrast, people scoring high on Conscientiousness showed the opposite patterns, in 

line with more controlled and routine behavior. These results suggest that passive sensing 

may be used to detect consequential behavior patterns that potentially explain how this 

trait dimension helps (or hinders) functioning. Exceptions to the general pattern of adaptive/

maladaptive trait pairs mapping onto opposite behavioral tendencies may be informative 

for understanding functioning as well. In the Apriori association mining models that 

identified configurations of behaviors that are characteristic of traits, there was almost 

no overlap in features between corresponding trait pairs. It is possible that these models 

uncovered more subtle differences in adaptive and maladaptive behaviors that could not 

possibly be found in general linear models typical in psychological research or even our 

decision tree analyses. Given the novelty of these findings, it will be important to replicate 

these analyses in other samples to evaluate their generalizability. Our results add new 

types of evidence to bear on important, clinical questions and provoke new hypotheses. 

For example, Negative Affectivity is a robust risk factor for cardiovascular disease (and 

Emotional Stability a protective factor), but it is unclear how exactly these traits influence 

cardiovascular health [35, 50, 56]. Because this trait dimension reflects how easily stressed 

and emotionally reactive a person tends to be, one hypothesis is that people who score high 

on Negative Affectivity overuse their stress response system, which over time takes a toll on 

cardiovascular health [3, 36]. There has been mixed support for this hypothesis, and most 

research investigating the association between stress responses and Negative Affectivity/

Emotional Stability has been conducted in laboratory settings [13, 60]. Instead of sampling 

heart rate in a few experiments, we sampled heart rate continuously in everyday life, 

which may give a more representative picture of people’s typical stress response patterns. 

Our results support the stress response hypothesis as we found that Negative Affectivity 

was strongly associated with a higher resting heartrate whereas Emotional Stability was 

associated with lower resting heart rate. Because the same behavior can relate to multiple 

traits for different reasons (e.g., longer sedentary durations may reflect the ability to focus 

for long periods of time or it may represent lack of energy and low mood), it can be 

difficult to infer why certain trait-relevant behaviors lead to life outcomes–but Apriori has 

the potential to disambiguate such associations. For instance, in these models we found that 
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people with high scores on Conscientiousness had more days with consistent call lengths, 

moderate sleep durations, and high levels of physical activity whereas people who scored 

high on Agreeableness also had more days with consistent call lengths but in combination 

with moderate levels of activity. Thus, although Agreeableness and Conscientiousness are 

both traits associated with more adaptive functioning, and both relate to consistent social 

behavior, they can be differentiated by co-occurring behaviors. Both behavior sets seem to 

reflect balanced activity, but perhaps being achievement-striving and disciplined is tied to 

well-regulated sleep and exercising more, whereas being more agreeable is primarily related 

to routine social interactions within a given day.

6.4. Differences in day-level and person-level models

Our study also explored the methodological and conceptual implications of modeling 

behavior at the person- versus day-level. Each approach comes with different 

methodological benefits and drawbacks and results at each level provide insight into 

somewhat different questions about how personality relates to functioning. Day-level models 

indicate what behavior is consistently emitted from day-to-day for a person with that trait 

standing (day-level). We found that the day-level models performed slightly better than the 

person-level models in predicting personality traits according to global evaluation metrics 

(i.e., MAE, MSE). The day-level models may have been more accurate because they used 

considerably more observations than the person-level models or because they captured 

more personality-relevant information. At the same time, there were more person-level 

than day-level features that were predictive of personality in the decision tree analyses. 

This finding suggests that indices which account for consistent behavior over time may be 

generally more representative of traits, but there are also trait-relevant behaviors which are 

expressed in a highly consistent manner each day. Alternatively it may reflect the fact that 

more indices were auditioned in our models (e.g., for a given sensor we included mean, max, 

min, and standard deviation) because some only emerge aggregated over days and not at a 

single observation. Reinforcing the distinctiveness of these levels, there were few features 

that predicted personality in both the person- and day-level decision tree models and there 

were practically zero shared feature combinations for the same trait at different levels in 

the Apriori models. These discrepancies align conceptually, if not statistically, with the well-

established observation in psychological research using multi-level modeling that patterns 

of associations can vary between and within-persons (e.g., [43, 4]). Our aim is not to argue 

in favor of either type of model, as it is clear that each provides unique information about 

personality, but we hope these results encourage researchers to consider the implications of 

each approach in developing their study designs, analyses, and interpretations.

6.5. Limitations and future directions

The major advantage of using passive sensing and machine learning to study personality 

pathology is that they allow us to assess aspects of behavior that cannot be measured with 

any other methods and with potentially much greater precision. At the same time, because 

passive sensing is a relatively new technology, the psychometrics of the method have not 

been comprehensively evaluated yet. Before passive sensing research can be translated into 

theory or clinical applications, more work is needed to establish the reliability and validity 

of features and feature combinations. In terms of construct validity, some sensor features 
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are human-interpretable (e.g., more phone calls usually indicate more social activity), but 

others are more ambiguous and less readily interpreted. By examining associations with 

personality traits that have well-established psychometrics, our study provides some insight 

into how to interpret passive sensor features. Future research can build on this foundation by 

examining associations with contemporaneous participant reports; for example, to determine 

whether days with longer durations of being sedentary typically reflect high motivation and 

concentrated studying or lack of motivation and low mood, the passive sensor data could be 

correlated with participant reports of the activity they are engaging in.

Related to the unknown psychometrics of passive sensing methods, the technology is still 

in early stages of development and potentially prone to errors throughout the data collection 

process. There are currently no empirical criteria for determining valid data captured by 

sensor streams, meaning investigators have to apply ad hoc heuristics for assessing validity. 

Because of the exploratory nature of our study, we only removed observations with values 

outside of plausible ranges (e.g., negative value for distance travelled in a day). This liberal 

approach allowed us to maximize the amount of data analyzed, but it is possible that some 

of the data included errors (e.g., distance travelled that was calculated from inaccurately 

encoded raw GPS data). Alongside continued refinement of data collection technologies, it 

will be important to establish empirical criteria for determining valid data with more focused 

research efforts moving forward.

Another limitation of our study is that we were unable to identify combinations of features 

correlated with very high levels of personality pathology using the Apriori method. Because 

this approach is based on the frequency with which certain trait values appear in a dataset, 

there was less confidence and support for feature combinations related to high levels of 

maladaptive traits (or low levels of adaptive traits) that were less common in our sample. 

To maximize association mining methods to understand maladaptive personality, future 

research will need to collect data from samples selected for very high pathology (e.g., 

psychiatric patients with specific diagnoses).

A hallmark of personality measurement and literature is a keen focus on reliability and 

validity. We should not lose sight of these two guiding principles as we seek to incorporate 

passive-sensing into our toolkit. It is important to remember that reliability and validity are 

contextualized–that is, they are sample and purpose specific. For instance, an accelerometer 

may reliably encode a device’s movement, but it may be an unreliable marker of a specific 

movement (e.g., footstep, traveling by automobile). Or, sensors may reliably capture whether 

a call comes in, but the number of calls that come in for an individual per day may not 

be a reliable feature of the individual because it varies widely day to day. Given the vast 

number of sensors and their combinations in higher-order features, and the interest among 

personality psychologists on different time-scales of assessment ranging from moments to 

decades, careful thought will need to be given to how reliability and validity should be 

defined and evaluated in passive-sensing.
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7. Conclusion

As clinical psychology and psychiatry increasingly adopt dimensional models of classifying 

personality pathology, key questions remain about what the specific patterns of behavior 

people engage in that connect personality to poor psychosocial and physical health 

outcomes. Our study highlights the opportunities and challenges of using machine learning 

and passive sensor data to address these questions. We showed that maladaptive traits 

are unlikely to be strongly predictable from passive sensor features, at least as currently 

available. Despite this, a number of passive sensing features and feature combinations 

emerged as associated, and the results provoke new hypotheses about day-to-day processes 

underlying personality traits and open fresh directions of inquiry.
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Machine learning analyses show that both adaptive and maladaptive traits can be 

predicted from passively sensed behavior using consumer devices (i.e., smartphones and 

smartwatches).

Association Rules Mining shows that specific combinations of features are associated 

with personality traits.

Behavior patterns that link adaptive and maladaptive variants consistent with 

contemporary models of personality pathology were identified.

Adaptive and maladaptive traits vary in how well they can be predicted from passively 

sensed behaviors.

There is evidence for behavioral indicators that span adaptive and maladaptive trait 

dimensions.
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Figure 1: 
Descriptions of corresponding adaptive and maladaptive traits.
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Figure 2: 
This figure shows the machine learning pipeline used to predict each personality trait. 

The pipeline includes nested cross-validation with two loops. The outer loop is leave-one-

participant out cross-validation for evaluating models’ performance, and the inner loop is 

a grid search cross-validation used for tuning hyper-parameter. The figure provides the 

whole structure of the leave-one-participant-out cross-validation and a case of grid search 

cross-validation of an iteration i for the outer loop.
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Figure 3: 
The process of mining association rules using the Apriori method. M is the number of 

highly ranked features we derived, V represents continuous values, and L represents the 

discrete levels. The input is the values of the day-level or person-level features selected by 

the machine learning pipeline, and the values of each participant’s personality traits. These 

values are then discretized into three levels: high (H), median (M) and low (L). The output 

is the association rule with the highest confidence per personality trait, indicating the most 

frequently occurring sensor feature combination with the personality trait of each level.
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Figure 4: 
The number of participants in each group (low (L), moderate (M), and high (H) level) for 

each adaptive and maladaptive trait.
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Figure 5: 
Density plot displays the distribution of the adaptive and maladaptive values of all 

participants. Each adaptive and maladaptive trait ranges from 0 to 4.
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Figure 6: 
Bivariate correlations between maladaptive and adaptive traits. Values on the diagonal are 

correlations between corresponding adaptive and maladaptive variants of the same trait.
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Figure 7: 
The radar plots visualize the MSE and MAE of three machine learning models (Lasso, RF, 

and XGB) when predicting each adaptive and maladaptive trait. The top row shows the 

results using day-level features, and the bottom row shows the results using the person-level 

features. AVG is the average of MSE and MAE per trait. MSE (AVG) is the average MSE 

across all traits, and MAE (AVG) is the average MAE across all traits.
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Figure 8: 
The boxplot plots visualize the range of MSE of three machine learning models (Lasso, RF, 

and XGB) and the baseline when predicting each adaptive and maladaptive trait. The top 

row shows the results using day-level features, and the bottom row shows the results using 

the person-level features.
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Figure 9: 
The heatmap shows the ranking for each feature assigned by the leave-one-person-out 

cross-validation process (Rank) and the beta coefficients (Beta) of Lasso regression with 

adaptive and maladaptive traits from the person-level (P) and day-level (D) models.
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Figure 10: 
The figure shows the association rules between the combinations of multiple sensor features 

and personality traits. The used sensor features are highly ranked day-level features and 

person-level features shown in Table 1. Each sensor feature and trait has been discretized 

into three categories: low (L), moderate (M), and high (H). The combination of features with 

the highest confidence is shown in the figure for each level of adaptive and maladaptive trait. 

For the categories of traits with very low support values, the sensor features are not listed.
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Table 1:

The column of the model shows whether the feature comes from the day-level model, participant model, or 

shared by the two models together (D: day-level model, P: participant model, C: day & person-level model). 

Nest Agg. stands for the statistical metrics used to aggregate day-level features to person-level features. NA 

represents no aggregation in the day-level model.

Sensor Abbr. Definition Nest Agg. Model

Heart Rate

HR1 The median of heart rates NA D

HR2 The number of minutes the heart rate fell within the fat burn zone Mean C

HR3 The average of resting heart rates NA D

HR4 The average heart rates Std P

HR5 The mode of resting heart rate Mean P

Sleep

SL1 The average asleep durations NA D

SL2 The sum of all durations of staying in bed after waking up for a nap NA D

SL3 The sum of all durations of being awake but still in bed NA D

SL4 The average asleep durations (not including nap) in each weekend Mean P

SL5 The average durations of deep sleep stages in each weekday Std P

SL6 The median of awake durations Max P

SL7 The minimal of all durations of REM stages Min P

SL8 The start time of the first sleep (not including nap) Mean P

SL9 The standard deviation of all durations of REM stages Std P

SL10 The sum of all durations of REM stages Min P

Step

ST1 The number of active segments Min C

ST2 The number of sedentary segments NA D

ST3 The standard deviations of durations of sedentary segments Mean P

ST4 The sum of durations of sedentary segments Std P

Activity ACT1 The sum of all durations of on foot, running, and on bicycle activities NA D

Battery

Bat1 The sum of all durations of all discharging segments NA D

Bat2 The sum of all durations of all charging segments Mean C

Bat3 The average of all durations’ consumption rates Min P

Call

Call1 The estimate of Shannon entropy for the duration of all incoming calls Min C

Call2 The estimate of Shannon entropy for the duration of all outgoing calls NA D

Call3 The duration of the longest incoming call Mean P

Call4 The mode of the duration of all incoming calls Min P

Call5 The sum of the durations of incoming calls Mean P

Call6 The time in minutes between midnight and the last incoming call Min P

Call7 The number of distinct contacts that are associated with outgoing calls Max P

Call8 The duration of the shortest outgoing call Min P

Call9 The time in minutes between midnight and the first outgoing call Std P

Audio Aud1 The standard deviation of all noise energy values NA D
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Sensor Abbr. Definition Nest Agg. Model

Aud2 The ratio of energy between noise and whole conversation NA D

Aud3 The minimum of all voice energy values NA D

Aud4 The minutes labeled as noise Std P

Aud5 The maximum of all noise energy values Min P

Aud6 The sum of all noise energy values Min P

Location

Loc1 The maximal distance from home in meters. NA D

Loc2 The number of visited significant locations. NA D

Loc3 The standard deviation of length of all movements NA D

Loc4 The estimate of Shannon entropy for the number of visitedsignificant locations NA D

Loc5 The shortest duration of staying at a significant location NA D

Loc6 The ratio between the moving and static durations NA D

Loc7 The totoal distance travelled Min P

Loc8 The standard deviation of the time spent in a significant location Min P

Screen

SR1 The number of all unlock segments Max C

SR2 The time until the first unlock Max C

SR3 The shortest duration of any unlock segment Min C

SR4 The average durations of all unlock segments Min P

WiFi Wifi1 The number of scans of the most scanned access point Std P

Wifi2 The number of unique access point Std P

Bluetooth BL1 The number of scans of the most scanned device:BL1 Max P
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