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Abstract

Objectives: Biomedical natural language processing tools are increasingly being applied for 

broad-coverage information extraction—extracting medical information of all types in a scientific 

document or a clinical note. In such broad-coverage settings, linking mentions of medical concepts 

to standardized vocabularies requires choosing the best candidate concepts from large inventories 

covering dozens of types. This study presents a novel semantic type prediction module for 

biomedical NLP pipelines and two automatically-constructed, large-scale datasets with broad 

coverage of semantic types.

Methods: We experiment with five off-the-shelf biomedical NLP toolkits on four benchmark 

datasets for medical information extraction from scientific literature and clinical notes. All toolkits 

adopt a staged approach of mention detection followed by two stages of medical entity linking: 

(1) generating a list of candidate concepts, and (2) picking the best concept among them. 

We introduce a semantic type prediction module to alleviate the problem of overgeneration of 

candidate concepts by filtering out irrelevant candidate concepts based on the predicted semantic 

type of a mention. We present MEDTYPE, a fully modular semantic type prediction model which 

we integrate into the existing NLP toolkits. To address the dearth of broad-coverage training data 

for medical information extraction, we further present WIKIMED and PUBMEDDS, two large-scale 

datasets for medical entity linking.

Results: Semantic type filtering improves medical entity linking performance across all toolkits 

and datasets, often by several percentage points of F-1. Further, pretraining MEDTYPE on our novel 

datasets achieves state-of-the-art performance for semantic type prediction in biomedical text.
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Conclusions: Semantic type prediction is a key part of building accurate NLP pipelines for 

broad-coverage information extraction from biomedical text. We make our source code and novel 

datasets publicly available to foster reproducible research.
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1. Introduction

Biomedical natural language processing (NLP) tools are increasingly being applied for a 

wide variety of purposes, from clinical research [1] to quality improvement [2]. One of 

the key ways in which these tools are used is for broad-coverage information extraction: 

identifying all of the biomedical concepts, of all types, that are mentioned in a given 

document. Several well-known biomedical NLP tools have been developed as standalone 

software packages and are regularly used for broad-coverage extraction in non-NLP 

research: for example, cTAKES [3] has been explored for ischemic stroke classification [4] 

and studying infection risk [5]; and MetaMap [6] is frequently used in pharmacovigilance 

[7] and has even been adapted to health outcomes study in social media [8].

One of the central challenges in broad-coverage information extraction is the diversity of 

concepts in the standardized vocabularies that form the backbone of biomedical text analysis 

[9]. For example, the Unified Medical Language System, or UMLS [10], Metathesaurus 

contains over 3.5 million unique concepts belonging to 127 different semantic types.1 While 

much of the prior research on biomedical NLP methods has focused on restricted subsets 

of concepts, such as diseases and disorders or genes and proteins [11], general-purpose 

tools built for arbitrary use must deal with the full breadth of concept types in reference 

vocabularies.

In this study, we propose semantic type prediction as a key component of general-purpose 

biomedical NLP pipelines. Existing pipelines generally take a multi-stage approach to 

information extraction that is a natural fit for integrating semantic type prediction. The 

first stage is mention detection (also referred to as named entity recognition, or NER), 

which involves identifying textual mentions corresponding to different medical concepts of 

interest. The second stage is medical entity linking (also referred to as medical concept 

normalization, or MCN [12]), which can broadly be broken into two phases of candidate 
generation—identifying a set of standardized concepts a specific mention may refer to—and 

disambiguation—picking the best candidate concept for the observed mention based on the 

context (includes both word and phrase sense disambiguation, or WSD).

Compared to mention detection and disambiguation, candidate generation is an under-

studied component of medical information extraction. Prior methods have historically relied 

on dictionary lookup and string matching [6,3] for both NER and candidate generation, 

yielding high precision but incomplete coverage [13,14]. Recent neural methods have taken 

1Counts taken from UMLS 2019AB release.
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an opposite approach to the problem by using entire concept inventories as candidates, 

providing complete coverage at the cost of large candidate set sizes [15–18]. However, this 

approach rapidly becomes intractable when generalizing to wider-coverage vocabularies. 

Thus, robust strategies to reduce overgeneration of candidates are required to leverage the 

high coverage afforded by neural approaches for a broad-coverage setting.

In addition to cataloguing known surface forms for medical concepts, the UMLS 

Metathesaurus also assigns each concept one or more semantic types; these types present 

a significant and under-utilized resource for balancing coverage with candidate set size in 

medical entity linking. In addition to limiting the set of candidate concepts in full-inventory 

approaches, semantic type information can reduce problems of ambiguity in text [19–21]. 

For example, the string cold can refer to common cold (disease), cold temperature (natural 

phenomena), or cold brand (pharmacologic substance) in different contexts. Semantic type 

prediction can thus inform both full-inventory and dictionary-based approaches to medical 

entity linking.

Identifying the semantic type of mentions has previously been shown to improve entity 

linking performance in Wikipedia [22]. However, this idea has not yet been systematically 

explored for medical entity linking, in part due to the dearth of annotated training data 

for the task. Curation of new biomedical text datasets faces significant barriers in the 

difficulty and cost of finding expert annotators [23] as well as the confidentiality and privacy 

issues inherent in sharing medical data [24]. These problems are only compounded in the 

broad-coverage setting, where data must be sufficiently diverse to represent all the kinds of 

information users of NLP systems may be interested in.

This article presents two significant innovations, illustrated in Fig. 1: (1) a fully modular 

approach to alleviating candidate set overgeneration in medical entity linking via semantic 

type prediction, and (2) two large-scale datasets for medical entity linking research that are 

freely shareable. We make the following contributions:

• We present MEDTYPE, a deep learning-based modular system for semantic type 

prediction, and incorporate it into five off-the-shelf toolkits for medical entity 

linking. We demonstrate that semantic type prediction consistently improves 

entity linking performance across several benchmark datasets.

• To address the dearth of annotated training data for medical entity linking, we 

present WIKIMED and PUBMEDDS, two automatically-created, large-scale datasets 

which can serve as a useful resource for medical entity linking research. Our 

work also demonstrates that pre-training MEDTYPE on our proposed datasets 

achieves state-of-the-art performance on the semantic type prediction task.

• We show that type-based filtering significantly reduces the number of candidates 

for disambiguation, enabling further improvements in the final step of medical 

entity linking.

MEDTYPE’s source code and the WIKIMED and PUBMEDDS datasets proposed in this paper 

have been made publicly available at http://github.com/svjan5/medtype.
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The remainder of this article is organized as follows. Section 2 highlights related work 

in the foundational NLP methods and medical NLP literature leading to our work on 

semantic type filtering. Section 3 introduces semantic type filtering as a component of the 

medical information extraction pipeline, and presents MEDTYPE, our state-of-the-art model 

for biomedical semantic type prediction. Section 4 describes our two novel, large-scale 

corpora, including quality assessments of each corpus. Section 5 describes our experimental 

protocol, and Section 6 presents the results of our analysis. Finally, Section 7 discusses 

implications of our findings for research on broad-coverage information extraction, and 

Section 8 concludes the paper.

2. Related work

Information extraction is a well-studied task in NLP, and approaches often diverge between 

the foundational methodologies literature, which typically utilizes news wire or web text, 

and the medical NLP literature, which reflects adaptations to the unique characteristics of 

biomedical text and knowledge (e.g., specialized language, rich typologies, etc.). In this 

paper, we combine recent insights from foundational methods with the rich expert resources 

that are central to biomedical information extraction.

Much of the research in the foundational methods literature focuses on extracting 

information about real-world entities and concepts (people, places, organizations, products, 

etc.), drawing on knowledge sources such as Freebase and Wikipedia. In addition to jointly 

modeling NER and entity linking as interdependent tasks [25,26], many studies leverage 

the rich semantics of the target knowledge base to improve linking performance [27,28]. 

Knowledge bases often group entities into semantic types, which inform several downstream 

NLP tasks such as co-reference resolution [29], relation extraction [30], question answering 

[31], and language modeling [32]. Recent studies have shown that fine-grained entity type 

prediction improves entity linking in Wikipedia text [33,22], indicating a clear potential for 

type prediction as a standard component of entity linking pipelines.

In the biomedical domain, the role of entity type prediction in selecting suitable candidates 

for medical concept mentions was recognized in some of the earliest rule-based medical 

information extraction tools [34]. However, type prediction is typically deeply embedded in 

rule-based NLP tools, hampering generalizability, and discourages their use in deep learning 

systems. [35] utilized neural language modeling frameworks to identify the semantic type 

of a mention in a medical text, but did not apply their predictions downstream; in contrast, 

[36] utilized approximate dictionary matching heuristics with specialized neural language 

models to improve both medical entity typing and entity linking in biomedical literature. 

However, these works have not explored the efficacy of incorporating the type information 

within the entity linking task itself. Zhu et al. model mention and entity types as latent 

variable and jointly optimize type learning and entity disambiguation. Our work alleviates 

the overgeneration problem produced by both rule-based [14] and deep learning systems in 

practical broad-coverage settings, by using the predicted semantic type to prune irrelevant 

candidates. We do so in a modular fashion, making it easy to incorporate in any entity 

linking architecture.
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3. Semantic type prediction with MEDTYPE

Broad-coverage information extraction from biomedical text faces dual challenges of (1) 

a breadth of dozens of information types and millions of candidate concepts that must be 

considered; and (2) resolving ambiguity even for known surface forms, long recognized 

as challenge for off-the-shelf information extraction tools [6] even while development of 

standalone disambiguation and linking models has progressed [37,38]. For instance, as 

shown in Fig. 2, ‘cold’ can refer to several distinct concepts such as common cold(disease), 

cold temperature (natural phenomena), or cold brand of chlorpheniramine-phenylpropanol-
amine (pharmacologic substance). This ambiguity arising from polysemy and homonymy 
leads to overgeneration of candidate concepts, exacerbated by the breadth of potential 

information types of interest. Thus, including an additional step to prune irrelevant candidate 

concepts has the potential to improve entity linking performance by simplifying the final 

disambiguation step.

In this work, we formulate semantic type prediction and filtering as a standalone module 

MEDTYPE : (C, m) C′, for integration into biomedical information extraction pipelines. The 

general type prediction and filtering process is as follows:

1. MEDTYPE takes in as input a medical entity mention m and a generated set 

of candidate concepts C = c_1, c_2, …, c_k , each of which has one or more 

semantic types (here, drawn from the UMLS).

2. MEDTYPE consists of two steps: MedType_Predict: m→t ∈ T, where T is the set 

of all semantic types, and MedType_Filter : C C′.

3. MedType_Predict takes the medical entity mention m and predicts the most 

likely semantic type t of the mention.

4. MedType_Filter takes the candidate set C and outputs a filtered set 

C′ = c_1′, c_2′, …c_k′′ , such that k′⩽k and c_1′…c_k′ are all of the predicted 

semantic type t.

We further present a neural implementation of MEDTYPE as a standalone module which can 

be easily integrated into existing biomedical NLP pipelines. In Fig. 2, MEDTYPE predicts the 

given occurrence of ‘cold’ as referring to a disease, enabling pruning of the other candidates 

and resolving the ambiguity without the need of a dedicated disambiguation module. 

MEDTYPE utilizes recent advances in deep learning-based language modeling techniques 

[39,40] for encoding context to predict the semantic type of a mention. The overall semantic 

type filtering workflow and the architecture of MEDTYPE are shown in Fig. 2; details of the 

semantic type prediction task and MEDTYPE architecture are given in the following sections.

3.1. Information extraction problem definition

Formally, the task of information extraction is defined as follows. Let 

ℰ = e_1, e_2, …, e_N  be a predefined set of entities in a knowledge graph and 

T = w_1, w_2, …, w_ T  be a given unstructured text with n tokens. The information 

extraction task involves identifying mentions {m_1, m_2, …, m_k} of the form w_i…
j in T (mention detection phase) and mapping them to an entity e ∈ ℰ (entity linking 
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phase). Following prior work [41,42], we define ℰ as the set of entities in the UMLS 

[10]. Most entity linking methods follow a two-step procedure: (1) Candidate Generation, 

which involves generating a probable set of candidates C_i = ei_1, ei_2, …, ei_l |ei_j ∈ ℰ
for each mention m_i, and (2) Disambiguation (often referred to as Word/Phrase Sense 

Disambiguation, or WSD), which involves choosing the highest-likelihood candidate 

concept ei_j ∈ C_i.

3.2. Candidate pruning using semantic type

While many non-dictionary-based methods for medical entity linking have been proposed 

(e.g., [43,44]), the most frequently-used off-the-shelf tools [6,3] for broad-coverage 

biomedical information extraction (as well as many recent hybrid models [45–47]) rely 

heavily on dictionary lookup and sub-string matching. In the broad-coverage setting, the 

sheer number of medical concepts and prominence of lexical ambiguity among mentions 

due to homonymy and polysemy [19,20] leads to systematic over-generation of candidate 

concepts.

To alleviate this problem, we utilize an intermediate step of semantic type filtering, which 

takes in a generated candidate set C for a given mention m and outputs a filtered set C′ ⊂ C
based on the predicted semantic type of m. Fig. 2 illustrates this process: several irrelevant 

candidate concepts for the mention cold are pruned by identifying its semantic type of 

Disease/Syndrome in the given context. The semantic type of a mention is identified based 

on its usage in the text. For instance, in Fig. 2, based on its occurrence, the mention cough 
can be interpreted as a symptom rather than a medicine.

3.3. Mapping semantic types to groups

The semantic types in the UMLS Metathesaurus present two challenges for type prediction. 

First, each concept may have more than one semantic type (e.g., C0250873 OX7-SAP is 

both a Pharmacologic Substance and an Immunologic Factor). Second, type frequencies are 

strongly right-tailed: for example, 907,398 concepts are of type Eukaryote, while only two 

UMLS concepts have type Carbohydrate sequence; these differences are exacerbated by the 

sparsity of fine-grained types in entity linking datasets. To ameliorate both of these issues, 

we map the 127 semantic types in the UMLS Metathesaurus to 24 groups, as shown in 

Table 1. These groupings are derived from the UMLS semantic groups defined by [48], with 

additional use of is-a relationships to split too broad groups. We use these broader groups as 

the labels for multi-label semantic type prediction and filtering.

3.4. MEDTYPE architecture

MEDTYPE is a neural model for semantic type prediction in biomedical text, which is fully 

modular and can be included in any biomedical NLP pipeline. MEDTYPE takes in the input 

data of the form D = [(x_0, y_0), …, (x_N, y_N)] where x_i denotes the mention m_i and its 

surrounding context. The context comprises of the neighboring tokens in a window of size 

k, i.e., Con(m_i, k) = (m_i−k, …, m_i−1, m_i−1, …, m_ik) and y_i is the semantic type. 

Motivated by the ability to handle polysemous tokens and superior modeling capabilities 

of long range dependencies of Transformer-based models [49], we utilize a pre-trained 
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BERT [40] encoder and fine-tune it for our type prediction task. In our experiments, we 

use BioBERT [50], an adapted BERT model for biomedical corpora. We give the mention 

with its context, i.e., (m_i−k, …, m_i−1, [MEN] , m, [/MEN] , m_i−1, …, m_ik) as input to the 

encoder. Here, the special tokens [MEN] and [/MEN] are meant for providing the positional 

information of the mention to the model. Finally, the embedding corresponding to [MEN] 

token is passed to a feed-forward classifier for the prediction of semantic types.

4. Novel datasets for medical entity linking

The availability of large scale public datasets helps to drive informatics research forwards 

[51–53]. However, curating large-scale biomedical datasets presents significant obstacles, 

including the expense and scarcity of relevant expertise, which largely precludes crowd-

sourcing [23]; this is compounded in the case of medical records by the challenges of 

maintaining patient confidentiality and privacy [24]. To further medical entity linking 

research in light of these challenges, we present WIKIMED and PUBMEDDS, two large-scale, 

automatically-created datasets for medical entity linking. We describe both the datasets in 

detail in the following sections.

4.1. WIKIMED: Wikipedia-based medical entity linking corpus

WIKIMED Construction: The overall steps for creating WIKIMED dataset are depicted in 

Fig. 3. Wikipedia, though not restricted to medical information, includes a large number of 

mentions of medical concepts that can inform entity typing models. We leverage that for 

constructing WIKIMED dataset. Firstly, we extract the mapping of Wikipedia pages to UMLS 

concepts from several existing knowledge bases such as Wikidata [54], Freebase [55], and 

the NCBI Taxonomy [56]. This gives us a one-to-one mapping of approximately 60,500 

Wikipedia pages to UMLS concepts. Since UMLS concepts are primarily biomedical in 

nature, this helps us identify the relevant Wikipedia pages for medical entity linking. Then, 

for each Wikipedia article, we linked those mentions to UMLS concepts. The Semantic 

Network (of UMLS) provides semantic types for each UMLS concept which we utilize for 

further reassigning mentions to semantic types. This results in a high-quality dataset for 

medical entity typing. Overall, our pipeline extracts around 1 million mentions spanning 

across 400 k Wikipedia articles. More details of the dataset are presented in Table 4. 

Although WIKIMED contains web text on a variety of topics, we find that it helps to improve 

performance on entity linking in other domains as well as shown in Section 6.1.

WIKIMED Quality: The link structure of Wikipedia, which we utilized for creating the 

WIKIMED dataset, is normally treated as ground truth in information extraction and natural 

language processing research [57–61]. While errors have been found in Wikipedia link 

structure [62,63], the average error rate of relational statements (including incorrect 

assertions and incorrect links) has been estimated to be around 2.8% [64], supporting the 

use of Wikipedia links as a sufficiently high-quality resource to yield accurate mappings. 

To assess the correctness of our medically-focused dataset, we randomly sampled 100 links 

from WIKIMED for manual verification. Three authors (SV, DNG, RJ) reviewed each sample 

to assess (1) whether the annotated CUI (identified via automated mapping to the UMLS) 

was appropriate and (2) in cases of an incorrect CUI, whether the annotated semantic type 
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was appropriate. After resolution of disagreements, we found a CUI-level accuracy of 91%, 

and a type-level accuracy of 95% in the 100 reviewed samples. As Wikipedia links are 

provided a priori in the page hypertext, and not all relevant mentions of an entity are marked 

with links, we did not assess either precision or recall of mention detection. Thus, while 

WIKIMED is not appropriate for training or evaluating mention detection models, we find that 

it provides a high-quality silver standard resource for medical entity linking.

WIKIMED is significantly larger than previous medical entity linking datasets: 3× larger than 

MedMentions [65], and 10× larger than the NCBI Disease Corpus [66]. Moreover, WIKIMED 

also provides better coverage of entities from different semantic types than existing datasets, 

as shown in Table 2.

4.2. PUBMEDDS: Distantly-supervised biomedical entity linking corpus

PUBMEDDS Construction: Distant supervision [67] enables automatic generation of 

training data and has been exploited for several tasks [68,69], including identifying potential 

mentions of medical concepts [70]. To create a large-scale training dataset for medical entity 

linking drawn from biomedical language, we use distant supervision on PubMed abstracts to 

generate PUBMEDDS. An overview of the entire process is summarized in Fig. 4. We first run 

a state-of-the-art biomedical NER model [42] on 20 million PubMed abstracts to extract its 

medical entity mentions. We then use the Medical Subject Headings (MeSH) tags assigned 

to each PubMed article to weakly link the extracted entity mentions to a MeSH concept. A 

mention is linked only when it exactly matches with the name of one of the provided MeSH 

headers. The UMLS provides mapping of MeSH headers to UMLS concept identifiers, 

which we utilize to get the semantic type of each linked mention from Semantic Network 

as done for mentions in WIKIMED. Using this procedure, we created PUBMEDDS, a dataset 

with 58 M annotated mentions, which we utilize for pre-training MEDTYPE. The size of 

PUBMEDDS is around 164 times larger than the current largest medical entity linking dataset, 

MedMentions [65]. Next, we demonstrate that although PUBMEDDS is distantly-supervised, 

it has sufficiently high precision to serve as a valuable resource for medical entity linking 

research.

PUBMEDDS Quality Analysis: Distant supervision enables large-scale text annotation 

but can produce noisy data [71]. In order to assess the quality of PUBMEDDS as a dataset 

for medical entity linking, we identified the subset of documents overlapping with three 

manually-annotated datasets using PubMed abstracts: MedMentions [65], NCBI [66], and 

Bio CDR [72]. All PubMed documents annotated in these three datasets were included in 

PUBMEDDS. This allowed us to compare the precision and recall of our distantly-supervised 

mentions to manual annotations. The results of this analysis are reported in Table 3. 

Reflecting on the strict requirements for linking a mention in our dataset (identification with 

a NER tool and exact match to a provided MeSH header), we find that PUBMEDDS omits 

many of the true mentions in these documents, but the vast majority of included mentions 

are annotated correctly (precision of around 84%). Thus, while PUBMEDDS would not be 

appropriate for training medical mention detection (NER) models, its annotations are of high 

quality for training entity type prediction and disambiguation models.
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5. Experimental evaluation

Our work makes three distinct contributions to broad-coverage information extraction 

research: (1) a modular formulation of the semantic type prediction task, which can be 

easily integrated into any pipelined approach; (2) our MEDTYPE model for semantic type 

prediction; and (3) our novel datasets for biomedical entity linking research. We thus 

performed two types of experimental evaluations leveraging four benchmark datasets for 

biomedical information extraction (detailed in Section 5.1).

Semantic type prediction:

We first evaluated MEDTYPE as a stand-alone model for semantic type prediction, comparing 

it against recent type prediction models (detailed in Section 5.2) to measure the specific 

improvements yielded by our approach. We used the gold mentions annotated in each 

dataset directly, without use of a mention detection model. The label for each mention was 

identified by mapping its annotated CUI to its semantic type(s) in the UMLS, and from 

there to one or more of our 24 semantic groups (described in Section 3.3). We trained each 

type prediction model to predict these classes, using the training portion of each dataset and 

evaluating on the test set.

In addition, we measured the impact of our novel entity linking datasets: WIKIMED and 

PUBMEDDS by pretraining our best performing model, MEDTYPE on each dataset individually 

and on both together prior to training on each of the four evaluation datasets, and comparing 

type prediction performance to using MEDTYPE without pretraining.

Information extraction:

We then evaluated the impact of using semantic type filtering as part of five widely-

used biomedical information extraction pipelines (detailed in Section 5.3). To evaluate 

the semantic type filtering module and our MEDTYPE implementation separately, we 

experimented with three approaches for semantic type prediction:

• Oracle (fine): To evaluate the maximum possible improvement from type-based 

pruning of candidate concepts, we experimented with an oracle model which 

always filters the candidate set of entities to entities of the same type as the 

gold standard CUI. The Fine oracle filters based on the 127 original types in the 

UMLS, to control for effects of semantic grouping.

• Oracle (coarse): Our Coarse oracle uses the 24 semantic groups defined in 

Section 3.3, to represent an upper bound of what can be achieved using our type 

prediction models.

• MEDTYPE: Finally, for a practical evaluation aligned with real-world use, we 

incorporate both MEDTYPE and its strongest competitor type prediction model 

into the information extraction pipelines to perform semantic type filtering.

Under each of these settings, we integrate semantic type prediction into the information 

extraction pipeline as follows:

Vashishth et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2022 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Run biomedical information extraction tools to identify (1) mentions of medical 

concepts in a document; and (2) a ranked list of candidate CUIs for each 

mention.

2. Use one of the above semantic type prediction approaches to predict the type of 

each mention, and filter the list of candidate CUIs to only CUIs of that type.

3. Return the highest-ranked CUI in the filtered candidates as the final entity 

linking prediction.

5.1. Datasets

In our experiments, we evaluate the models on four benchmark datasets: the NCBI Disease 

Corpus [66], Bio CDR [72], ShARe [73], and MedMentions [65] for medical entity linking. 

These datasets span across different text genres, such as biomedical research articles and 

Electronic Health Records (EHR), and information domains, allowing us to evaluate the 

generality of MEDTYPE across diverse domains. The dataset statistics and the semantic type 

distribution are presented in Table 4 and Table 2 respectively. Below, we provide a short 

description of each dataset.

• NCBI: The NCBI Disease Corpus [66], which we refer to as NCBI for brevity, 

consists of 793 PubMed abstracts annotated with disease mentions and their 

corresponding concepts in the MEDIC vocabulary [74].

• Bio CDR: The CDR corpus [72] consists of 1,500 PubMed abstracts annotated 

with mentions of chemicals, diseases, and relations between them. These 

mentions were normalized to their unique concept identifiers, using MeSH as 

the controlled vocabulary.

• ShARe: The ShARe corpus [75] is a collection of de-identified clinical notes, 

which was used for a series of NLP shared tasks. We use the subset used in 

a 2014 shared task [76], consisting of 431 documents annotated for disorder 

mentions and grounded to SNOMED CT.

• MedMentions: The MedMentions data of [65] consists of 4,392 PubMed 

abstracts annotated with several biomedical mentions. Each mention is labeled 

with a unique concept identifier and a semantic type using the UMLS as the 

target ontology.

5.2. Type prediction baselines

We compare MEDTYPE against four recent neural entity typing methods. AttentionNER 
[77] utilizes attention mechanism for extracting relevant information from the context of a 

mention for type prediction. DeepType-FC and DeepType-RNN are two neural network 

based models proposed by [22] for entity typing. Type-CNN [78] is another neural approach 

which utilizes CNNs for modeling the global context of a mention for type prediction. 

MedNER [36] uses NLM and dictionary mapping to predict semantic type of medical 

mentions.
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5.3. Biomedical information extraction tools

We integrate MEDTYPE into five widely-used tools for biomedical information extraction, 

each of which performs mention detection (NER) and produces a ranked list of candidate 

CUIs for each mention. Below, we describe each of them in brief.

• MetaMap [6] leverages a knowledge-intensive approach based on symbolic NLP 

and linguistic techniques to map biomedical mentions in text to UMLS concepts. 

MetaMap was developed for indexing scientific literature.

• cTAKES [3] uses a terminology-agnostic dictionary look-up algorithm for 

mapping named entities to UMLS concepts. We utilize the Clinical Pipeline 

of cTAKES augmented with LVG Annotator2. cTAKES was developed for 

analyzing clinical text.

• MetaMapLite [79] re-implements the basic functionalities of MetaMap with an 

additional emphasis on real-time processing and competitive performance.

• QuickUMLS [41] is a fast, unsupervised algorithm that leverages approximate, 

dictionary-matching techniques for mapping biomedical entities in text. 

QuickUMLS was developed as a general-purpose tool and evaluated on 

consumer-generated texts [41].

• ScispaCy [42] builds upon the robust spaCy library [80] for several biomedical 

and scientific text-processing applications such as parsing, named entity 

recognition, and entity linking. ScispaCy was developed primarily for analyzing 

scientific literature.

We do not use the recent CLAMP [16] system in our experiments, as it does not provide 

access to a generated list of candidates for a mention prior to the disambiguation step.

5.4. Evaluation metrics

For semantic type prediction, which we model as a multi-label classification problem, 

following [81,82], we use the area under the Precision-Recall curve (AUC) as our evaluation 

metric.

For entity linking, we evaluate the performance using F1-score for two metrics. In (1) 

Exact_mention_id_match (Exact), true positives are only those samples where both the 

predicted mention bounds and entity concept identifier exactly match the annotation. This 

is directly adopted from TAC KBP 20133. In (2) Partial_mention_id_match (Partial), a 

weighted score is assigned to predicted mentions based on the amount of overlap with 

annotated mention bounds and entity id match. Following [83], for mention matching, the 

number of overlapped characters between system generated mention and a ground-truth 

mention is considered. All the scores are computed using an open-source entity linking 

evaluation toolkit4.

2https://cwiki.apache.org/confluence/display/cTAKES/cTAKES+4.0+-+LVG.
3https://tac.nist.gov/2013/KBP/.
4https://github.com/wikilinks/neleval.
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5.5. Implementation details

Online Demo & medtype-as-service: Along with providing a step-by-step guide for 

reproducing all the results reported in the paper, we also provide code for running an online 

demo of MEDTYPE. We also provide a scalable implementation of MEDTYPE called medtype-

as-service which is based on bert-as-service [84] for processing thousands of documents 

simultaneously.

Hyperparameters: We use pre-trained weights of BioBERT [50] for initializing BERT 

component of MEDTYPE. MEDTYPE is implemented using HuggingFace Transformers library 

[85]. For training, we utilize Adam optimizer [86] with a learning rate in range (10−3, 10−5). 

The window size of context (k) is chosen from {48, 64, 128}. The best hyperparameters 

were selected based on the performance on the validation split of the datasets. We use the 

default hyperparameters for all the entity linkers and components of MEDTYPE. A grid search 

over the validation split was performed for deciding a threshold for each semantic type 

from the range of (0.001, 1). The area under the Precision-Recall curve (AUC) was used for 

choosing the best threshold.

Training Details: All training was performed on NVIDIA-GTX 1080Ti GPUs. Each 

training epoch of MEDTYPE takes from 5 min to 2 days depending on the size of the 

dataset. The models are trained for multiple epochs until the validation performance starts 

to degrade. In terms of number of parameters, MEDTYPE has around 110 million parameters 

(same as BERT-base model).

6. Results

Medical information extraction is a complex process, with multiple points of evaluation and 

multiple types of impact from any new contribution. We present results for four specific 

questions that examine the impact of semantic type filtering with MEDTYPE:

Q1. How effective is MEDTYPE for semantic type prediction, and what is the impact of 

our novel datasets? (Section 6.1)

Q2. Does incorporating MEDTYPE in existing entity linking systems help the overall 

pipeline? (Section 6.2)

Q3. What specific successes do we see from combining MEDTYPE, WIKIMED, and 

PUBMEDDS, and what are remaining challenges? (Section 6.4)

Q4. How much does semantic type-based filtering help prune irrelevant candidates? 

(Section 6.5)

6.1. MEDTYPE is State-of-the-art for medical semantic type prediction

The first step in our evaluation is a modular investigation of the semantic type prediction 

task on its own. In this section, we compare MEDTYPE against the baseline methods detailed 

in Section 5.2 for semantic type prediction. We also evaluate the effectiveness of utilizing 

WIKIMED and PUBMEDDS datasets for the task. For quantifying the benefit of our proposed 
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method and datasets, we report the performance of MEDTYPE trained under different settings, 

as defined below.

• MEDTYPE (MT) denotes MEDTYPE trained on the training split of the 

corresponding datasets.

• MT ← WIKIMED refers to the model first trained on WIKIMED and then fine-

tuned using the training data.

• MT ← PUBMEDDS similar to T ← WIKIMED, indicates MEDTYPE first trained on 

PUBMEDDS and then fine-tuned on the training data.

• MT ← Both denotes the combined model which utilizes both the proposed 

datasets. It concatenates BERT encoding from T ← WIKIMED and T ← 
PUBMEDDS models and passes it to a classifier which is trained using the training 

dataset.

Semantic type prediction results are presented in Table 5. We find that MEDTYPE outperforms 

all the baselines on three of the four evaluation datasets when trained only on the training 

split. Compared to the best performing baseline, we obtain a gain of 0.2, 0.7, and 9.1 AUC 

on Bio CDR, ShARe, and MedMentions respectively. MedMentions contains a much greater 

diversity of semantic types than other datasets (as shown in Table 2). Thus, obtaining a large 

improvement on it indicates that MEDTYPE is more suited for handling large set of types 

compared to the baseline methods.

Further, we find that utilizing our novel datasets WIKIMED and PUBMEDDS yields 

considerable gain in performance. On average, we obtain an increase in AUC of 1.7 from 

WIKIMED alone, 3.9 from PUBMEDDS alone, and 4.5 from using both, across all datasets. 

The combined model which allows to incorporate the benefits from both the corpora gives 

the best performance. This shows that both the datasets contain complementary high-value 

information for semantic type prediction.

6.2. MEDTYPE Consistently improves overall information extraction performance

The primary goal of our study is to investigate the impact of adding a semantic type 

prediction module to the medical information extraction pipeline. In this section, we 

evaluate the impact of MEDTYPE on biomedical information extraction when integrated with 

the tools detailed in Section 5.3. Table 6 reports the results for the Exact_mention_id_match 
and Partial_mention_id_match metrics, as described in Section 5.4.

As discussed in Section 5.1, the NCBI, Bio CDR, and ShARe datasets were annotated 

for specific categories of medical concept mentions (e.g., diseases and disorders only); 

concept mentions outside of these categories were excluded from annotation. By contrast, 

the information extraction tools we experimented with were all preconfigured for broad-

coverage extraction of all types of medical information. Thus, the set of predicted medical 

concept mentions output by any one of our toolkits could include concepts of a type 

excluded from dataset annotation—predictions which we are therefore unable to evaluate. To 

avoid including these mentions in our evaluation, we filtered the output of each toolkit 

for a given dataset to the semantic types included in that dataset’s annotation (e.g., 
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disease mentions only for the NCBI Disease Corpus). We determined the semantic type 

of predicted concept mentions using the final CUI produced as the top-ranked candidate 

after processing with the full information extraction pipeline (including semantic type 

prediction, when used). Thus, if the top-ranked candidate for a given mention was of an 

excluded type when using an unmodified entity linker, that mention would be excluded 

from evaluation (informing both mention detection and entity linking evaluation); however, 

if the introduction of semantic type filtering removed that top-ranked candidate in favor of 

a lower-ranked candidate of a type included in dataset annotation, the mention would be 

included in evaluation.

We compare MEDTYPE against the two oracle approaches described in Section 5, as well 

as against the best-performing baseline from Section 6.1. For each information extraction 

system, we report its default performance along with the change in scores when adding 

different type-based candidate filtering methods. The results for MEDTYPE are obtained after 

pre-training on WIKIMED and PUBMEDDS datasets, based on our findings in Section 6.1.

Across most information extraction tools and datasets, MEDTYPE yields a substantial 

improvement in performance, and it consistently matches or outperforms Type-CNN, the 

best prior method for type prediction. Notably, in no situation does MEDTYPE degrade 

performance; thus, the results indicate that including a type-based filtering step enhances 

information extraction systems in most cases. (See Section 7.5 for a discussion of the 

differences between performance of individual information extraction tools.) The gain with 

MEDTYPE is comparable to improvement with using an oracle, indicating that MEDTYPE 

is reliable enough to use off-the-shelf. The results also show that there is not much 

difference in performance of Oracle (Fine) and Oracle (Coarse). This justifies our choice 

of working with 24 semantic groups rather than the 127 semantic types defined in the UMLS 

Metathesaurus.

We used paired bootstrap significance testing [87] for validating statistical significance 

(p < 0.01) of improvements from MEDTYPE compared to the default pipeline and the top 

performing baseline performance. Our results clearly support the central thesis of this work, 

that pruning irrelevant candidate concepts based on semantic type helps improve medical 

entity linking.

6.3. MEDTYPE improves entity linking performance

The evaluations described in Section 6.2 account for both mention detection—which 

semantic type filtering can affect by removing all candidates for a mention, leading to 

its exclusion—and entity linking. We therefore isolated the effect of MEDTYPE on the entity 

linking portion of the information extraction pipeline alone by restricting our analysis to 

only predicted concept mentions overlapping with gold annotated mentions, and calculating 

the Partial_mention_id_match F-1 metric (detailed in Section 5.4) on this subset. Table 7 

reports results for ScispaCy (the best-performing information extraction tool) on all four 

evaluation datasets.

Baseline performance with ScispaCy is 7–10 points higher in this more restricted evaluation, 

as compared to Table 6, reflecting the additional challenges of mention detection which 
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go into the overall evaluation. Semantic type filtering leads to similar improvements 

for NCBI and Bio CDR in this setting, but noticeably larger improvements on ShARe 

and MedMentions, demonstrating that overall information extraction improvements from 

semantic type filtering are coming primarily from the entity linking portion of the pipeline.

6.4. Gains and challenges of MEDTYPE, WIKIMED, and PUBMEDDS

PUBMEDDS and WIKIMED yield large improvements for rare types: As observed in 

Section 6.1, pretraining MEDTYPE on WIKIMED and PUBMEDDS led to substantial increases 

in semantic type prediction performance. In this section, we investigate which types of 

medical concept mentions were improved the most from this pretraining step. For this, we 

report the F1 score of MEDTYPE, MT ← WIKIMED, MT ← PUBMEDDS and MT ← Both 

models (as defined in Section 6.1) across all semantic types on all the datasets. The overall 

results are summarized in Table 8. In general, we find that performance improves across all 

semantic types as we utilize additional corpora, but the maximum gain is obtained on types 

which have less coverage in the training split. For instance, on types such as Pathological 
Function and Sign or Symptom in the NCBI Disease Corpus, the F1 score jumps from 0 to 

80 and 83.3 respectively. Thus, the broad coverage of medical concept types in WIKIMED and 

PUBMEDDS, combined with their large scale, helps to fill in the gaps of semantic types that 

are not well-represented in the evaluation datasets directly.

Error analysis of MEDTYPE: To gain insight into further opportunities for improvement 

in semantic type prediction, we analyzed MEDTYPE errors in the validation split of the 

MedMentions dataset when using our best performing model, which is pre-trained on both 

WIKIMED and PUBMEDDS datasets. As reflected by Table 5, MEDTYPE is able to identify 

the correct semantic type in the majority of cases. However, as Table 8 shows, performance 

is not uniform across semantic types; e.g., Devices, Finding, Occupations, and Phenomena 
(all involving fairly common words) remain particularly challenging in these data. Table 

9 shows the semantic types most commonly confused with one another, in many cases, 

we see mispredictions of more abstract types such as Objects, Concepts & Ideas, and 

Functional Concepts, regardless of gold semantic type. Thus, there is still significant scope 

for improvement on this problem.

6.5. Impact of semantic type prediction on candidate generation

The preceding sections have shown that semantic type filtering consistently improves entity 

linking performance when using the candidate scoring methods provided in each of our 

evaluated information extraction tools. However, candidate ranking and disambiguation are 

active areas of research [18,37], and the modular nature of both our MEDTYPE model and 

the semantic type filtering task makes it easy to incorporate type filtering into any entity 

extraction pipeline. We therefore investigated the impact of semantic type prediction in 

filtering out over-generated candidate concepts, in order to understand how type filtering 

simplifies the final disambiguation task.

Semantic type-based pruning consistently reduces the candidate set size.—
Fig. 5 illustrates the outcomes of type-based pruning on the candidate set sizes for both 

the 38,234 samples in the MedMentions test set where ScispaCy included the correct CUI 
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in its candidate set and the 21,388 where it did not. Oracle type information, representing 

the upper bound of what type-based pruning can achieve, reduces the candidate set size 

in over 75% of “Correct candidate present” cases at the coarse level, and directly solves 

the sense disambiguation problem in 44% of cases. Fine-grained typing, not shown in 

Fig. 5, only slightly improves these results—candidate set size reduction in 81% of cases, 

full disambiguation in 54%—while significantly complicating the type prediction problem, 

further supporting our choice of coarse labels for MEDTYPE. MEDTYPE, in turn, achieves most 

of the reductions in candidate set size yielded by oracle information, and the performance 

improvements shown in Table 6 clearly demonstrate the practical gains from this filtering. 

MEDTYPE further considerably reduces the number of type mispredictions over the best 

baseline, as seen also in Table 5.

MEDTYPE can help improve the full extraction pipeline.—Failures can occur at 

all three stages of entity extraction: mention detection (NER), candidate generation, 

and disambiguation. Fig. 6 illustrates the number of medical concepts extracted by the 

information extraction tools we used in the MedMentions test set, broken down into (1) 

false positive mentions, where the mention detection stage of the pipeline produced a false 

positive entity span; (2) missing correct candidates, where the candidate generation phase of 

the pipeline did not include the correct entity in the candidate list; and (3) matches, where 

the tool found a valid span and included the correct entity in the candidate set. The five 

tools evaluated varied widely in the number of entities output, but in all cases include a 

significant number of both mention detection and candidate generation errors. In addition 

to MEDTYPE’s utility in reducing candidate set sizes, which allows for broader-coverage 

candidate generation methods, we also observe that in all cases where a false positive 

mention was produced, MEDTYPE classified it as a None type; this indicates clear utility in 

incorporating MEDTYPE as a component of any system to filter out false positives in NER.

Degree of candidate set size reduction from semantic type filtering.—Fig. 

7 expands the analyses presented in Fig. 5 to show the detailed distribution of the 

candidate set sizes within the predicted samples of MedMentions that included the correct 

candidate, comparing oracle type filtering strategies to MEDTYPE and the best type prediction 

baseline. ScispaCy, presented here as the best-performing information extraction tool on 

MedMentions, limits its output candidate set to 5 by default; however, all tools used 

displayed similar behavior in our experiments.

7. Discussion

We have demonstrated that semantic type filtering is a valuable addition to NLP pipelines 

for broad-coverage biomedical information extraction. We discuss broader impacts of 

MEDTYPE in biomedical NLP in Section 7.1, and other approaches to semantic type filtering 

in Section 7.2. We further highlight the contributions of our novel WIKIMED and PUBMEDDS 

datasets for biomedical concept normalization research in Section 7.3, and note potential 

effects of biased data in Section 7.4. Finally, we discuss two further implications of our 

findings for continued research on this important use case: the choice of information 

extraction tool for a given setting (Section 7.5), and opportunities for further research 

synthesizing semantic type prediction and disambiguation (Section 7.6).
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7.1. Broader applicability of MEDTYPE in biomedical NLP

Identifying mentions of biomedical concepts in text is one of the fundamental building 

blocks of biomedical NLP. As a result, a wide variety of highly heterogeneous methods 

have been developed to perform concept identification [88]. As a fully modular component 

which takes as input a set of candidates and returns a set of candidate as output, MEDTYPE 

can be easily incorporated into any type of medical concept recognition system that uses 

a set of candidate concepts. Such systems are key elements of NLP pipelines for diverse 

applications, such as adverse drug event detection [89], biosurveillance [90], and patient 

phenotyping [91]. Morever, many biomedical NLP applications that do not use concept-level 

mapping nevertheless make use of coarse-grained type information [92,93], which the 

modular type prediction component of MEDTYPE is well positioned to enhance. MEDTYPE’s 

role in refining and organizing medical information in text thus makes it a valuable addition 

to a wide variety of biomedical NLP pipelines, and its fine-tuning process can be easily used 

to adapt it to any dataset.

7.2. Generalizability and other approaches to semantic type filtering

Beyond alignment to the UMLS and other controlled vocabularies, biomedical NLP systems 

often employ custom typologies for specific applications, such as in analyzing radiology 

notes [94] or functional status information [95]. As seen in our experiments without 

pretraining, MEDTYPE can be trained to predict the semantic types of a dataset using 

a relatively small amount of data (i.e., hundreds of documents). Thus, MEDTYPE could 

be deployed as an element of NLP pipelines with custom typologies as well, via an 

intermediate step of training the type prediction model on the task-specific dataset.

More broadly, semantic type filtering as presented here is not specific to our MEDTYPE 

implementation; a variety of approaches could be used within the general framework 

described in Section 3. Past work has leveraged rule-based and lexical approaches for 

semantic type prediction [6,94], or incorporated semantic type prediction as one element of 

a larger joint neural system [36]. MEDTYPE serves as a strong baseline for additional research 

in this area.

7.3. WIKIMED and PUBMEDDS are valuable resources for biomedical concept normalization 
research

The expense and difficulty of producing large-scale datasets is a major limiting factor 

in biomedical NLP research. This is particularly the case for the labor-intensive task of 

annotating datasets for biomedical concept normalization, where information density is high 

and there are thousands of candidate concepts to choose from in the annotation process. 

The WIKIMED and PUBMEDDS datasets introduced in this work are a step towards alleviating 

this problem, presenting millions of annotated concept mentions with a high diversity in 

semantic type coverage. While these datasets were automatically created and therefore 

subject to noise from the link mapping process (WIKIMED) and from distant supervision 

(PUBMEDDS), our evaluation of them shows the annotations to be a high-quality silver 

standard, which can serve as a valuable resource for further research on semantic type 

prediction and biomedical concept normalization.5

Vashishth et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2022 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.4. Potential effects of biased data on MEDTYPE and novel datasets

The effects of biased data and algorithms in producing biased AI systems (including 

medical AI systems) is an important and rapidly-growing area of inquiry [96,97]. While 

MEDTYPE is not directly predicting sensitive information related to patients, or decisions 

about their treatment, it is nonetheless worth noting potential sources of bias that may be 

reflected in the outcomes of this study. Two interrelated types of bias are important to 

discuss: demographic bias (e.g., racial or gender bias) and statistical bias (in the sense of 

modeling the characteristics of one dataset over another). One major contributing factor to 

demographic bias in NLP systems is a lack of representatively diverse data; by learning the 

characteristics of data produced by a subset of the population, the resulting models are less 

effective in more diverse settings [98,99]. A significant portion of biomedical NLP research 

(including many of the datasets used in this article) relies on PubMed—which reflects racial 

disparities in scientific funding and publication [100]—and Wikipedia—which exhibits both 

racial and gender biases in the presentation of information [101,102]. These biases thus 

have the potential to be propagated in terms of the different sets of language in which NLP 

models will be most effective. From a more statistical sense, models trained on one genre 

of text (such as Wikipedia) generally show some performance degradation when applied to 

text from other genres (such as PubMed). Investigating potential biases in biomedical NLP 

systems for information extraction is an important direction to continue in future work.

7.5. Contribution of semantic type filtering by information extraction toolkit

While our results show consistent improvements in information extraction performance from 

integrating semantic type prediction, the effect size varies from toolkit to toolkit and genre 

to genre. For example, improvements in MetaMap performance are 1% or less for NCBI, 

Bio CDR, and ShARe, while QuickUMLS performance noticeably improves on all datasets 

but NCBI, and ScispaCy and MetaMapLite show large improvements from semantic type 

filtering across the board. These differences are in large part attributable to differences in 

the size of the candidate set produced by each toolkit; for example, cTAKES, which sees 

small relative improvements from type filtering, produces the fewest average candidates 

per mention of the tools we used, while ScispaCy (as illustrated in Fig. 7) produces its 

built-in maximum of 5 candidates for the majority of samples analyzed. This indicates 

that revisiting candidate generation strategies, using semantic type filtering to balance out 

more permissive candidate generation, is a worthwhile direction for improving coverage in 

biomedical information extraction.

7.6. Opportunities for disambiguation research using semantic type filtering

Disambiguating the candidate concepts produced by medical entity extraction pipelines has 

been a long-standing area of research, with several tools developed to integrate with existing 

pipelines. The YTEX suite of algorithms [103,104] extends both MetaMap and cTAKES 

with a disambiguation module that helps to reduce noise considerably, although [105] 

found that it often over-filtered correct concepts. There has also been significant research 

5We note that WIKIMED and PUBMEDDS should not, however, be used to train biomedical mention detection (NER) systems, as the 
automated annotation process emphasized precision over recall and many potentially valid concept mentions were not included due to 
missing links (wiki) or MeSH headers (PUBMEDDS).
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in recent years on developing standalone models for disambiguation, using co-occurrence 

and feature-based approaches [106–108] as well as neural models [37,109]. Medical concept 

normalization more broadly has also become an increasing research focus [38,15], with 

significant opportunities for disambiguation research [21].

MEDTYPE, and the semantic type filtering task more broadly, can be easily combined with 

any of these approaches to create a multi-stage filtering strategy for the disambiguation 

stage of the information extraction pipeline. MEDTYPE performs coarse filtering to a high-

confidence set based on predicted type, a key step for narrowing down over-generated 

candidate sets in both open-ended deep learning systems and dictionary-based pipelines built 

for broad coverage; disambiguation methods can then perform a fine-grained selection of 

the correct candidate to further improve entity linking performance. We highlight this as an 

important direction for future work on medical entity linking.

7.7. Limitations of this study

MEDTYPE consistently improves the performance of the medical entity linking systems 

we evaluated. However, this study has some limitations that can help to guide further 

research on medical entity linking methods. While our use of coarse-grained semantic 

types simplified the type prediction task and removed the issue of multiple valid types for 

UMLS concepts, these semantic groups can be overly broad in practice (e.g., combining 

symptoms and diagnoses into a single category) and may be qualitatively undesirable. Our 

fine-grained oracle results in Table 6 also showed frequent improvement over the coarse-

grained oracle, particularly in the heterogeneous MedMentions dataset, suggesting further 

potential improvement from a more granular type prediction system.

In addition, while MEDTYPE helps to correct for candidate generation errors by pruning 

out all candidate concepts of the wrong type, it cannot identify a candidate that was not 

generated in the first place. Similarly, a candidate selection algorithm that improperly 

scores candidate concepts within a single semantic type will not be affected by MEDTYPE. 

Future research can leverage the value of semantic type filtering to take advantage of broad-

coverage candidate generation approaches to improve recall, and fine-grained candidate 

scoring algorithms focusing on specific semantic types to improve precision.

For application purposes in biomedical settings, explainability and system accountability 

are often of high importance. Providing explanations for the opaque outputs of deep neural 

network models in medical settings remains a significant challenge [110], and there is 

an active debate over how explainable such models can be [111]. Providing insight into 

MEDTYPE successes and failures, and options for users to adjust system parameters for their 

specific settings, will be an important part of supporting broader adoption of biomedical 

NLP technologies like MEDTYPE.

Finally, our results are necessarily limited by the homogeneity of some of our datasets. Of 

the evaluation sets, only MedMentions includes samples of all semantic types; our picture of 

MEDTYPE’s impact is thus incomplete for other PubMed data or for clinical language.
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8. Conclusion

Broad-coverage information extraction from biomedical text is an important application 

area for biomedical NLP tools, and one which poses significant challenges in the scale 

and diversity of information to extract. To help address these challenges, we introduced 

semantic type prediction as a modular component of biomedical information extraction 

pipelines, and presented MEDTYPE, a state-of-the-art neural model for semantic type 

prediction. We demonstrated that semantic type prediction measurably improves information 

extraction performance on four benchmark datasets from different genres of text and types 

of information, and that these improvements are observed consistently when integrating 

type prediction into five commonly-used tools for biomedical information extraction. We 

further presented two new, automatically-created datasets, WIKIMED and PUBMEDDS, which 

are significantly larger than any previous resources for medical entity linking research. 

While the automated annotation processes to create these datasets introduced some noise, 

they retained high fidelity in their annotations (over 84% precision for PUBMEDDS, and 

91% CUI-level accuracy in WIKIMED) and our results demonstrate their utility in training 

semantic type prediction models. We make the source code for our experiments and our 

two novel datasets available to the community from http://github.com/svjan5/medtype, as a 

resource for further research on biomedical information extraction.
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Fig. 1. 
Overview of article contributions. We present MEDTYPE, a novel, modular system for 

biomedical semantic type prediction, together with WIKIMED and PUBMEDDS, two large-

scale, automatically created datasets for medical concept normalization that we use to 

pretrain MEDTYPE. We show that integrating MEDTYPE with five commonly used packages 

for biomedical information extraction improves performance across the board on four 

benchmark datasets.
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Fig. 2. 
Overview of MEDTYPE. For a given input text, MEDTYPE takes in the set of identified 

mentions along with their list of candidate concepts as input. Then, for each mention, 

MEDTYPE predicts its semantic type based on its context in the text. The identified semantic 

type is used to filter out the irrelevant candidate concepts thus controlling overgeneration of 

candidates and improving medical entity linking. Please refer to Section 3 for details.
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Fig. 3. 
Constructing WIKIMED from Wikipedia data. We map each linked mention in Wikipedia 

articles to a UMLS concept using mappings obtained from Freebase, Wikidata and NCBI 

knowledge bases.
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Fig. 4. 
Constructing PUBMEDDS using distant-supervision on PubMed corpus. For each article, we 

apply biomedical NER on its abstract for obtaining relevant entity mentions which are then 

linked using supervision from MeSH headings of the article. Refer to Section 4.2 for details.
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Fig. 5. 
Outcomes of semantic type filtering in MedMentions data, in terms of reduction in candidate 

set size. All results are reported using the best-performing information extraction model 

(ScispaCy). Top graphs display candidate set reduction using oracle type filtering, broken 

down into whether the correct candidate was included in the list generated by ScispaCy. 

Bottom graphs illustrate corresponding outcomes from MEDTYPE and the strongest type 

prediction baseline (Type CNN), broken down by whether the predicted type was correct. 

The number of samples each graph displays is provided, along with the percentage of these 

samples included in each reduction category.

Vashishth et al. Page 32

J Biomed Inform. Author manuscript; available in PMC 2022 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Error analysis of output predictions from all information extraction tools on the 

MedMentions test set (annotated set size: 70,405 mentions). False positive mentions are 

spurious entity spans extracted by the tools; Missing correct candidate cases indicate 

exclusion of the correct entity from the returned candidate list. Matched indicates that 

neither of these errors were present. Refer to Section 6.5 for details.
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Fig. 7. 
Distribution of candidate set sizes in MedMentions using ScispaCy, comparing unfiltered 

concepts to candidate sets filtered using semantic type prediction strategies. Only mentions 

predicted by ScispaCy that included the correct CUI in the candidate set are included. Larger 

bars to the left-hand side of the figure indicate greater reductions in candidate set size.
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Table 1

Grouping of the 127 semantic types in the UMLS Metathesaurus into 24 semantic groups. The semantic 

groups were derived from McCray et al. [48] and is-a relationships in the Semantic Network. Refer to Section 

3.3 for details.

Groups Semantic Types

Activities & Behaviors Activity, Behavior, Daily or Recreational Activity, Event, Governmental or Regulatory Activity, Individual 
Behavior, Machine Activity, Occupational Activity, Social Behavior

Anatomy Anatomical Structure, Body Location or Region, Body Part, Organ, or Organ Component, Body Space 
or Junction, Body Substance, Body System, Cell, Cell Component, Embryonic Structure, Fully Formed 
Anatomical Structure, Tissue

Chemicals & Drugs Amino Acid, Peptide, or Protein, Antibiotic, Biologically Active Substance, Biomedical or Dental Material, 
Chemical, Chemical Viewed Functionally, Chemical Viewed Structurally, Element, Ion, or Isotope, Enzyme, 
Hazardous or Poisonous Substance, Hormone, Immunologic Factor, Indicator, Reagent, or Diagnostic Aid, 
Inorganic Chemical, Nucleic Acid, Nucleoside, or Nucleotide, Receptor, Vitamin

Concepts & Ideas Classification, Conceptual Entity, Group Attribute, Idea or Concept, Intellectual Product, Language, 
Quantitative Concept, Regulation or Law, Spatial Concept, Temporal Concept

Devices Drug Delivery Device, Medical Device, Research Device

Disease or Syndrome Disease or Syndrome

Disorders Acquired Abnormality, Anatomical Abnormality, Cell or Molecular Dysfunction, Congenital Abnormality, 
Experimental Model of Disease, Injury or Poisoning

Finding Finding

Functional Concept Functional Concept

Genes & Molecular 
Sequences

Amino Acid Sequence, Carbohydrate Sequence, Gene or Genome, Molecular Sequence, Nucleotide Sequence

Living Beings Age Group, Amphibian, Animal, Archaeon, Bacterium, Bird, Eukaryote, Family Group, Fish, Fungus, 
Group, Human, Mammal, Organism, Patient or Disabled Group, Plant, Population Group, Professional or 
Occupational Group, Reptile, Vertebrate, Virus

Mental or Behavioral 
Dysfunction

Mental or Behavioral Dysfunction

Neoplastic Process Neoplastic Process

Objects Geographic Area, Entity, Food, Manufactured Object, Physical Object, Substance

Occupations Biomedical Occupation or Discipline, Occupation or Discipline

Organic Chemical Organic Chemical

Organizations Health Care Related Organization, Organization, Professional Society, Self-help or Relief Organization

Pathologic Function Pathologic Function

Pharmacologic Substance Clinical Drug, Pharmacologic Substance

Phenomena Biologic Function, Environmental Effect of Humans, Human-caused Phenomenon or Process, Laboratory or 
Test Result, Natural Phenomenon or Process, Phenomenon or Process

Physiology Cell Function, Clinical Attribute, Genetic Function, Mental Process, Molecular Function, Organ or Tissue 
Function, Organism Attribute, Organism Function, Physiologic Function

Procedures Diagnostic Procedure, Educational Activity, Health Care Activity, Laboratory Procedure, Molecular Biology 
Research Technique, Research Activity, Therapeutic or Preventive Procedure

Qualitative Concept Qualitative Concept

Sign or Symptom Sign or Symptom
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Table 3

Quality assessment of PUBMEDDS, based on the subset of documents it shares with the NCBI Disease 

Corpus, Bio CDR, and MedMentions. Precision and recall are calculated with respect to overlap between our 

automated annotations in PUBMEDDS and the gold standard annotations in the comparison datasets. We find 

that although PUBMEDDS has low coverage, extracted mentions have high precision across the three datasets.

Documents shared with Precision Recall

NCBI 86.3 6.5

Bio CDR 75.8 1.3

MedMentions 90.3 5.3
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Table 4

Details of the medical entity linking datasets used in our experiments; #Unq Con refers to the number 

of unique CUIs in each dataset. WIKIMED is our novel automatically-annotated Wikipedia dataset, and 

PUBMEDDS is our novel distantly supervised dataset.

Datasets #Documents #Sentences #Mentions #Unq Concepts

NCBI 792 7,645 6,817 1,638

Bio CDR 1,500 14,166 28,559 9,149

ShARe 431 27,246 17,809 1,719

MedMentions 4,392 42,602 352,496 34,724

WIKIMED 393,618 11,331,321 1,067,083 57,739

PUBMEDDS 13,197,430 127,670,590 57,943,354 44,881
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Table 5

Semantic type prediction results, comparing MEDTYPE (with and without additional corpora) to our four 

baselines; we report the area under the precisionrecall curve as our evaluation metric. MT ← X denotes 

MEDTYPE first trained on X dataset then fine-tuned using T. We find that MEDTYPE outperforms other 

methods on 3 out of 4 datasets. Also, pre-training on WIKIMED and PUBMEDDS gives substantial boost in 

the performance. More details are provided in Section 6.1.

NCBI Bio CDR ShARe MedMentions

AttentionNER [77] 94.5 89.1 88.7 72.0

DeepType-FC [22] 95.1 82.9 89.3 72.9

DeepType-RNN [22] 92.8 86.9 86.1 74.1

Type-CNN [78] 95.2 88.9 89.8 74.4

MedNER [36] 95.6 90.2 84.4 67.5

MEDTYPE (MT) 94.5 90.4 90.5 83.5

MT ← WIKIMED 94.9 93.5 93.2 84.0

MT ← PUBMEDDS 96.8 97.3 93.6 86.8

MT ← Both 97.2 97.3 95.1 87.3
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Table 7

Results of Partial_mention_id_match evaluation of ScispaCy on all four evaluation datasets. Evaluation is 

restricted to only predicted samples that overlap with gold annotations, to control for the effects of mention 

detection errors. The number of samples in this restricted subset of each dataset is given in the column 

headers.

NCBI
(1,042)

Bio CDR
(9,243)

ShARe
(6,691)

MedMentions
(61,367)

ScispaCy 56.0 60.9 30.9 42.8

Oracle (Fine) +4.2 +2.7 +5.3 +9.9

Oracle (Coarse) +4.2 +2.6 +5.3 +8.1

Type-CNN +3.5 +1.2 +4.2 +4.1

MEDTYPE +3.8 +2.2 +4.7 +4.9
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Table 9

Most frequent confusions in semantic type predictions on the MedMentions validation set, using MEDTYPE 

pretrained on WIKIMED and PUBMEDDS.

Target Semantic Type Top Confused Semantic Types

Devices Concepts & Ideas, Objects, Procedures,

Disorders Disease or Syndrome, Finding

Finding Concept & Ideas, Physiology, Functional Concept

Functional Concept Procedures, Concepts & Ideas

Genes & Mol. Sequences Chemicals & Drugs

Mental and Behavioral Dys. Disease or Syndrome, Finding

Objects Concepts & Ideas, Chemicals & Drugs

Occupations Procedures, Concepts & Ideas, Functional Concepts

Organic Chemicals Chemicals & Drugs, Pharmacological Substances

Organizations Concepts & Ideas, Procedures, Living Beings

Pathologic Functions Disease or Syndrome, Finding, Functional Concepts

Pharmacological Substance Chemical & Drugs, Organic Chemicals
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