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Abstract

Non-invasive near-infrared spectral tomography (NIRST) can incorporate the structural 

information provided by simultaneous magnetic resonance imaging (MRI), and this has 

significantly improved the images obtained of tissue function. However, the process of MRI 

guidance in NIRST has been time consuming because of the needs for tissue-type segmentation 

and forward diffuse modeling of light propagation. To overcome these problems, a reconstruction 

algorithm for MRI-guided NIRST based on deep learning is proposed and validated by simulation 

and real patient imaging data for breast cancer characterization. In this approach, diffused optical 

signals and MRI images were both used as the input to the neural network, and simultaneously 

recovered the concentrations of oxy-hemoglobin, deoxy-hemoglobin, and water via end-to-end 

training by using 20,000 sets of computer-generated simulation phantoms. The simulation 

phantom studies showed that the quality of the reconstructed images was improved, compared to 

that obtained by other existing reconstruction methods. Reconstructed patient images show that the 

well-trained neural network with only simulation data sets can be directly used for differentiating 

malignant from benign breast tumors.

Near-infrared spectral tomography (NIRST) has been investigated as a non-invasive imaging 

tool to characterize soft tissue optical properties in the spectral range of 600–1000 nm 

for early detection of cancer [1,2]. NIRST image reconstruction is ill-posed due to strong 

photon diffuse scattering in biological tissue [3,4] and remains a significant challenge for the 

technique and its clinical adoption.

To date, studies have examined how to mitigate the ill-posedness of NIRST image 

reconstruction by employing regularization techniques. Optimal approaches utilize data 
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fitting terms together with regularizers (L2, L1, total variation norm, etc.) to instablilize 

from measurement noise and modeling errors [5]. Within the cadre of approaches, Tikhonov 

regularization is a common and very effective method [6] that utilizes the L2 norm as the 

regularizer. However, it tends to over-smooth reconstructed images and reduces the contrast 

between tumor and surrounding tissue. To enhance the quality of reconstructed images, other 

imaging modalities can be used to provide structural information to guide the reconstruction 

[7].

Two major classes of constraint-based image guidance in NIRST reconstruction involve 

algorithms that introduce hard [7,8] or soft priors [9] or direct regularization imaging (DRI) 

[10,11]. Soft/hard priors can enhance accuracy significantly within localized regions by 

reducing the ill-posedness of NIRST image reconstruction, but they usually require manual 

segmentation to identify regions of interest. Indeed, manual segmentation can introduce 

errors into the reconstruction process, and the accuracy of estimated chromophores is 

then dependent on the accuracy of image segmentation. Additionally, the segmentation 

step can be time consuming and requires sufficient experience to avoid bias or error. In 

contrast, DRI does not need to segment anatomical images; however, it still needs to 

model light propagation in tissue, and model errors due to mesh discretization, imperfect 

boundary conditions, and approximate governing equations are inevitable in NIRST image 

reconstruction.

Deep learning (DL) has been investigated and shown to improve certain image 

reconstruction problems [12–19]. In particular, Lan et al. developed an image reconstruction 

algorithm for photoacoustic (PA) tomography to recover initial pressure distributions based 

on the Y-net architecture [14] in which network inputs were measured PA signals and 

poor quality images recovered by conventional reconstruction algorithms. Accordingly, the 

approach models PA propagation and requires mesh discretization. A multilayer perceptron 

based inverse problem method has been developed to improve the accuracy of source 

location in bioluminescence tomography [15]. More recently, several groups [16–19] have 

reported DL based approaches to estimate optical properties in diffuse optical tomography 

(DOT) [16–18] and validated these algorithms with phantoms [19]. The studies have focused 

on using DL with a single optical input, whereas the method decribed here incorporates 

network inputs from multiple imaging modalities to achieve image reconstruction.

Inspired by these developments and with the unique opportunity to incorporate anatomical 

images into these networks that can further improve NIRST image quality, we developed a 

DL based algorithm (Z-Net) for MRI-guided NIRST image reconstruction. In our approach, 

segmentation of MRI images and modeling of light propagation are avoided, and the 

concentrations of chromophores of oxy-hemoglobin (HbO), deoxy-hemoglobin (Hb), and 

water are recovered from acquired NIRST signals guided by MRI images through end-

to-end training with simulated datasets. Figure 1 shows the Z-Net architecture for 2D 

experiments. Optical signals at nine wavelengths (661, 735, 785, 808, 826, 852, 903, 

912, and 948 nm) and MRI images provide the input to the network. The Z-Net based 

reconstruction algorithm is described in the following steps:
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Step 1. Measured NIRST signals, s ∈ RNs, are input into the network and mapped into 

feature space, φ0, with size 6 * 6 * 256 through a resizing operation described as

φ0 = L p σ σ s * k3 × 3 * k3 × 3 , (1)

where k3×3 is a convolution kernel, * represents the convolution operation, σ(·) denotes 

the batch normalization (BN) and rectified liner unit (ReLU) operation, p is the pooling 

operation, L denotes the double sampling linear interpolation operation, φ0 is the output of 

the resize operation, and Ns is the number of measurements.

Next, the optical features, φn(n = 1, 2, 3, 4), are obtained through four up-sampling layers, 

and the feature of the nth up-sampling layer is reformulated as

φn = σ σ φn − 1 ⊗ k2 × 2 * k3 × 3 n = 1, 2, 3, 4, (2)

where ⊗ denotes the deconvolution operation, and k2×2 is a convolution kernel of size 2 × 2.

Step 2. MRI images, m, are the second Z-net input. They are mapped to feature space, ψ0, 

by down-sampling layers described by

ψ0 = σ σ m * k1 × 1 * k1 × 1 , (3)

where k1×1 is a convolution kernel, which is used to change the number of channels. Next, 

MRI image features, ψn, of the nth layer are obtained through four down-sampling layers:

ψn = Pmax σ σ ψn − 1 * k3 × 3 * k3 × 3 n = 1, 2, 3, 4, (4)

where Pmax denotes the max pooling operation.

Step 3. The features obtained in steps 1 and 2 are input to the deconvolution layers after 

concatenation. Each deconvolution layer concatenates the features from both its previous 

layer and two other paths. The output of the first layer can be described as

ϕ0 = σ σ φ0 ⊕ ψ4 ⊗ k2 × 2 * k3 × 3 , (5)

where ⊕ denotes the concatenation operation. After concatenating features from the 

previous layer, features in the nth (n = 1, 2, 3, 4) concatenation layer are expressed as

ϕn = σ σ φn − 1 ⊕ ψn − 1 ⊕ ϕ5 − n ⊗ k2 × 2 * k3 × 3 . (6)

Finally, images of chromophore concentrations, ℜ, are output through the fourth convolution 

layer:

ℜ = σ σ ϕ4 * k3 × 3 * k3 × 3 . (7)
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A series of 2D circular phantoms with a diameter of 82 mm was used to create simulation 

datasets in which 16 light source and detector pairs were uniformly distributed around 

the circumference of each phantom. One or two circular inclusions with varied inclusion-to-

background contrasts were placed randomly at locations inside the phantoms. Chromophore 

concentrations of HbO, Hb, and water used for training are listed in Supplement 1, Table 

S1. The diameter of the single inclusion was set to be 12, 16, or 20 mm. For phantoms with 

two inclusions, diameters were fixed at 16 mm, but with varied edge-to-edge distances (from 

4 to 42 mm). Chromophore concentrations listed in Table S1 were assigned randomly to 

phantoms with one or two inclusions of different sizes. A total of 20,000 phantoms were 

created to generate the simulation data. When one detector position operates as the source, 

data were collected at the remaining 15 detector locations for each wavelength. Thus, a total 

of 2160 (16 * 15 * 9) data points were collected for each phantom. Open source software, 

Nirfast, was used to generate boundary measurements by solving the diffusion equation [20], 

and 2% Gaussian noise (twice the amplitude noise level of our existing NIRST system, 

which is <1% [21]) was added randomly to the measurements, to evaluate the performance 

of the proposed algorithm.

MRI images corresponding to each phantom were also generated. Specifically, gray values 

of inclusions in MRI images were set to 80, and gray values of background were assigned as 

50, according to the dynamic contrast enhanced (DCE)-MRI contrast commonly observed. 

In addition, 4% Gaussian noise was added to the MRI images.

We used 70% of these datasets for training, 20% for validation, and 10% as testing. The 

Z-net algorithm was implemented in Python 3.7 with PyTorch [22] of Adam [23] with a 

learning rate of 0.005, batch size of 128, and mean square error (MSE) loss function for 

backpropagation, respectively. A workstation with an Intel Xeon CPU at 2.20 GHz and 

2 NVIDIA GeForce RTX 2080 graphic cards with 8 GB memory was the computational 

system used for training and validating our network. Computations consumed 3.9 h for 

training with 200 epochs.

Table 1 shows the number of training parameters and training times for two DL based 

algorithms. Our Z-Net has only 3.48M parameters, and it took approximately 3.9 h for 

training from a 100 × 100-sized dataset. Relative to Y-Net, our method saved 43% in 

parameters and 46% in computation time without reducing reconstruction performance.

Three evaluation metrics were used to validate Z-net performance: MSE [24], peak signal-

to-noise ratio (PSNR) [25], and structural similarity index (SSIM) [26]. For performance 

assessment, we compared our algorithm against two reconstruction methods including DRI 

[10] and Y-Net (network architecture shown in Supplement 1, Fig. S1) [14].

Figure 2 reports statistical results for MSE and PSNR for all phantoms in the testing 

dataset (SSIM shown in Supplement 1, Fig. S2). These phantoms were not used for training. 

Average MSE of water was reduced from 3.6 ± 2.1, 0.19 ± 0.09 (with DRI and Y-net, 

respectively) to 0.05 ± 0.04 (with Z-Net), and average PSNR was improved from 22.1 ± 1.7, 

37.4 ± 5.7 (with DRI and Y-net) to 43.3 ± 3.8 dB with Z-net. In addition, average SSIM 

increased from 0.49,0.78 to 0.99, which is 102% and 27% higher than values yielded by DRI 

Feng et al. Page 4

Optica. Author manuscript; available in PMC 2022 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Y-Net, respectively, indicating that the recovered images are very close to their ground 

truths.

Supplement 1, Fig. S3 shows representative recovered images of HbO, Hb, and water in the 

case of a phantom with three inclusions. Quantitative results are compiled in Supplement 

1, Table S2. Compared to reconstructed images by DRI or Y-Net, images recovered 

with Z-net have values much closer to their ground truths with fewer artifacts. Table S2 

indicates that the proposed Z-net method provided accurate recovery of HbO, Hb, and water 

concentrations compared to the other two algorithms. Errors in recovered values were less 

than 2% of known values. Compared with DRI or Y-net, MSE obtained with Z-Net was 

92.6%, 85.7%, and 99.7%, and 99.2%, 91.7%, and 99.8% lower for HbO, Hb, and water, 

respectively.

To test further generalization of a well-trained Z-Net, the number of source–detector pairs 

in the testing phantom data was reduced from 16 to eight. The corresponding reconstructed 

images with different algorithms are shown in Supplement 1, Fig. S4. Compared to DRI 

or Y-net, images reconstructed by Z-net are higher in quality, and estimated chromophore 

values are closer to the ground truths.

Finally, as an example of clinical relevance, we applied the Z-net approach to image 

reconstruction of patient data obtained by our MRI-guided NIRST system [10,11]. The 

MRI exam and NIRST data acquisition were carried out simultaneously for women with 

undiagnosed abnormalities at the time of the imaging exam. A triangular interface with 

16 fiber bundles as sources–detectors was used to acquire NIRST data at each of nine 

wavelengths in the range of 660 nm to 1064 nm (which are the same as those used in the 

previous simulation experiments). MRI acquisition consisted of standard (T1, T2, diffusion 

weighted imaging) and DCE sequences. Amplitude data at each of nine wavelengths and 

MRI DCE images were input to the trained Z-net. Figure 3 illustrates results obtained from 

a 61-year-old woman with invasive ductal carcinoma in her right breast. Figure 3(a) shows 

a 3D image rendering from the T1-MRI data. The NIRST imaging plane is marked by 

the red rectangle in Fig. 3(b), and dynamic contrast MR images are shown in Fig. 3(c). 

Breast density was fatty, and the patient’s BIRADS score was 5. Figures 3(d)–3(f) present 

reconstructed HbO, Hb, and water images from acquired CW data, respectively. The tumor 

is located accurately, and HbT contrast between tumor and surrounding normal tissue was 

1.47—high values indicate the abnormality was malignant, which was confirmed later by 

pathology.

Figure 4 illustrates results obtained from a 28-year-old woman with a suspicious mass in 

her left breast. Images presented in the figure are the same as Fig. 3. Breast density was 

heterogeneous dense, and the BIRADS score was 3. In this case, HbT contrast between the 

suspicious mass and the surrounding normal tissue was 1.05, suggesting the lesion is benign. 

Pathological analysis confirmed later that the abnormality was a fibroadenoma.

Although DL has been adapted for optical image reconstruction [12–19], the algorithm 

developed here is the first to use DL for combined multimodality image reconstruction. 

The structural information obtained from DCE-MRI was combined with NIRST through DL 
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without segmenting the MRI or modeling the NIRST light propagation in tissue. Simulation 

results show that the quantitative accuracy of NIRST is improved relative to DRI or other 

DL-based reconstruction algorithms. Patient results also suggest that Z-net, when trained 

with only computer generated simulation data from simple and regular-shaped phantoms, 

has potential to differentiate malignant from benign breast abnormalities. Since Z-net was 

trained successfully with simulated phantom data, unlimited training sets can be generated 

to enhance further the generalization of Z-net for MRI-guided NIRST image reconstruction. 

While the MRI images used in training had two regions, one of which mimicked fatty tissue 

(the background) and the other mimicked tumor, and gray-scale contrasts between tumor 

and surrounding background regions were assumed to be constant (at 1.5), patient images 

were generated with Z-net that had different chromophore contrasts in malignant and benign 

cases. These results indicate the robustness of the approach, and the possibility that it can be 

applied to other combined multimodality image reconstructions.

We found Z-net reconstructions generated images with better quantitative accuracy relative 

to Y-net results (Table S2). Z-net also reduced the number of trained parameters to about 

half those needed in Y-net (Table 1). Training time was also reduced with Z-net (from 7.2 

h for Y-net to 3.9 h for Z-net). Finally, Z-net proved to offer an end-to-end reconstruction 

that takes only a few seconds after successful training and leads to near real-time image 

reconstruction that could be applied in clinical settings where more dynamic results are 

needed.

In this study, only tissue hemoglobin concentration (HbO and Hb) and water images were 

used in Z-net to differentiate malignant from benign breast abnormalities. Since Z-net can 

be expanded by adding other parameters, such as oxygen saturation, lipids, and scattering 

properties into the network, the diagnostic power for breast cancer detection may be 

increased even further as multi-spectral systems for tissue spectroscopy are advanced.

Supplement 1, Fig. S5 confirms the importance of using MRI images to guide NIRST 

reconstruction. The phantom used to generate the results in Fig. S5 is the same as the one 

used in Fig. S3. Figures S5(a) and S5(b) present images reconstructed with a traditional 

reconstruction algorithm [20] that uses only NIRST signals as network input. Image quality 

of the reconstructions in Fig. S5 is inferior to that with MRI guidance (in Fig. S3). 

Indeed, inclusion contrast relative to the surrounding background in Fig. S5(b) has nearly 

disappeared. This result demonstrates the value of combining MRI images with NIRST 

reconstruction, especially for DL based image recovery.

In summary, we developed a new tomographic reconstruction algorithm based on Z-Net that 

recovers concentrations of chromophores in NIRST guided by MRI without modeling light 

propagation in tissue or segmenting MRI. We demonstrated that the Z-Net algorithm yielded 

superior performance after being trained by a deep neural network with computer generated 

synthetic phantom data. Future work will expand Z-Net to incorporate 3D patient data and 

test its performance in a larger clinical trial.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Architecture of the proposed Z-Net. All operations are accompanied by batch normalization 

(BN) and ReLU.
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Fig. 2. 
Statistical results for three algorithms for (a) MSE and (b) PSNR.
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Fig. 3. 
Z-net results from a breast cancer patient with a malignant lesion. (a) 3D MRI, (b) 

measurement plane, (c) MRI DCE image, and (d)–(f) reconstructed images of HbO (μM), 

Hb (μM), and water (%), respectively. The red rectangle denotes the reconstruction plane.
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Fig. 4. 
Z-net results from a subject with a benign lesion. (a) 3D MRI, (b) measurement plane, (c) 

MRI DCE image, and (d)–(f) reconstructed images of HbO (μM), Hb (μM), and water (%), 

respectively. The red rectangle denotes the reconstruction plane.
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Table 1.

Number of Training Parameters and Training Time for Different Network Architectures

Method Y-Net Z-Net

Number of parameter (M) 6.09 3.48

Training time (hours) 7.2 3.9
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