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Abstract: Cross-talk between the immune system and the brain is essential to neuronal development,
neuronal excitability, neuroplasticity, and neurotransmission. Gut microbiota are essential to immune
system development and immune function; hence, it is essential to consider more broadly the
microbiota-immune-brain axis in neurodevelopment. The gut, brain, and microbial metabolomes
obtained from C57Bl/6 and T-cell-deficient mice across four developmental timepoints (postnatal
day 17, 24, 28, and 84) were studied by 'H NMR spectroscopy. 165 rRNA gene sequencing was
performed on cecal and fecal samples. In the absence of T-cells, the developmental trajectory of the
gut microbiota and of the host’s metabolic profile was altered. The novel insights from this work
include (1) the requirement of functional T-cells for the normal trajectory of microbiotal development
and the metabolic maturation of the supra-organism, (2) the potential role for Muribaculaceae taxa in
modulating the cecal availability of metabolites previously implicated with a role in the gut-brain
axis in T-cell deficient mice, and (3) the impact of T-cell-deficiency on central levels of neuroactive
metabolites.

Keywords: T cells; metabolome; microbiota; brain; Muribaculaceae; 5-aminovalerate; glucose-6-phosphate;

butyrate; valerate; immunocompromised

1. Introduction

A paradigm shift in neuroscience and psychiatry has occurred in the last 10 years
with the discovery that the trillions of microbes in our gastrointestinal tract influence brain
function and behaviour. Importantly, a potential role for the microbiome and microbe-
immune signalling pathways in neurodevelopment has emerged [1]. T-lymphocytes are
a key mediator of this crosstalk [2,3]. While the impact of the gut microbiome on the
development of the immune system is well-established, a clear understanding of how
microbiota-immune signalling impacts neurodevelopment is still in its infancy.

In order to understand microbiota-immune-brain signalling, it is essential to consider
the microbiota-immune interface in the gut. At the mucosal interface, exposure to and
recognition of microbial antigens contribute to the establishment of a symbiotic relation-
ship between the gut microbiota and their hosts by setting the balance between different
populations of T-lymphocytes, including helper T (Th) cells and regulatory T (Treg) cells [4].
In fact, germ-free (GF) animals, born in the absence of a gut microbiota, exhibit an underde-
veloped adaptive immune system, characterized by immature T and B cells [5,6]. Recently
evidence is accumulating to indicate that T-lymphocytes are involved in the regulation
of the gut microbiota. Severe combined immunodeficient (SCID) and non-obese diabetic
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SCID (NOD/SCID) mice, lacking mature B- and T-lymphocytes, exhibit abnormalities in
gut microbial composition (especially an increase in Lactobacillus) and lower alpha diver-
sity [7]. The same finding was also reported in T-cell deficient CD3-epsilon—/— mice, where
microbiome diversity was rescued by transfer of Foxp3* T-cells [8]. In mice depleted of
mucosal Treg cells, the composition of the gut microbiota was significantly altered, with
a decrease in mucosal-associated bacteria, Mucispirillum schaedleri, Lactobacillus johnsonii,
and Helicobacter hepaticus, but an increase in Alistipes sp. and Bacteroides uniformis [9]. Gut
microbial metabolism was also shown to be affected by T-cell deficiency, with alterations in
amino acid synthesis [9] and lipid metabolism [10] in the intestine of T-cell deficient mice.

Previous work from our group based on studies of different models of combined
immunodeficiencies [11,12] showed that mice depleted of T-cells via knock-out of the 3 and
b chains of the T-cell receptor (TCR —/-0—/-) exhibited decreased anxiety-like behaviour, but
elevated baseline plasma corticosterone and enhanced gene expression changes in response
to stress than C57B1/6 (B6) mice [13,14], similar to what was previously reported in GF
mice [15-17]. These behavioral and physiological alterations were paralleled by changes in
the volume of several brain regions [13]. Recently, o T-cells have been shown to modulate
anxiety-like behavior by releasing IL-17a at the meninges and eliciting transcriptional
changes in neurons [2]. Together, these studies support a link between T-cell-microbe
crosstalk and the behavioral phenotype.

In this study, a longitudinal design was used to map the temporal gut microbial and
gut/brain metabolomic trajectory during postnatal development spanning from early-life
to adulthood in wild type B6 and T cell deficient mice (TCR —/-0—/-) [13,14,18]. Our data
showed that compared to B6 mice, TCR —/-0—/- mice had an altered trajectory of micro-
biome maturation, reduced alpha diversity, several differences in microbial composition,
including increased abundance of Akkermansia and reduced abundance of Rosburia, and
changes in gut and brain metabolite profiles. Using integrated analytical approaches, our
data showed that reduced cecal and fecal butyrate levels were associated with Muribacu-
laceae taxa in TCR B—/-6—/— mice. Moreover, T-cell related changes in gut microbiota and
metabolome were paralled by changes in neuroactive metabolites in the brain.

2. Results
2.1. T-Cell Deficiency Altered the Developmental Trajectory of Alpha Diversity

Compositional differences in gut microbiota between B6 and TCR B—/~J—/— mice were
investigated by 165 rRNA gene sequencing. Sequencing data resulted in 2207 different
amplicon sequence variants (ASV) belonging to 1095 unique assigned taxonomies at the
genus level. All samples with a read count below 5000 were omitted from further analysis,
resulting in a minimum and maximum number of reads per sample of 5115 and 114,609
with a median of 57,799 reads. Fecal (n = 6 per sex per genotype) and cecal samples
(n = 6 per sex per genotype) were analyzed separately for all diversity measurements. The
developmental trajectory of alpha diversity differed in B6 and TCR B—/~0—/— mice (Figure 1).
In B6 mice, alpha diversity, measured by Shannon and Inverse Simpson indices in both fecal
and cecal samples, increased over postnatal development with notable stepwise increases
in alpha diversity post-weaning (P24 > P17) and post-puberty (P84 > P28). In contrast,
alpha diversity in TCR f—/-6—/- mice was higher at P17 (pre-weaning) compared to B6
mice in both fecal and cecal samples. However, there was no additional increase in alpha
diversity over the post-weaning and post-puberty time periods, resulting in reduced alpha
diversity at P28 (pre-puberty) and adult (post-puberty) in TCR f—/-6—/~ mice compared to
B6 mice. No sex differences were observed in alpha diversity (p > 0.05 for all timepoints).
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Figure 1. Developmental changes in alpha and beta diversity of cecal and fecal samples in T cell re-
ceptor double knock-out (TCR B—/-6—/-) and C57Bl6 (B6) mice. Shannon and Inverse Simpson indices
were used to calculate alpha diversity for each genotype, age and sex (1 = 6 per genotype/age/sex).
Min-max boxplots comparing alpha diversity metrics across timepoints for cecal and fecal samples
are shown in (A,B), respectively. For both cecal and fecal samples, alpha diversity at P17 was higher in
TCR B—/-6—/- than in B6 mice (Shannon fecal p = 0.029, cecal p = 0.0005, Simpson fecal p = 0.029, cecal
p <0.0001). This trend reversed at following timepoints (P24, pre-puberty to 12 weeks, adulthood),
with TCR B—/-6—/- mice exhibiting lower alpha diversity than B6 mice (P24 Shannon fecal p = 0.133,
cecal p = 0.038, Simpson fecal p = 0.08, cecal p = 0.39; P28 Shannon fecal p = 0.007, cecal p = 0.0002,
Simpson fecal p = 0.007, cecal p = 0.0019; P84 Shannon fecal p = 0.0001, cecal p < 0.0001, Simpson
fecal p = 0.0011, cecal p = 0.0002). Sex differences were not observed in alpha diversity. Principal
component analysis (PCA) decomposition of Bray-Curtis dissimilarity between samples is shown
in (C) (cecal) and (D) (fecal). Samples collected from B6 mice at P17 show strong clustering and
separation from later timepoints, a temporal pattern not observed in the microbiota of TCR S—/-6—/-
mice. A significant main effect of genotype was found for both fecal and cecal samples and for all
timepoints (p < 0.001).
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2.2. Beta Diversity Analysis Revealed Significant Clustering by Genotype

Longitudinal comparison of beta diversity between genotypes was assessed through
comparison of Jaccard, Bray Curtis, and Aitchison distances at the ASV level. Figure 1
shows principal component analysis of Bray-Curtis distance metrics in fecal and cecal
samples (models constructed on Jaccard and Aitchison distances are shown in Supplemen-
tary Figure S1). A PERMANOVA test revealed a significant main effect of genotype for
all distance metrics, timepoints, and sample types ((p < 0.001), indicating compositional
differences between TCR B—/-0—/— and B6 mice over P28 and P84) found that genotype
explained the greatest amount of variation in distance metrics (Jaccard, R? = 0.265; Bray-
Curtis, R? = 0.228; Aitchison, R? = 0.263), followed by Age (Jaccard, R? = 0.091; Bray
Curtis, R? = 0.155; Aitchison, R? = 0.094), while no sex differences were observed (p=0.883,
0.971, and 0.998, respectively). A similar pattern was observed in fecal samples (see all
R? values in Supplementary Table S1). A permutation test for homogeneity of disper-
sions (PERMDISP?2) revealed different results across indices. A dispersion test of Jaccard
distance showed no significant effect of genotype for all timepoints, in both fecal and
cecal samples. However, a significant effect of genotype at P17 and P28 (p < 0.01) was
seen in dispersion tests using Bray-Curtis distances. This was also the case for Aitchison
distances, which showed significant differences in dispersion at timepoints beyond P17
for fecal and cecal samples. All dispersion test results for each distance metric are summa-
rized in Supplementary Table S2. Although this may indicate heterogeneity of dispersion
contributes to observed group differences at these timepoints, taken together with highly
consistent PERMANOVA results we can generally attribute distinction of genotypes to
overall differences in microbiome structure and compositional characteristics. This was
reinforced visually by PCoA plots of beta diversity metrics that show strong clustering
in ordination space by genotype, with significant overlap between age groups within
each strain (Figure 1, Supplementary Figure S1). Interestingly, Bray-Curtis plots show a
separation of P17 mice from later timepoints in B6 mice (Figure 1).

2.3. T-Cell Deficiency Affects the Abundance of Specific Bacterial Taxa

Genotype-related differences in microbial composition were observed in cecal and
fecal samples. In cecal samples, analysis revealed 45 differentially abundant taxa at P17, 74
at P24, 62 at P28, and 138 at P84. In fecal samples, analysis revealed 56 taxa significantly
impacted by strain at P17, 68 at P24, 70 at P28, and 81 at P84 (Figure 2). Several ASVs were
significantly reduced in abundance in TCR B—/—0—/— mice compared to their B6 counter-
parts, as well as a number of taxa that were significantly upregulated in the context of
T-cell deficiency. Interestingly, different ASVs classified as Muribaculaceae, Lachnospiraceae,
Ruminococcaceae, and Rikenellaceae displayed opposite patterns in strain-dependent abun-
dance, where some taxa within the same family were elevated in B6 mice while others
were elevated in TCR B—/-0—/- mice. This demonstrates the importance of examining
differential abundance at the ASV level. Group means of relative abundance data for each
genotype, sex and age are shown in Supplementary Figure S1. A small number of dis-
tinct ASVs belonging to the families Anaeroplasmataceae, Burkholderiaceae, Erysipelotrichaceae,
and Tannerellaceae were uniquely elevated in TCR f—/-0—/- mice. At the genus level, an
increase in Lachnoclostridium, Akkermansia, Anaeroplasma, and Lactobacillus, and a decrease in
Lachnospiraceae_NK4A136_group were observed in the cecum of TCR f—/-6—/- mice. Some
ASVs belonging to Alistipes and Bacteroides were increased, while others were decreased
in TCR B—/-6—/— mice. From P24, the butyrate-producers Roseburia and Butyricicoccus also
showed a moderate reduction in abundance in TCR Bf—/~0—/- mice relative to B6 mice.
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Figure 2. Differentially abundant taxa between C57B1/6 (B6) and T cell receptor double knock
out (TCR p-/-6—/-) mice. Individual graphs represent results at (A) P17, (B) P24, (C) P28,
and (D) 12 weeks. Each circle represents an individual ASV that was significantly increased or
decreased between genotypes, with the median difference in CLR-transformed relative abundance
plotted on the X-axis. Positive values represent taxa that are significantly more abundant in TCR
B—/-6—/- mice compared to B6 controls, whereas negative values represent those significantly more
abundant in B6 mice.

As may be important for comparison of the current results and published or future
work, our analysis allowed for direct comparison of fecal and cecal samples and assessed
the impact of sample type on compositional differences. This is visualized in Figure 2.
Although most differentially abundant ASVs detected in cecal samples have an obvious
fecal counterpart, a small number of taxa are uniquely present in only one sample type.
Overall, 44 more taxa were significantly different between genotypes in cecal samples,
and only a very small number of ASVs were uniquely returned in analysis of fecal data.
Although this difference may depend largely on the timepoints studied and the analysis in
question, it does suggest cecal sampling provides a more robust “snapshot” of an in vivo
microbiome profile and a higher sensitivity to certain taxa that may not be detectable
in feces.

2.4. T-Cell-Deficient Mice Exhibit Altered Development of Colon, Cecal and Fecal Metabolomes

Proton nuclear magnetic resonance (\H NMR) spectroscopy was used to measure
the metabolic profiles of intestinal (colon and cecal) and fecal samples from B6 and TCR
B—/-0—/— mice to identify genotype-associated differences in the gut metabolome. Based
on PCA models constructed on the 'H NMR spectroscopy data, three cecal samples were
identified as outliers (found to lie outside of the Hotelling’s T-squared 95% confidence
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ellipse) and removed from the data analysis. Cecal samples were not available from P17 for
the metabolomic analysis.

The PCA models for each genotype identified age as the main source of variation
in the colon and fecal profiles (Supplementary Figure S2). Consistent with the bacterial
data, the colon and fecal metabolic profiles of B6 mice at P17 were distinct from those of
later ages (P24, P28, and P84). In contrast, in the TCR f—/~0—/— mice the colonic and fecal
metabolic profiles of younger mice (P17) were comparable to those of older mice (P24, 28,
and 84), indicating an altered developmental trajectory of both gut microbial composition
and related metabolites in the absence of T-cells. Less variation in metabolic profiles was
also observed in TCR f—/-0—/— mice compared to B6 (Supplementary Figure S2).

Pairwise OPLS-DA models were constructed to compare the profiles of age-matched
B6 and TCR B-/-6—/- mice. The cecal metabolic profile of B6 and TCR p—/~6—/- mice was
significantly different at P28 (Q?Y = 0.537, p = 0.001) and P84 (Q*Y = 0.460, p = 0.001), but
not in early life (P24). From each discriminant analysis model, the correlation r between
the metabolites and the class membership was extracted and represented in the heatmap in
Figure 3. The gut microbial metabolite 5-aminovalerate was markedly more abundant in the
cecum of TCR S—/-6—/- mice compared to the B6 group at P28 (r = 0.738) and P84 (r = 0.687).
In contrast, the microbial-derived short-chain fatty acid (SCFA) butyrate was lower in
TCR B—/-6—/- mice compared to the B6 mice at P28 (r = —0.581) and 84 days (r = —0.511).
Butyrate is important to intestinal barrier integrity. In addition, both 5-aminovalerate and
butyrate can be produced by microbial metabolism of essential amino acid lysine [18-20].
The lack of T-cells also resulted in lower amounts of cecal ornithine at P28 (r = —0.537) and
higher amounts of glucose-6-phosphate at 84 days (r = 0.513), metabolites related to amino
acid metabolism and glycolysis. In the feces, metabolic variation was identified between
the TCR p~/~6—/- and B6 mice at P24 (Q?Y = 0.373, p = 0.037) and P28 (Q?Y = 0.425, p = 0.032)
with 5-aminovalerate and fumarate present in greater abundance in TCR f—/~0—/~ mice.
In addition, uracil (r = 0.562), xanthine (r = 0.560), 2-oxoisocaproate (r = 0.568), choline
(r =0.590), ribose (r = 0.540), and tyramine (r = 0.587) were more abundant in TCR S—/-6—/-
mice at P24. The branched-chain amino acids valine (r = —0.600), leucine (r = —0.586), and
isoleucine (r = —0.535), the amino acids alanine (r = —0.621), lysine (r = —0.545), threonine
(r = —0.542), and glutamine (r = —0.508), and the excitatory neurotransmitters glutamate
(r = —0.578) and aspartate (r = —0.665) were lower at P24 in TCR B—/-6—/— mice relative
to B6.

Clear differences were observed in the colonic metabolic profiles of TCR f—/-6—/- and
B6 mice at P17 (Q%Y = 0.465, p = 0.001), P24 (Q*Y = 0.392, p = 0.003), P28 (Q?Y = 0.257,
p =0.020), and P84 (Q?Y = 0.462, p = 0.001). Compared to the B6 animals, the colonic contents
of TCR B—/-0—/-mice contained greater amounts of 5-aminovalerate at all developmental
timepoints, being particularly pronounced at P17 (r = 0.726). At P24, the abundance of
glycerophosphocholine (r = —0.542) and creatine (r = —0.592) were lower in the TCR p—
/—0—/— mice compared to the B6 mice and at P28 butyrate was also lower (r = —0.537).
Supplementary Figure S3 shows the coefficient plots of the correlation between metabolites
and class membership (i.e., genotype) for each timepoint and each sample type.
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Figure 3. Metabolic variation of cecal, colon and fecal samples associated with genotype. The
heatmap illustrates the correlation coefficient ®obtained from OPLS models at individual timepoints
for cecal, colon and fecal samples. Metabolites overrepresented in (C57Bl/6) B6 mice are shown in
blue, those overrepresented in T cell receptor double knock out (TCR (3—/-8—/-) mice are shown in
red. Black squares indicate correlations with r > 10.51.

2.5. Abundance of Muribaculaceae Is Linked to Cecal Concentration of Microbial Metabolites

To examine the association between gut microbial features and their metabolites, and
test for their ability to discriminate between B6 and TCR B-/~0—/- mice, relative abundance
and all metabolic data (not limited to discriminatory features) obtained from cecal samples
were integrated using a supervised classification algorithm called Data Integration Analysis
for Biomarker discovery using Latent cOmponents (DIABLO, mixOmics package). An
exploratory partial least squares regression (PLS) approach was used to determine the
global correlation (i.e., correlation between first principal components) between metabolic
and bacterial phenotypes. The resulting correlation coefficient (r = 0.83) was used to
tune the design matrix, which specifies the connection strength between data blocks. The
tune.block.splsda() function was used for feature selection and the final multi-block model
was constructed on 18/27 metabolites and 83/1532 ASV (listed in Supplementary Table S3).
A permutation test based on cross-validation with 999 iterations demonstrated the va-
lidity of the model (p = 0.001). The model confirmed clear differences in the bacterial
and metabolic signatures of TCR f—/-0—/- and B6 mice. The ASVs Muribaculaceae sp39
and sp112, Peptococcaceae sp327 and sp342, Ruminococcaceae sp308 (expanded in TCR f—/-
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0—/-) and Muribaculaceae sp105, sp261 and sp61, and Rikenellaceae sp8 and Peptococcaceae
sp266 (expanded in B6) had the highest loading weights along principal component (PC)
1, suggesting that these bacterial taxa account for the largest source of variance between
genotypes. Similarly, metabolites 5-aminovalerate and glucose-6-phosphate (upregulated
in TCR B-/-0—/-) and valerate, butyrate, malonate, isoleucine, acetoin, and ornithine (upreg-
ulated in B6) drove the separation of the metabolic profiles of TCR f—/-0—/— mice from that
of their B6 counterparts (Figure 4). Filtering the correlations with a threshold of r > 10.61,
the Circos plot highlighted a number of associations between individual bacterial taxa and
metabolites (Figure 4). Along PC1, mice lacking T cells exhibited higher abundance of
Muribaculaceae sp39 and sp112, both positively correlated to 5-aminovalerate and glucose-6-
phosphate (also higher in TCR f—/-6—/-), but negatively correlated to valerate (higher in B6).
A negative correlation between Muribaculaceae sp39 and butyrate (higher in B6) was also
highlighted. While 5-aminovalerate, glucose-6-phosphate, and butyrate were only related
to the concentrations of Muribaculaceae sp112 and sp39, the SCFA valerate was found to
be strongly correlated to several other taxa (including Rikenellaceae, Ruminococcaceae, and
Peptococcaceae families). The original similarity matrix used to build the Circos plot can
be found in Supplementary Table S4. Along PC2, the metabolite glycerophosphocholine
was positively linked to 30 bacterial taxa (belonging to the Muribaculaceae, Lachnospiraceae,
Rikenellaceae, Ruminococcaceae, and Peptococcaceae families), all of which were more abun-
dant in B6 relative to TCR f—/~6—/- mice. However, glycerophosphocholine exhibited
poor discriminatory ability between the genotypes and was not investigated further. The
Circos plots built on individual components are shown in Supplementary Figure S4. Con-
sistent with what was highlighted by the multi-omic model, the ASVs corresponding
to Muribaculaceae sp39 and sp112 and the positively correlated gut-microbial metabolite
5-aminovalerate were absent in B6 mice, while abundant in TCR B—/-6—/- mice across devel-
opment (Figure 4). A remarkably similar trajectory was observed between Muribaculaceae
sp39 and sp112 and 5-aminovalerate, all increasing with age in TCR f—/~6—/— mice. In
contrast, Muribaculaceae sp105, 261 and sp61, Rikenellaceae sp8 and Peptococcaceae sp266 were
absent in TCR B—/-6—/- mice but abundant in B6 mice at all ages. The metabolites butyrate
and valerate were lower, while glucose-6-phosphate was elevated in TCR f—/-0—/- mice
compared to B6 throughout development.

2.6. T-Cell-Deficient Mice Exhibited Altered Development of Cortical and Hippocampal, but Not
Hypothalamic, Metabolomes

PCA plots were constructed separately on the brain metabolic profiles of B6 and
TCR B—/-6—/- mice to observe the metabolic variation associated with age. Five corti-
cal samples were identified as outliers, possibly due to low tissue volume, and were
excluded. In both genotypes, the metabolic variation along PC2 was driven by age
(Supplementary Figure S5), demonstrating a moderate effect of developmental timepoint
on the brain metabolome. Consistent with the microbial data and colon/fecal metabolic
data (Supplementary Figure S2), the metabolic signatures of the cortical and hippocampal
regions of B6 mice at P17 were distinct from those of older mice (P24-P84). This was not
seen with the TCR B—/-6—/- mice, which did not exhibit the same pre- and post-weaning
clustering. Interestingly, this pattern was not observed in hypothalamic samples, where for
both B6 and TCR f—/-6—/- mice, the metabolic signature of P17 mice overlapped with that
of older mice (Supplementary Figure S5C).
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Figure 4. Integration of metabolic and bacterial abundance data. (A) Circos plot of the multi-block
relationships across two principal components associated with T-cell deficiency. The correlation
between variables of different blocks (metabolites in orange, bacteria in green) are shown with red
(if positive association) or black (if negative association) inner lines. The expression level of each
variable is also shown as the blue (expression level in B6) and red (expression level in T cell receptor
double knock out (TCR B—/~0—/-) mice) lines on the outside of the circle. Only absolute correlations
higher than 0.6 are shown. (B) Loading weights showing the best discriminating features on PC1 for
both bacteria (left) and metabolites (right) blocks. The X-axis represents the coefficient weight of the
variables listed on the Y-axis. In blue are the variables that have the maximum level of expression in
B6, in red those maximally expressed in TCR B—/-6—/-. (C) Trajectories of the top seven bacterial taxa
(as per loading weights in panel B) across developmental timepoints in TCR f—/-0—/- (red) and B6
mice (blue), supporting the correlations highlighted by the Circos plot. (D) Trajectories of the top
four metabolites (as per loading weights in panel B across developmental timepoints in TCR f—/-0—/~
(red) and B6 mice (blue), supporting the correlations highlighted by the Circos plot. Shaded areas
represent the confidence interval around smooth lines obtained by constructing a linear model with
the formula y ~ log(x), where x = age and y = metabolite/bacterial abundance.

2.7. T-Cell Deficiency Affects the Expression of Neuroactive Metabolites

In the brain, the abundance of five metabolites showed clear differences across de-
velopmental timepoints for B6 and TCR p-/-6—/- mice (Supplementary Figure S6). A
two-way ANOVA confirmed that genotype had a significant main effect on aspartate and
glycerophosphocholine in all brain samples. A significant effect of genotype was also
found for acetate, GABA, and phosphocholine in both hippocampus and hypothalamus. A
significant combined effect of genotype and age was found for cortical acetate and glycine
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(Table 1). Interestingly, the four cecal metabolites that emerged from the multi-omics inte-
gration analysis (5-aminopentanoate, glucose-6-phosphate, butyrate, and valerate) were
found to be significantly correlated with several cortical, hippocampal, and hypothalamic
metabolites (Pearson correlation). These results are shown in Supplementary Figure S6.

Table 1. Results of 2-way ANOVA against genotype and age for brain metabolites.

Aspartate
Glycerophosphocholine
Acetate
GABA
Glycine
Alanine
Phosphocholine
IMP
Taurine
Glutamate
Myo-inositol
3-hydroxyisovalerate
Carnitine

0.001

Cortex Hippocampus Hypothalamus
Genotype Genotype/Age Genotype Genotype/Age Genotype Genotype/Age
0.003 - <0.001 - 0.002 -
- 0.008 - <0.001 -
- 0.049 0.035 - 0.030 -
- - 0.044 - 0.023 -
- 0.008
- - 0.004 - - -
- - 0.037 - 0.004 -
- - - <0.001 - -
0.011 - - - 0.007 -
- - - - 0.042 -
- - - - 0.013 -
- - - - 0.039 -
- - - - 0.035 -

Only significant p values are shown (<0.05).

3. Discussion

The present study demonstrated that T-cell deficiency alters the development of the
gut microbiota and of the host’s gastrointestinal and brain metabolome. While the influence
of the microbiome on immune development is well-established [4], the results of the current
study demonstrate clearly the bidirectional nature of this relationship and identify several
key taxa that are important to microbiota-immune crosstalk during postnatal development.
Notably, the gut-related changes in microbial composition, diversity, and metabolite profile
were accompanied by parallel changes in the hippocampal and hypothalamic metabolome.
From a developmental perspective, it is interesting to note that most significant T-cell
related changes in gut, microbial, and brain metabolites developed in the fourth week of
postnatal development, post-weaning.

While a role for microbiota in immune development, and in particular T-cells, has
been previously established, the results of the current study suggest that T-cell to microbe
signalling in the postnatal period is required for normal microbiota maturation, diversity,
and composition. In particular, TCR B—/-0—/— mice showed higher microbial diversity
initially at P17 but lower diversity at all later developmental stages. A reduction in
alpha-diversity has been previously reported in mouse models of combined or T-cell-
specific immunodeficiency [7-9], and was recently confirmed in TCR —/-6—/- mice in an
independent study (Francella et al., in prep). In wild type mice, T-cell progenitors undergo
exponential proliferation in the thymus, which reaches maximal size at P18 [21]. These
findings indicate that, in the absence of host-orchestrated immune signalling during this
critical developmental window, the colonization trajectory of the maturing microbiota was
modified. The increased diversity exhibited in at P17 in TCR f—/-0—/- mice may reflect
accelerated microbiota maturation. In addition, B6 mice exhibited a compositional and
metabolic shift between P17 and P24 that is likely to represent the expansion, maturation,
and stabilization of the microbiome at weaning. Interestingly, in the absence of T-cells,
P17 mice had similar compositional and metabolic profiles than older mice, suggesting
that an early signal from T-cells to microbes is necessary to support normal microbiota
and metabolic development into adulthood. The presence of gut microbes is known to
be essential for the maturation of functional T-cells [22]. These findings suggest that
this relationship is reciprocal, and we propose that bidirectional communication between
microbes and T-cells may influence the trajectory of development and maturation of both
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systems. Given the overlapping developmental window of T-cells with that of the gut
microbiota and of the central nervous system, it was not surprising that the impact of T-cell
deficiency spanned the entire gut-brain axis. Previous work has demonstrated a range of
neurodevelopmental delays (e.g., righting reflex and ultrasonic vocalizations) emerging
as early as P4-6 in TCR B—/-6—/— mice (Francella et al., in prep). Similarly, the presence of
gut microbial metabolites in the mouse brain has been shown as early as P3 [23]. Thus,
the present work expanded on the limited evidence for a role of T-cells in shaping gut
microbiome maturation and their influence on neurodevelopment.

The reorganization of the microbial community in T-cell deficient mice was accom-
panied by downstream effects on host metabolic signature. The Bacteroidales family
Muribaculaceae, previously S24-7 [24] and Candidatus homeothermaceae [25], known to be
involved in the degradation of complex carbohydrates (i.e., x-glucan, host or plant glycans)
and propionate production [26-28], showed the strongest response to T-cell deficiency.
Some ASVs within this family were more abundant in TCR B—/-6—/— mice, while others
were less abundant compared to the B6 mice. Our integrated analysis suggested that these
compositional changes may drive the observed functional alterations, as the increase in
5-aminovalerate and glucose-6-phosphate in parallel with reduced butyrate and valerate
was associated with an increase in two Muribaculaceae ASVs, sp39, and sp112. These ASVs
may correspond to what Smith et al. (2020) referred to as “acarbose responders”, with
members of the Muribaculaceae family able to produce glucose-6-phosphate from starch
fermentation. Thus, higher relative abundance of these Muribaculaceae species may lead
to the increase in cecal glucose-6-phosphate in the TCR —/~6—/- mice. The present work
also demonstrated a reduction in butyrate-producing bacteria in TCR —/~6—/~ mice, includ-
ing Roseburia, Butyricicoccus and Lachnoclostridium. NMR spectroscopic analysis of cecal
samples confirmed lower amounts of the SCFAs butyrate and valerate, as well as higher
amounts of their precursors, glucose-6-phosphate and 5-aminovalerate, in TCR f—/-6—/—
mice. The GABA homologue 5-aminovalerate (also known as 5-aminopentanoate [18,19]),
butyrate [20], and valerate [29] can be produced by microorganisms in the gut from the
essential amino acid lysine, which can be both dietary and microbial in origin. Thus, in the
absence of T-cells, a rearrangement in microbial composition modulated the biochemical
activity of the microbiota and the flow of these microbial signals to the host, which we
suggest may lead to the preferred utilization of lysine for 5-aminovalerate over SCFA
production. Some Muribaculaceae species (e.g., Muribaculum intestinale, 99.76% sequence
homology with sp123 [30]) are known to express the enzyme saccharopine dehydrogenase,
which diverts lysine towards saccharopine as a degradation byproduct [31]. Thus, the
reduction in Muribaculaceae sp123 may explain the higher abundance of 5-aminovalerate
in the cecum of TCR B—/-6—/— mice. In addition, certain Clostridia species can metabolize
5-aminovalerate to valerate and other SCFAs [32]. A reduction in Clostridia species has been
reported in TCR f—/-0—/— mice in the current work (e.g., Lachnospiraceae_NK4A136_group),
as well as in a separate study (Francella et al., in prep) and in mice lacking both T- and
B-lymphocytes [7].

SCFA have known immunomodulatory properties, both in the gastrointestinal tract
and in the central nervous system. In particular, butyrate exerts protective effects by modu-
lating barrier integrity [33,34] and mucus production [35], and contributes to the mainte-
nance of an anaerobic environment in the large intestine [36]. More importantly, it has been
shown to promote the differentiation of CD4+ naive T-cells into colonic regulatory T-cells
(Tregs) via epigenetic mechanisms involving the inhibition of histone deacetylases [37-39].
The results of this study suggest that T-cells can signal back to the microbiome to modulate
the metabolic environment at the intestinal mucosa. Supporting evidence for its bidirec-
tional nature comes from findings that T-cell recruitment can induce transcriptional changes
in both the microbiota, limiting SCFA production [40], and in the intestinal epithelium,
favoring mucus expression [41] and modulating AMP release and lipid metabolism [10].

In addition to a detailed map of the impact of T-cell deficiency on the microbial-
metabolomic profile in the gut, this study demonstrated T-cell deficiency on development
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of the brain metabolome, with higher abundance of GABA, glycine, aspartate, acetate and
glycerophosphocholine in the brains of TCR —/-0—/- mice across the lifespan. A role for T-
cells in modulating brain development has been established, with previous studies showing
changes in the volume of several brain regions in TCR f—/-0—/— mice [13], paralleled by
decreased anxiety-like behaviour, but elevated basal cortisol in TCR B—/-0—/— mice [13,14].
Further, IL-17a released by meningeal y$ T-cells have also been shown to modulate anxiety-
like behavior [2], and effect that may be mediated by microglia by inducing phagocytosis of
neural progenitor cells [42]. The observation that both T-cells [43] and gut bacteria [44] are
necessary to support microglia maturation suggests that the next key step is to determine
mechanistically how these central immune cells mediate the brain abnormalities observed
in the absence of a functional T-cell-microbe crosstalk. It is also of interest to consider how
the interplay between T-cells and microglia in synaptic remodeling [43,45] may explain
brain volume abnormalities observed in TCR f—/-0—/— mice.

While the current study did not directly examine IL17, evidence for a dysfunctional T-
cell-microbe crosstalk in CNS disorders was provided in the context of experimental autoim-
mune encephalomyelitis (EAE, a model of multiple sclerosis, [46]) and maternal immune ac-
tivation (MIA, a model of autism, [47-49]), where induction of the T helper 17 (Th17)/IL-17a
pathway by members of the gut microbiota elicited cortical and behavioral abnormalities.
In the absence of neuronal IL-17a signalling, an upregulation of genes involved in GABA
neurotransmission was also observed [2]. While not directly tested here, this is consistent
with the changes in GABA in the present study in the frontal cortex, hippocampus and
hypothalamus. Additional work is needed to demonstrate whether such alterations are the
molecular basis for the abnormalities in anxiety-like behavior in TCR f—/-6—/- mice [13,14].
In addition, the reported negative association between anxiety and fecal abundance of
Muribaculaceae in humans [50] is intriguing and we suggest that this behavioral trait may
be responsive to the changes in the microbiota of TCR —/~0—/- mice.

In conclusion, this paper shows that bidirectional T-cell-microbe communication is a
component of normal microbiota-immune development, and highlights specific bacteria
and metabolites that are key to this crosstalk. In addition, it demonstrates that T-cell
deficiency impacts the concentrations of brain metabolites, possibly via a rearrangement
in the microbial community and downstream changes in the host’s metabolic signature.
Further work will need to determine the signalling mechanism by which such changes may
lead to abnormalities in brain anatomy and behavior reported in TCR —/~0—/~ mice. A key
future verification of the impact of T cells on the development of the microbiota-immune
brain axis would be to demonstrate that T cell replacement during early life would rescue
the microbial or metabolic phenotype. The key findings here have important translational
value as researchers move to consider how microbiota-immune relationships influence the
trajectory of development of the microbiome and impact human brain development [51].
Moreover, a more mechanistic understanding of the molecular entities on the microbe side
and on the host side of this crosstalk in animal models and in people has the potential to
provide novel biomarkers and new targets for microbiota-based therapies that can foster
healthy microbiome maturation, in parallel with healthy brain development.

4. Materials and Methods
4.1. Animals

T-cell receptor double knock-out mice (TCR p—/~6—/-) on a C57Bl/6 background and
B6 controls (1 = 6 per sex per genotype per time point) were used in this study. Lack of
functional T-cells was due to genetic knockout of both 3 and & chains of the T-cell receptor
(TCR B—/-0—/-) [52]. The mice were provided by Dr Andrew McPherson at McMaster
University, while C57Bl/6 (B6) mice were initially purchased from Charles River (Kingston,
USA) and bred in house at St. Joseph’s Healthcare animal facility. The mice were maintained
in specific-pathogen-free housing in sanitized cages with filter bonnets, under a 12 h light-
12 h dark cycle, with lights on at 5 AM. Food and water were available ad libitum. At
weaning (post-natal day (P) 21), pups were caged by sex with 2—4 littermates per cage,
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for a total of 18 litters. At P17, P24, P28, and P84, brains were removed and brain regions
collected by gross dissection including hypothalamus, hippocampus, and cortex. Brain
tissues, colon, cecal, and fecal samples were immediately frozen by placing pre-weighed
tubes with tissue added on dry ice and then stored at —80 °C until processing. One fecal
and cecal sample per sex per genotype per timepoint was processed at McMaster University
for 165 rRNA sequencing and the remaining samples were shipped to Imperial College
London (UK) and stored at —80 °C until analysis. All mice were drug- and test-naive and
weighed 14.0 g on average. All experimental procedures were approved by the Animal
Research Ethics Board of McMaster University, in accordance with the guidelines of the
Canadian Council on Animal Research.

4.2. 165 rRNA Sequencing

Bacterial DNA was extracted from cecal and fecal samples using methods previously
described with some modifications [53]. In brief, samples were first transferred to screw cap
tubes containing 2.8 mm ceramic beads, 0.1 mm glass beads, GES and sodium phosphate
buffer as described. Samples were then bead beat and centrifuged, and the supernatant
was further processed using the MagMAX Express 96-Deep Well Magnetic Particle Pro-
cessor (Applied Biosystems) with the Multi-Sample kit (Life Technologies #4413022). 16S
rRNA gene sequences were amplified according to published protocols with modifications
outlined by Whelan and colleagues [54,55], using PCR primers specific for the variable
3 (v3) and variable 4 (v4) regions of the 165 ribosomal RNA (rRNA) encoding gene (341f-
CCTACGGGNGGCWGCAG and 802r-GGACTACNVGGGTWTCTAAT'). For this process,
50 ng of DNA was used as template with 1U of Taq polymerase (Thermofisher, Waltham,
MA, USA), 1 x buffer, 1.5 mM MgClI2, 0.4 mg/mL BSA, 0.2 mM dNTPs, and 5 pmol each
of 341F and 806R Illumina adapted primers. The reaction was carried out with an initial
step at 94 °C for 5 min, followed by 5 cycles of 94 °C for 30 s, 47 °C for 30 s and 72 °C for
40 s. Another 25 cycles were executed at 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 40 s,
with a final extension of 72 °C for 10 min. Resulting PCR products were visualized on a
1.5% agarose gel to verify amplicon size. Positive amplicons were normalized using the
SequalPrep normalization kit (ThermoFisher #A1051001) and sequenced on the Illumina
MiSeq platform at the McMaster Genomics Facility.

4.3. Sample Preparation for Metabolomics

'H NMR spectroscopy was performed on aqueous extracts obtained from brain, gut
(cecum and colon) and fecal tissue. Approximately 30 mg of tissue was homogenized in
300 puL of ice-cold CHCl3/MeOH (2:1 V/V) using a TissueLyser from Qiagen (West Sussex,
UK), in a 2 mL homogenization tube containing 1 mm zirconia beads (Fisher Scientific,
Hampton, NH, USA) for 60 s at 6500 rpm. After addition of 300 uL of H,O, the homogenate
was vortexed, and then centrifuged at 17,000x g for 10 min at 4 °C (Microstar 17R, VWR
International, Radnor, PA, USA). The aqueous and lipid layers of the supernatant were
collected separately. To maximize metabolite recovery, the extraction was repeated by
resuspending the pellet in 300 uL of ice-cold CHCI3/MeOH (2:1 V/V) and 300 uL of water.
This was vortexed and centrifuged before the aqueous and lipid layers were separated and
combined with the first extraction. The aqueous extracts were left in a SpeedVac overnight
at 45 °C to remove MeOH from the extract (Concentrator Plus, Eppendorf, Stevenage,
UK). Samples were stored at —40 °C until the day of NMR. On the day of NMR, samples
were reconstituted using 60 pL of phosphate buffer (pH 7.4) and 540 uL of D,O:H,0O
(9:1 V/V) containing 1 mM of TSP. The samples were vortexed to ensure reconstitution
and centrifuged at 9000 x g rpm for 10 min at 4 °C. Then, 550 pL of the supernatant was
transferred to 5 mm outer diameter NMR tubes. After thawing, fecal pellets were weighed
at approximately 30-50 mg. Zirconia beads and 300 pL of H,O was added and samples
were homogenized for 2 cycles of 6500 rpm over 45 s each. Samples were centrifuged at
17,000 g for 20 min at 4 °C. 180 pL of the supernatant was transferred to a new Eppendorf
tube and 20 pL of urine buffer was added. Samples were vortexed and centrifuged again



Int. J. Mol. Sci. 2022, 23, 3259

14 of 19

before 180 uL of the supernatant was transferred to 3 mm NMR tubes using an eVol digital
analytical syringe.

4.4. Metabolic Phenotyping

Aqueous extracts were obtained from brain, gut wall, cecal, and fecal samples using
our established methods (see Supplementary Information for detailed methods). The
aqueous tissue extracts were measured on a 600 MHz Bruker Avance III spectrometer
(Bruker BioSpin, Billerica, MA, USA) operating at a constant temperature of 300 K. A
standard one-dimensional pulse sequence was used: RD-90°-t-90°-tm-90°-acquire free
induction decay (FID) [t = 3 ps]. Irradiation of the water signal was performed during the
relaxation delay (RD) of 2 s and during the mixing time of 100 ms. The field frequency was
locked on D,0O solvent, and 64 scans were recorded. After acquisition, 'H NMR spectra
were automatically phase and baseline corrected, and calibrated to TSP at 6 0.0, using
TOPSPIN version 3.5 (Bruker BioSpin, Billerica, MA, USA). The spectra were exported into
MATLAB (MathWorks) using the Imperial Metabolic Profiling and Chemometrics Toolbox
for Spectroscopy or IMPacTS (https:/ /csmsoftware.github.io/docs/impacts/index.html,
last accessed 31 January 2021). Signals from TSP and water resonances were removed
and automatic alignment was performed using a recursive segment-wise peak alignment
(RSPA) method developed at Imperial College [56]. Prior to analysis, the data was log-
transformed and normalized using total area normalization, to compensate for differences
in the volumes of the tissue extracts. Multivariate analysis was performed on mean-
centered 'H NMR spectroscopic profiles. Assignment of metabolites was performed with
the aid of a combination of two-dimensional homonuclear NMR spectroscopy (J-resolved
spectroscopy, correlation spectroscopy, total correlation spectroscopy), statistical total
correlation spectroscopy [57] and an in-house database built from authentic standards.

4.5. Data Analysis
4.5.1. 16S rRNA Analysis

The resulting amplicons were cleaned, quantified and sequenced on the Illumina
MiSeq platform, before undergoing further processing as previously reported [55]. Read
trimming was performed using Cutadapt [58], followed by filtering, dereplication, sample
inference, chimera identification, and the merging of paired-end reads using DADA2,
version 1.16 [59]. Amplicon sequence variants (ASVs) were generated from the sequences
and assigned taxonomic classification using the Ribosomal Database Project (RDP) classifier
and the SILVA 2017 reference database [60]. Alpha diversity and beta diversity analyses
were completed using the vegan package in R version 4.0.2 [61]. Alpha diversity metrics
included the Inverse Simpson index and the Shannon index. Differences between strains
were assessed using a Kruskal Wallace H test at each timepoint, with a significance cut-off of
p < 0.05. Beta diversity between samples was explored using principal coordinate analysis
(PCoA) with Jaccard, Bray-Curtis, and Aitchison distance metrics applied to ASV count
data. Genotype-based differences were assessed at each postnatal day using PERMANOVA
(1000 permutations) and a homogeneity of dispersion test via the betadispr() function.
Differentially abundant taxa between genotypes were assessed using the ADLEx2 package,
version 1.22.0 [62]. This workflow accounts for the compositional nature of microbiome
data using a centered log-ratio (CLR) transform, implemented via the aldex.clr() function,
which maintains taxonomic ratios within a sample while removing the interdependency of
bacterial abundances that arise from relative population measurements. This transform
introduces the convenient property of scale invariance, which accounts for discrepancies in
read count between samples and produces the same species ratios regardless of sequencing
depth [63]. The aldex.clr function was used with 16 Monte Carlo instances sampled from a
Dirichlet distribution to generate a distribution of probabilities for each taxon consistent
with the observed data. Following transformation and group-wise comparison, differen-
tially abundant taxa were determined by a Benjamini-Hochberg corrected p-value < 0.05 for
a Kruskal-Wallace test, and an effect size with an absolute value > 1 (using the aldex.kw()
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and aldex.effect() functions, respectively). Statistical details, including exact value of 1, can
be found in the respective results section.

4.5.2. Metabolomic Analysis

The multivariate data analysis was carried out using MATLAB 2018b (MathWorks) and
scripts developed in-house [64]. The NMR data underwent quality control and spectra with
poor water suppression were excluded from the analysis. Principal component analysis
(PCA) was used to explore the intrinsic metabolic variability in the population and identify
outliers. Age-associated variation in the metabolome was investigated separately for B6
and TCR B-/-6—/- mice using an orthogonal projection to latent structures-discriminant
analysis (OPLS-DA) approach with the 'H NMR spectral data serving as the descriptor
matrix and age as the response variable (Y predictor). Biochemical variation between B6
and TCR B-/-6—/- mice was investigated at each sampling point by setting genotype as the
response variable (Y predictor). Seven-fold cross-validation was carried out to determine
the predictive ability of the OPLS models. Models with positive R? and Q?, and with a
permutation testing p < 0.05 (999 permutations) were considered significant. The influence
of individual metabolites to the model were assessed based on their correlation with class
membership (e.g., B6 vs. TCR —/-0—/-). Discriminatory metabolites with meanr > 10.51
were identified as being differentially regulated between genotypes. Statistical details,
including exact value of 7, can be found in the respective results section.

4.5.3. Multi-Block Discriminant Analysis with DIABLO

Metabolomic and 16S rRNA gene sequencing data were integrated with Data Inte-
gration Analysis for Biomarker discovery using Latent cOmponents (DIABLO, mixOmics
package version 6.12.2). DIABLO is an extension of canonical correlation analysis (CCA)
and Projection to Latent Structures (PLS), where principal components are built across
blocks to maximize the covariance among them and with the outcome Y (i.e., B6 vs. TCR
B—/-0—/-). The result is a signature of correlated variables across multiple datasets measured
on the same individuals that discriminate an outcome of interest [65,66]. The procedure
requires tuning of three parameters: the design matrix, number of components and number
of variables in each dataset to include in the final model. The resulting circos plot is built on
a similarity matrix (an approximation of a Pearson correlation matrix), where each entry is
calculated as the correlation between two variables’ projections on the principal component.
The design matrix specifies how datasets should be correlated, with values between zero
(not correlated) and one (datasets are fully correlated). We tuned the design matrix by
building multi-block PLS models on metabolic and bacterial datasets. The relative abun-
dances of cecal metabolites were calculated from the integrals of non-overlapped peaks
identified in the normalized NMR spectra. Abundances were log-transformed to account
for a left-skewed distribution. The global correlation between data sets was obtained by
calculating the correlations between the variates on principal component 1 for the dataset
pair. The model was constructed using the following design C:

00.825
C = 0.8250

The optimal number of components to include in the model was assessed with
perf.diablo() run with 10-fold cross validation and 50 repeats. To identify the optimal
number of variables to retain in the model, the function tune.block.splsda() was run with
10-fold cross validation and 10 repeats using centroids distance, with a sequence of vari-
ables ranging from 8 to 20 for metabolites and 25 to 800 for bacteria. This resulted in
18 variables for metabolites and 83 for bacteria. Model performance was evaluated using
classification error rates and a permutation test with 999 iterations (performed with R
package RVAideMemoire [67] to determine the significance of the model (alpha thresh-
old = 0.05). Across components, the explained variance was 24.5% for metabolites and 9.4%
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for ASVs. Associations with an absolute correlation coefficient higher than 0.6 were shown
and discussed. Statistical details, including exact value of 7, can be found in the respective
results section.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms23063259/s1.
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