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Abst rac t
Children and adolescents are particularly vulnerable to skin damage caused by ultraviolet radiation and require 
intensified photoprotection. Benzophenone-3 (BP-3) belongs to the organic sunscreens, which are widely used in 
personal care and cosmetic products. However, the impact of BP-3 on human health requires a careful assessment. 
This review focuses on potentially harmful effect of this compound in relation to the developing organism. Studies 
show that BP-3, after topical application, can penetrate into bloodstream, blood-brain barrier and blood-placental 
barrier and may induce the reproductive toxicity and abnormal development of the foetus, endocrine system disrup-
tion and neurotoxicity in experimental animal models. So far, human studies have been scarce and controversial, 
therefore the cosmetics containing BP-3 should be carefully used by the pregnant women, children and adolescents.
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Introduction

Benzophenone-3 (BP-3; oxybenzone; 2-hydroxy-
4-methoxybenzophenone) belongs to organic sun-
screens used in personal care products to help minimize 
the damaging effects of ultraviolet (UV) radiation. In the 
1980s, BP-3 was the most popular as a sunscreen formu-
lation [1]. Except UV-filters, this substance was also used 
to photostabilize personal care products, like shampoos, 
conditioners, fragrances, cosmetics, flavours, mascaras, 
powders, lip balms and anti-aging creams (Figure 1) 
[2, 3]. Moreover, BP-3 is also a widespread environmental 
contaminant – it is present in the air, water, food and 
plastic packaging, providing additional routes of expo-
sure to humans [4]. In the Regulation of the European 
Parliament of 2017, an acceptable dose of BP-3 was re-
duced from 10% to 6% in UV-filters [5]. In the USA, Japan 
and South Korea, the content of BP-3 is limited to 5%, 
because of a suspicion about harmful effects [6]. Despite 
this, according to the US Centers for Disease Control and 
Prevention, about 97% of the US population is exposed 
to oxybenzone [2]. This compound was also detected in 
all urine samples of young men from the general Danish 
population [7]. These data indicated that people, espe-
cially in well-developed countries, may be exposed to the 

potentially hazardous effects of BP-3 in relation to their 
health.

Benzophenone-3: metabolism and mode  
of action in the organism

UV-filters belong to the products, which should influ-
ence only the skin surface. They should not penetrate 
from skin into the general circulation and  cross the der-
mis border [8]. However, the molecule of BP-3 is small 
enough to penetrate through the skin. After application on 
the skin, BP-3 can get into stratum corneum by intercel-
lular laminae or passive diffusion by high concentration 
gradient and then reach blood [9]. In people, BP-3 is de-
tected in serum in concentrations ten times higher than 
other chemical filters [10]. Furthermore, it is possible that 
BP-3 can be transmitted by carrier proteins in plasma, can 
act with human serum albumin and displace drugs and 
other substances, like sex and thyroid hormones, interfer-
ing the proper functioning of the human organism [11]. In 
animal experiments, BP-3 applied topically on the skin has 
been detected in the liver, heart, kidneys, spleen, muscle 
and testes [12]. Moreover, it has also been found in human 
breast milk and even in the amniotic fluid [4, 13]. Regard-
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ing its lipophilic character, BP-3 may penetrate through 
the blood-brain barrier (BBB), which creates the possibil-
ity of the adverse effect in CNS [14–16]. One of the main 
methods of eliminating BP-3 is excretion with urine, after 
bonding with glucuronic acid. Importantly, the most re-
cent study by Matta et al. [17] highlighted a long terminal 
half-life of BP-3 and its accumulation by measuring the 
plasma concentration at constant intervals over 7 days 
after the first sunscreen application of products contain-
ing 6% of BP-3.

Benzophenone-3 shows intense and broad absorp-
tion in the UVA, UVB, and UVC range [18]. Results ob-
tained from an in vitro study showed that BP-3 decreases 
UV-induced radical formation and possesses antioxida-
tive properties in the fibroblast cells line [19]. Karsili  
et al. [20] proposed that BP-3 undergoes an electron-
driven internal conversion to its keto-tautomer, as the 
central mechanisms for its protective, antioxidative ac-
tivity. Although BP-3 protects human skin from damage 
caused by excessive UV radiation, it is also reported to 
exhibit toxic effects. Evidence shows that sunscreens un-
dergo degradation processes induced by UV irradiation 
forming free radicals, and other reactive or toxic interme-
diates that may initiate damage in biologically relevant 
skin molecules [21, 22]. Data obtained from living organ-
ism’s models suggest that benzofenone-3 can generate 
oxidative stress. According to Liu et al. [23], the expo-
sure of Carassius auratus to BP-3 showed unfavourable 
changes in antioxidant enzymes activity and glutathione 
levels. The study on Danio rerio zebrafish also confirmed 
that BP-3 induced free radical production and changes of 
antioxidant enzymes [24]. The overproduction of reactive 
oxygen species (ROS), which adversely affects the struc-
ture and function of proteins, DNA and membrane lipids 
was observed in higher plant cells exposed to BP-3. This 
interference with normal plant metabolism led to the in-
hibition of photosynthesis and respiration, restriction of 
carbohydrate synthesis and ATP regeneration, limiting 
the energy available for metabolic processes, and even 
leading to plants’ death [25]. Similar results have been 
obtained after exposure of eukaryotic and prokaryotic 
algae to BP-3 [26]. The harmful effect of BP-3, associ-
ated with the generation of oxidative stress, has also 
been observed in higher organisms. Dermal exposure of 
female rats to BP-3 in the concentration of 100 mg/kg,  
which gives the plasma levels of BP-3 comparable to 
those seen in humans using cosmetics containing this 
compound, resulted in the increase in lipid peroxida-
tion and decrease in antioxidant activity in their frontal 
cortex and hippocampus [14]. The positive correlations 
between plasma sunscreen agents, mainly BP-3, and the 
markers of inflammation, oxidative stress and hormonal 
activity were also observed in sea turtles from the cen-
tral Adriatic Sea [27]. The above presented data indicate 
that benzophenone-3 can bioaccumulate, especially in 

the aquatic environment, and it may exert potential ad-
verse effects through oxidative stress generation.

The potential toxic effects of benzophenone-3 
on human health

According to the available literature, the harmful ef-
fect of BP-3 can disrupt the function of many tissues and 
organs of the human body, like: skin, kidney, brain, en-
docrine and haematological system, reproductive organs 
and neonatal development during pregnancy (Figure 2).

BP-3 and skin cell damage

For many years, it was believed that BP-3, used as 
chemical UV filter in sunscreens, might only have ad-
verse effects on the skin. The allergic contact dermatitis 
to BP-3 was noticed for the first time in 1972 [28]. The 
European Multicentre Photopatch Test Study conducted 
in 2012 revealed that this substance, in addition to 2 oth-
ers organic UV absorbers, most frequently evoked pho-
toallergic contact dermatitis, whereas allergic contact 
dermatitis was less commonly observed after BP-3 [29]. 
The North American Contact Dermatitis Group docu-
mented BP-3 as the top of 3 most frequent allergens in 
sunscreens, representing about 70% of sunscreen reac-
tions – it has been announced as the “Contact Allergen 
of the Year” [30, 31]. The rare situations have also been 
reported, in which the exposure to sunscreen with BP-3 
applied to the whole body caused anaphylaxis or an ana-
phylactoid reaction [32–34]. Moreover, BP-3 showed high 
rates of cross-reactivity with the other sunscreen active 
substance – octocrylene, as well as with ketoprofen, 
a commonly used nonsteroidal anti-inflammatory drug 
[31]. These 3 chemicals have similar structures, but also 

Figure 1. Benzophenone-3 sources in personal care prod-
ucts
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ketoprofen is metabolized into various benzophenones 
structurally similar to BP-3 during sunlight exposure [35].

Apart from the allergic reaction, benzophenone-1 – 
metabolite of BP-3 can induce of photogenotoxicity and 
apoptosis via release of cytochrome c and Smac/DIABLO 
in human keratinocytes under UV radiation [36]. Recent-
ly, it has been documented that the altered expression 
of some novel proteins involved in the initiation of apop-
totic pathways were responsible for this cytotoxic and 
genotoxic mechanism [37]. Moreover, benzophenone 
and its derivatives can generate ROS, increase lipid per-
oxidation, decrease mitochondrial membrane potential, 
release death protein and activate caspase-3. The above 
mechanisms were related to phototoxic potential of ben-
zophenones in HaCaT cell line exposed to sunlight or UV 
radiation [38, 39].

BP-3 and genotoxicity/developmental toxicity

Subsequent studies showed that significant amounts 
of BP-3 were absorbed by the skin and can cross into the 
mother’s blood [9], placenta [40] and amniotic fluid [41], 
making it available to the foetus. Interactions between 
genes and environmental factors during early life are 
suggested to play an important role in the development 
and health of an adult individual. So far, the knowledge 
about geno- and developmental toxicity of BP-3 is poor, 

and what we know comes mostly from the research car-
ried out on water organisms or in cell cultures [42–45].

An acute exposure to environmentally relevant con-
centrations of BP-3 induced genotoxic and mutagenic 
effects, leading to erythrotoxicity in freshwater fish Poe-
cilia reticulata [42]. The exposure of embryo zebrafish 
(Danio rerio) to low concentrations of BP-3 resulted in 
the alteration of multiple gene expression in the brain 
and testes, which can trigger an antiandrogenic activ-
ity [43]. Campos et al. [44] observed that the aquatic in-
sect Chironomus riparius, continuously exposed to BP-3, 
showed the impaired development in the subsequent 
generation. In the mouse neuronal cells culture, Wnuk 
et al. [45] noticed that the exposure to oxybenzone 
changed the expression of oestrogen receptors α and β, 
GPR30 and PPAR-γ, leading to the neurotoxicity, induc-
tion of apoptosis and impairment in cell survival. 

Knowledge about the impact of BP-3 on foetal and 
neonatal development in humans is negligible and 
controversial. Some studies found no statistically sig-
nificant association between prenatal BP-3 exposure 
(determined as the mother’s urinary concentration of 
BP-3 during pregnancy) and the offspring development 
parameters, such as growth, the intelligence quotient or 
pubertal timing [46–49]. However, the other research-
ers noticed the relationship between BP-3 exposure and 
the offspring’s birth weight, body fat mass or respiratory 

Figure 2. The harmful effects of benzophenone-3 on human body
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and allergic diseases [50–53]. In a recent meta-analysis 
performed on the basis of 21 studies, Zhong et al. no-
ticed that prenatal exposure to BP-3 was negatively 
associated with foetal birth weight [54]. However, the 
design and methods of the included studies were incon-
sistent, which made it difficult to draw definitive con-
clusions. Huo et al. [55] reported that the maternal BP-3 
urinary level was associated with higher odds of having 
a child with Hirschsprung’s disease – a neonatal intes-
tinal abnormality that is derived from the failure of en-
teric neural crest cell migration to hindgut during early 
embryogenesis. However, in this study the urine samples 
from mothers were collected after the child was born, 
and did not necessarily reflect the prenatal BP-3 level. 
Molins-Delgado et al. [56] demonstrated the presence of 
BP-3 in human milk and in the plastic containers for milk 
storing, indicating that the exposure to this compound 
may take place not only during foetal development but 
also in the early stages of baby’s life. 

BP-3 and reproductive toxicity

In a recently published study of Frederiksen et al. 
[57], the presence of BP-3 was detected in the seminal 
fluid samples from young men, which used sunscreen 
during the 48 h preceding the sample collection. The 
previous in vitro study demonstrated that some chemi-
cal UV filters, including BP-3, can induce Ca2+ signals via 
the cationic channel of sperm (CatSper) Ca2+ channel, 
similar to progesterone [58]. Because Ca2+ signalling 
controls important sperm functions, like chemotaxis, 
motility, capacitation, and acrosome reaction, possibili-
ty of BP-3 to mimic the effect of progesterone in human 
spermatozoa may lead to impaired male fertility. On 
the other hand, there is evidence that BP-3 can cross 
blood-tissue barriers, such as the blood-follicle barrier 
or the blood-placental barrier [59]. Using the whole rat 
ovary cultures, Santamaria et al. demonstrated that 
the exposure to BP-3 decreased the population of total 
oocytes, the number of nests per ovary and early pri-
mary follicles population, leading to perturbation in 
the early germ cell development [60]. The in vivo study 
performed on rats confirmed that BP-3 had the ability 
to disrupt the sperm development in testicles of male 
offspring, and it can delay the follicular development 
in female [61]. Other research done on rodents showed 
that BP-3 caused lengthened oestrous cycles and de-
creased epididymal sperm density [62]. Data obtained 
from human studies do not notice the association be-
tween BP-3 exposure and infertility [63, 64], although 
such relation was observed for BP-2 [64]. However, an 
epidemiological study has provided evidence of a rela-
tion between BP-3 exposure and the frequency of the 
diagnosed endometriosis [65].

BP-3 as an endocrine disrupting compound 

Benzophenones belong to the group of substances 
defined as endocrine-disrupting chemicals (EDCs), be-
cause they have an affinity for the steroid hormone 
receptors and may interfere with gonadal function. 
BP-3 has also frequently been reported as a factor play-
ing a key role in endocrine disruption [66–80]. This 
compound proved to be a strong activator of human 
estrogen receptors (ER), both α and β subtypes in the  
in vitro system, but did not show the estrogenic activity 
in a zebrafish in vivo study [66]. Moreover, the antagonis-
tic activity of BP-3 has been detected in yeast express-
ing human ERα [67]. Also, this compound was found to 
be antagonist toward the androgen and progesterone 
receptors [68]. On the other hand, a dose-dependent es-
trogenic effect was noticed in rats exposed to high doses 
of BP-3 per os [69]. The endocrine disruption can also 
occur by altering normal hormone levels – by the inhibi-
tion or stimulation of production and/or metabolism of 
hormones. The urinary BP-3 concentration was found to 
be associated with significantly lower serum total tes-
tosterone levels in men [70]. In women, there was no 
association between urinary BP-3 levels and estradiol, 
progesterone, luteinizing hormone (LH), follicle‑stimulat-
ing hormone (FSH) and sex hormone-binding globulin 
[71, 72]. The endocrine-disrupting potential of BP-3 was 
also evaluated by measuring the age of pubertal onset 
in children. However, the results are inconclusive. Binder 
et al. [73] showed that the urinary BP-3 levels were as-
sociated with earlier menarche but Wolff et al. [74] dem-
onstrated that this compound delayed breast develop-
ment in girls. In a recently performed study, there was 
no relationship between PB-3 levels in urine of pregnant 
mothers and the pubertal timing of their daughters and 
sons [47]. There are also suggestions that this compound 
may even be a cause of development the hormone-de-
pendent tumours [75]. 

In addition to the reproductive system, there is also 
an ambiguity for the impact of BP-3 on the hypotha-
lamic–pituitary–thyroid (HPT) axis [71–80]. According to 
Aker et al. [71], the increase in the maternal urinary BP-3 
resulted in a 3% decrease in free triiodothyronine (T3), 
but thyroid-stimulating hormone (TSH) and thyroxine 
(T4) remained unchanged in blood of pregnant women. 
BP-3, as the significant determinant of decreased se-
rum thyroid hormones, was also confirmed in general 
US population [76]. On the other hand, Krause et al. [77] 
showed that the presence of oxybenzone in mothers’ 
urine had no impact on their T3 and T4 levels. Anoth-
er study has been conducted on pregnant female rats 
dermally administered with BP-3, and demonstrated 
a higher level of T3, T4 and reduced TSH, which led to 
hyperthyroidism [14]. What is more, BP-3 was identified 
as a UV-filter that disrupts the functioning of HPT axis 
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in experimental animals. This compound can interact 
with thyroid function by an agonistic effect on the thy-
roid receptor [78], and by reducing the expression of the 
estrogen receptor-related receptor 1 (ERR1) gene in the 
thyroid gland [79]. Moreover, the increased vulnerability 
to oxidative stress and cytotoxicity was observed in rat 
thymocytes exposed to BP-3 [80]. Taking above results 
under consideration, it seems possible that the effect 
of BP-3 on hormonal activity depends on the exposure 
model used and the animal species.

BP-3 and neurotoxicity

Data from epidemiological and animal-based studies 
have suggested a relationship between the exposure to 
harmful environmental factors in early life and the risk 
of neurodegenerative disorders in adulthood. It is also 
believed that the developing brain is more vulnerable 
than the adult one to the same trigger [81]. There are 
still insufficient data on the impact of BP-3 on the hu-
man nervous system. The fact that BP-3 can cross the 
blood-brain barrier [79] inspired to examining its poten-
tial neurotoxic effect. The first in vitro study presenting 
the neurotoxic effects of BP-3 in primary culture of rat 
neocortex cells was performed by Fediuk et al. [9]. No 
significant differences in astrocyte and neuron viability 
were observed for short-time (24 and 48 h) exposure to 
BP-3. However, the prolonged (7-day) exposure to BP-3 
reduced astrocyte and neuron viability by 25% and 36%, 
respectively. In this same study, the repeated, 30-day 
application of BP-3 at the dose of 5 mg/kg on the skin 
of 8-week-old male and female rats did not show the 
significant behavioural changes [9]. The apoptotic and 
neurotoxic effects of BP-3 on SH-SY5Y neuroblastoma 
cells was later confirmed by Broniowska et al. [82]. Wnuk  
et al. [83] showed that this compound is capable of in-
hibiting an autophagy and disturbing the epigenetic 
state of primary neuronal cell cultures by the inhibition 
of global DNA methylation as well as reduction of the 
activity of histone deacetylases (HDACs) and histone 
acetyl transferases (HATs). The global DNA hypometh-
ylation and diminished activity of enzymes related to 
this process suggest the chromosomal instability and 
inappropriate gene expression pattern, leading to an in-
creased risk of neurodevelopmental disorders or nerve 
degenerations. 

In other studies, the neurotoxic effects of BP-3 has 
been tested in in vivo models. Prenatal exposure of mice 
to subcutaneous BP-3 injection revealed activation of 
apoptosis, loss of the mitochondrial membrane poten-
tial, impairment of autophagy and alteration of epigene-
tic and post-translational status in the brain of mice em-
bryos [16, 84]. BP-3-induced apoptosis and neurotoxicity 
was associated with global DNA hypomethylation and 
specific hypomethylation of the GPER1 and BAX genes. 
Simultaneously, BP-3 caused hypermethylation of other 
genes (ESR1, ESR2 and BCL2), which led to reduction of 

mRNA and protein levels of estrogen receptors in mouse 
neurons [84]. Moreover, BP-3 dysregulates expression of 
genes, which are responsible for neurogenesis and neu-
rotransmission, as well as miRNAs involved in patholo-
gies of the nervous system, especially schizophrenia and 
Alzheimer’s disease [16].

The recent studies, after combined prenatal and 
adult dermal exposure to BP-3, also confirmed the pro-
apoptotic changes, the raise of oxidative stress associ-
ated with reduction in the antioxidant capacity and an 
increase in the level of extracellular glutamate in fron-
tal cortex and hippocampus of male offsprings. In both 
brain regions, the contents of ERβ were also significantly 
reduced [15, 85]. However, when female offsprings were 
studied [14], the same exposure to BP-3 resulted in 
a lower concentration of BP-3 in both examined parts of 
the brain compared to male offsprings, and did not in-
duce the apoptotic process, whereas the increase in ex-
tracellular glutamate concentration and enhanced lipid 
peroxidation were still visible. These results suggest that 
the neuronal effects of BP-3 may be age- and gender-
dependent, as females metabolize this compound faster 
than males. They also confirm the previous observation 
[81] that the unfavourable effect of BP-3 on the nervous 
system is more pronounced in the developing organism 
than in the mature one. Importantly, the impairment in 
the spatial memory was observed after BP-3 exposure 
both in male and female offsprings [14, 15]. Because 
knowledge about the impact of BP-3 on the nervous 
system in children is negligible, the above results pro-
vide the first suspicion that exposure to BP-3, especially 
during the embryonic development period, may result in 
the increased risk of neurodegenerative diseases, such 
as Parkinson’s, Alzheimer’s or Huntington’s diseases in 
the future.

Conclusions 

The consumer care products containing BP-3 are 
widely used by the general public. However, the negative 
effects that may be induced by BP-3 on human health, 
cannot be clearly stated due to an insufficient number of 
performed studies. Nowadays, more and more research-
es are being conducted into the harmfulness of BP-3 on 
animals. These researches show that a BP-3, as a single 
compound, can exert some potential negative health ef-
fects. The problem is that the chemical filters are almost 
always used in the mixtures. Although the amount of 
individual compounds may be small, their effects are 
poorly understood. In addition, the same substance 
can be found in more than one product, what creates 
an opportunity of the “additive effect” and is not pos-
sible to predict their overall adverse impact on human 
health. The most disturbing findings are that foetuses 
and babies are exposed to BP-3 as this UV filter was 
found in human milk and it can easily cross the blood-
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brain barrier after being topically applied. The continu-
ous and long-term exposure of the developing organism 
to a mix of chemicals contained in UV filters, which may 
act as endocrine disruptors or neurotoxins, could have 
consequences for its health in adult life. Until this situ-
ation is clarified, pregnant women and children should 
pay special attention to the composition of sunscreens. 
For their own safety, they should look for the alternative 
photoprotection including sunscreens with mineral/in-
organic UV filters, protective clothing and avoidance of 
sun exposure during midday hours.
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