
����������
�������

Citation: Sweet, A.N.; André, N.M.;

Stout, A.E.; Licitra, B.N.; Whittaker,

G.R. Clinical and Molecular

Relationships between COVID-19

and Feline Infectious Peritonitis (FIP).

Viruses 2022, 14, 481. https://

doi.org/10.3390/v14030481

Academic Editors: Julia A. Beatty

and Séverine Tasker

Received: 22 December 2021

Accepted: 21 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Clinical and Molecular Relationships between COVID-19 and
Feline Infectious Peritonitis (FIP)
Arjun N. Sweet 1,2 , Nicole M. André 1 , Alison E. Stout 1 , Beth N. Licitra 1,* and Gary R. Whittaker 1,*

1 Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine,
Cornell University, Ithaca, NY 14853, USA; ans249@cornell.edu (A.N.S.); nma39@cornell.edu (N.M.A.);
aek68@cornell.edu (A.E.S.)

2 Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
* Correspondence: bnm4@cornell.edu (B.N.L.); grw7@cornell.edu (G.R.W.)

Abstract: The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical
and scientific community to address questions surrounding the pathogenesis and clinical presentation
of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a
ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious
peritonitis (FIP)—a leading cause of mortality in young cats that is characterized as a severe, systemic
inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course,
coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This
paper will explore the molecular and clinical relationships between FIP and COVID-19. While key
differences between the two syndromes exist, these similarities support further examination of feline
coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
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1. Introduction

In the 1960s, feline infectious peritonitis (FIP) was described as a disease in domestic
cats and later recognized to be of a viral etiology, specifically feline coronavirus (FCoV) [1,2].
In a majority of cats, infection with FCoV results in mild to inapparent clinical signs;
however, a small subset will develop severe illness and succumb to the systemic form
of the disease, known as FIP [3]. In the years since its discovery, many features of FCoV
have remained elusive. Likewise, the COVID-19 pandemic, caused by the emergence
of SARS-CoV-2, has posed many equally challenging questions regarding epidemiology
pathogenesis, transmissibility, and treatment. The widespread transmission of FCoV/SARS-
CoV-2 and the insidious onset of severe signs for both FIP and COVID-19 limits the ability
for early disease detection—what may begin as only mild or even inapparent clinical signs
or symptoms can rapidly lead to systemic disease [3,4]. We believe that FIP may represent
a valuable, naturally occurring extrapulmonary model of COVID-19.

Both FCoV and SARS-CoV-2 belong to the family Coronaviridae [4,5], albeit in distinct
genera (Figure 1). FCoV along with similar animal coronaviruses, such as canine coron-
avirus (CCoV) and transmissible gastroenteritis virus (TGEV) in pigs, belong to the genus
alphacoronavirus. Also grouped within the alphacoronavirus genus are the community-
acquired respiratory (CAR) human coronaviruses 229E and NL63 [6] with the latter as-
sociated with the common cold, croup, and possibly Kawasaki disease in children [7].
In contrast, SARS-CoV-2 along with SARS-CoV (the cause of the 2002–2003 severe acute
respiratory syndrome outbreak) and the Middle East respiratory syndrome coronavirus
(MERS-CoV) belong to the genus betacoronavirus [8], with SARS-CoV-2 and SARS-CoV
in lineage B (sarbecovirus) and MERS-CoV in lineage C (merbecovirus). The less closely
related betacoronaviruses include the CAR human coronavirus OC43 (associated with the
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common cold), mouse hepatitis virus (MHV), and bovine coronavirus, which is associated
with pneumonia and diarrhea in cattle; these viruses are in lineage A (embecovirus).
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vine coronavirus/BCoV (P15777), canine coronavirus/CCoV (AY436637.1), human corona-
virus/HCoV-OC43(NC_006213.1), HCoV-229E(NC_002645.1), and HCoV-229E(NC_002645.1). 
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Figure 1. Phylogenetic tree of the spike proteins of selected coronaviruses. A maximum likeli-
hood phylogenetic tree was constructed using MEGAX (100 bootstraps) from a multiple sequence
alignment of spike protein sequences. Spike amino acid sequences were obtained from NCBI Gen-
Bank. Accession numbers are: transmissible gastroenteritis virus/TGEV (P07946), severe acute
respiratory syndrome coronavirus 2/SARS-CoV-2 (YP_009724390.1), Middle East respiratory syn-
drome coronavirus/MERS-CoV(AFS88936.1), mouse hepatitis virus/MHV-1 (ACN89742), severe
acute respiratory syndrome coronavirus/SARS-CoV (AAT74874.1), feline coronavirus/FCoV-Black
(EU186072.1), bovine coronavirus/BCoV (P15777), canine coronavirus/CCoV (AY436637.1), human
coronavirus/HCoV-OC43(NC_006213.1), HCoV-229E(NC_002645.1), and HCoV-229E(NC_002645.1).

FCoV can be classified in two ways, the first being relevant to the disease form. Feline
enteric coronavirus (FECV) is considered the causative agent of the mild gastrointestinal
form of disease, while feline infectious peritonitis virus (FIPV) is associated with the lethal
systemic infection known as FIP [3]. FIPV is distinguished from FECV by its ability to
infect and replicate efficiently within monocytes and macrophages [9] triggering systemic
inflammation. FIPV is associated with a spectrum of clinical outcomes. At one end of the
spectrum is effusive, or ‘wet’ FIP, which is rapidly progressive and involves accumulation
of a highly proteinaceous exudate in the abdominal and/or thoracic cavities. At the other
end of the spectrum is non-effusive, or ‘dry’ FIP, which can affect many organ systems but
is typically characterized by neurologic and ocular signs. Non-effusive FIP generally has a
more protracted disease course and is less common than its effusive counterpart. FCoV can
also be classified into two serotypes—type I or type II—based on major differences in the
viral spike protein that affect receptor binding and antibody response [10]. The receptor for
type II FCoV is feline aminopeptidase N (fAPN) [11], while the receptor for type I viruses
is unidentified. Type I FCoV accounts for the vast majority of FIP cases [12].

SARS-CoV-2 classification into different variants based on genetic mutations is on-
going as the virus continues to evolve. Viral lineages demonstrating the potential for
increased transmissibility, treatment resistance, vaccine escape, or increased morbidity
and mortality have been designated variants of concern (VOC). The spectrum of disease
associated with COVID-19 is broad and ranges from asymptomatic and mild infections to
acute respiratory distress syndrome (ARDS), systemic inflammatory response syndrome
(SIRS), and multiorgan failure and death. Systemic inflammation in SARS-CoV-2 is not
linked to macrophage and monocytes (as in FIP), but it does account for a wide range
of extrapulmonary signs. This appears to involve the SARS-CoV-2 receptor, angiotensin
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converting enzyme-2 (ACE-2), which plays an important role in the renin–angiotensin
system and the development of a pro-inflammatory state [13]. Multisystemic inflammatoy
syndrome (MIS) of children and adults, as well as post acute sequelea of SARS-CoV-2
infection (PASC), also known as ‘long COVID’, are potential outcomes of a COVID-19
infection.

2. Transmission

As a group, coronaviruses are known for their ability to cause both respiratory and en-
teric disease and are generally transmitted by one or both routes. While FCoV is considered
fecal–oral and SARS-CoV-2 is primarily respiratory, COVID-19 patients can shed infectious
virus in their stool [14], often for prolonged periods, and FCoV can readily infect via the
oronasal route, a common method of challenge for experimental inoculation of cats [15].

In most cases, FCoV infection is self-limiting, and although the virus can be detected
systemically, replication outside of the intestinal epithelium is poor. This form of the
virus, termed FECV, is readily transmissible via the fecal–oral/oronasal routes, with the
common sources of infection involving shared litter boxes and ingestion of viral particles
through grooming. The current understanding of the development of FIP involves internal
mutation: in a small subset of FECV cases, a complex combination of host and viral factors
leads to mutation(s) allowing for efficient replication within macrophage and monocyte
lineages [16]. These lethal variants are classified as FIPV and are associated with systemic
inflammation, organ failure, and death. FIPV is generally considered to be nontransmissible
as the factors that increase its tropism to macrophages appear to restrict it from fecal–oral
spread [17]. Outbreaks of FIP have been reported in catteries and shelters. In these
situations, the stress of overcrowding and high levels of virus in the environment may
favor the transition of FECV into FIPV. There is evidence some strains of FCoV may be
more predisposed to this transition than others [18,19].

A SARS-CoV-2 infection primarily targets the respiratory epithelium, but as with FCoV,
the virus can be detected systemically without corresponding signs of infection [20,21].
Asymptomatic individuals are a well-documented source of SARS-CoV-2 [22–24], and
transmission involves both inhalation of aerosols and contact with droplets [25]. Incubation
periods for SARS-CoV-2 and FECV range from 2 to 14 days [26]. The incubation period
of FIP is highly variable, influenced by time to internal mutation and the individual’s
immune response. Onset of FIP may occur weeks to months after initial infection [27–30].
Multisystemic inflammatory syndrome in children (MIS-C), a serious manifestation of
SARS-CoV-2, also lags behind initial infection with a median onset of 4 weeks. No viral
factors have been associated with the development of MIS-C, but an immune mediated
component is suspected.

Vertical transmission of FIP through the placenta or milk is thought to be uncommon.
In an early experimental study where a lactating cat was infected, one of four kittens
succumbed to FIP [28]. More often, maternal antibodies appear to be effective in preventing
transmission up until about six weeks of age, at which time waning antibody levels make
kittens susceptible to transmission via the fecal–oral route [31]. However, this maternally-
derived immunity can be overcome at an early age by high levels of FCoV exposure—with
a Swiss study demonstrating kittens in large catteries showing infection at two weeks
of age [32,33]. Vertical transmission is a concern with a SARS-CoV-2 infection. Placental
transmission is uncommon but has been documented in fetuses of SARS-CoV-2-infected
mothers [34–36], evidenced by the detection of the virus in the amniotic fluid, neonatal
blood, umbilical cord blood, and placental tissue. Transmission events have been docu-
mented both in early and late pregnancy, but neonatal infection with SARS-CoV-2 may not
always occur in utero. Infection may also occur during delivery or close contact with the
mother. Neonatal outcomes of COVID-19-infected mothers remain an area of study, with
challenges in distinguishing between the impacts of a SARS-CoV-2 infection and maternal
comorbidities. Nevertheless, infection of newborns does not appear to be without conse-
quence, with one analysis noting approximately 50% of infected newborns demonstrating
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clinical features related to COVID-19, including fever and respiratory and gastrointestinal
signs [37].

3. General Clinical Presentation

Clinical signs and symptoms associated with both FIP and COVID-19 include fever,
diarrhea, depression, weakness, anorexia, and dyspnea [1]. The typical presentation of
COVID-19 commonly involves nonspecific symptoms including fever, dry cough, fatigue,
shortness of breath, and myalgia [38]. Anosmia (loss of smell) and ageusia (loss of taste)
have also been frequently reported with COVID-19 and present as more specific symp-
tomatic markers of the disease [39]. Pneumonia, acute respiratory distress syndrome
(ARDS), and sepsis can be seen. Males seem to be at a higher risk of developing more
severe manifestations of COVID-19 [40,41], with several small-scale studies supporting the
same association between male sex and the development of FIP in cats [42,43].

The classic presentation of FIP is the development of effusion in the abdominal and/or
thoracic cavity; while this presentation has been reported with COVID-19 [44], it is ex-
tremely rare. Beyond this, FIP presents in a range of body systems, which have similarity
to the extrapulmonary presentations of COVID-19 (Figures 2 and 3). The most similar
feature between both diseases is endothelial dysfunction. Vasculitis is the hallmark of
FIP pathology [45,46] with lesions characterized by perivascular edema and infiltration,
degeneration of vascular wall, and endothelial proliferation [47]. In the case of COVID-19,
it has been suggested that extrapulmonary signs are due to viral-mediated endotheliitis,
leading to vasculitis, primarily in veins with little arteriolar involvement [48,49]. In the
next sections, we describe these extrapulmonary signs and point out key similarities and
differences.
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Viruses 2022, 14, 481 5 of 23

Viruses 2022, 14, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 3. Summary of systemic clinical signs, symptoms, and pathologies associated with COVID-
19. The respiratory signs of COVID-19 are the main manifestation of the disease. However, a SARS-
CoV-2 infection in humans can also result in diverse extrapulmonary signs. The systemic clinical 
signs and symptoms associated with COVID-19, encompassing the organ systems that are also af-
fected by FIP, are summarized here. The most common signs of COVID-19 are colored in red. ARDS 
refers to acute respiratory distress syndrome. 

4. Biomarkers 
Inflammatory biomarkers are of interest as prognostic indicators in COVID-19 and 

as a means of differentiating FIP from other diseases. In FIP, IL-6 expression appears to 
be upregulated in the ascitic fluid of FIP-infected cats, possibly via increased expression 
in the heart and liver [50,51]. Other acute phase proteins are also upregulated in FIP in-
fection. Alpha-1-acid glycoprotein (AGP) has been explored as a diagnostic marker of FIP, 
but it can be upregulated in other conditions, thereby limiting its specificity [52,53]. Serum 
amyloid A (SAA) is another acute phase protein that appears to distinguish between FIPV 
and FECV infection, with FIPV-infected cats demonstrating higher levels of SAA com-
pared to FECV-infected cats and non-SPF controls [54], but it has limited use in differen-
tiating FIP from other effusive conditions [55]. 

Similar to what has been documented for FCoV, individuals suffering from severe 
cases of COVID-19 have higher levels of SAA compared to those with a milder form of 
COVID-19 [56]. Higher levels of SAA are also reported in patients who died from COVID-
19 as compared to survivors [57]. C-reactive protein (CRP) is another marker that shows 
promise as a biomarker in both FCoV and SARS-CoV-2 infections. CRP synthesis by the 
liver is induced by IL-6 expression as a response to inflammation [58] and is elevated in 
cases of FIP [59]. Elevated CRP levels in the early stages of COVID-19 have been associated 
with more severe disease and greater mortality [60–62], leading to recommendation for 
its use as a prognostic indicator when evaluating risk in patients hospitalized for COVID-
19. In contrast, one meta-review found that IL-6 levels, while elevated, were at least one 
order of magnitude lower in COVID-19 patients than in those with non-COVID-19-related 
ARDS and sepsis, suggesting a different mechanism of immune dysregulation [63]. 

Figure 3. Summary of the systemic clinical signs, symptoms, and pathologies associated with
COVID-19. The respiratory signs of COVID-19 are the main manifestation of the disease. However,
a SARS-CoV-2 infection in humans can also result in diverse extrapulmonary signs. The systemic
clinical signs and symptoms associated with COVID-19, encompassing the organ systems that are
also affected by FIP, are summarized here. The most common signs of COVID-19 are colored in red.
ARDS refers to acute respiratory distress syndrome.

4. Biomarkers

Inflammatory biomarkers are of interest as prognostic indicators in COVID-19 and as
a means of differentiating FIP from other diseases. In FIP, IL-6 expression appears to be
upregulated in the ascitic fluid of FIP-infected cats, possibly via increased expression in the
heart and liver [50,51]. Other acute phase proteins are also upregulated in FIP infection.
Alpha-1-acid glycoprotein (AGP) has been explored as a diagnostic marker of FIP, but
it can be upregulated in other conditions, thereby limiting its specificity [52,53]. Serum
amyloid A (SAA) is another acute phase protein that appears to distinguish between FIPV
and FECV infection, with FIPV-infected cats demonstrating higher levels of SAA compared
to FECV-infected cats and non-SPF controls [54], but it has limited use in differentiating
FIP from other effusive conditions [55].

Similar to what has been documented for FCoV, individuals suffering from severe
cases of COVID-19 have higher levels of SAA compared to those with a milder form
of COVID-19 [56]. Higher levels of SAA are also reported in patients who died from
COVID-19 as compared to survivors [57]. C-reactive protein (CRP) is another marker that
shows promise as a biomarker in both FCoV and SARS-CoV-2 infections. CRP synthesis by
the liver is induced by IL-6 expression as a response to inflammation [58] and is elevated in
cases of FIP [59]. Elevated CRP levels in the early stages of COVID-19 have been associated
with more severe disease and greater mortality [60–62], leading to recommendation for its
use as a prognostic indicator when evaluating risk in patients hospitalized for COVID-19.
In contrast, one meta-review found that IL-6 levels, while elevated, were at least one order
of magnitude lower in COVID-19 patients than in those with non-COVID-19-related ARDS
and sepsis, suggesting a different mechanism of immune dysregulation [63].

D-dimer, though not specific to COVID-19 or FIP, is another biomarker of interest.
D-dimer is released from the breakdown of fibrin and is used as a clinical tool for ruling out
thromboembolism [64]. Thrombotic events have been frequently documented in COVID-19
across multiple organ systems [65,66], and increased D-dimer levels are associated with
greater morbidity and mortality [67,68]. Likewise, thrombotic events can occur in FIP, and
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high levels of D-dimers along with other signs of disseminate intravascular coagulation
(DIC) can be seen in the end stages of FIP in both natural and experimental infections [69,70].

5. Pathophysiology
5.1. Neurological

FIP is one of the leading infectious neurological diseases in cats and the signs associated
with central nervous system (CNS) infection are well documented [71]. CNS symptoms
are recorded in about 40 percent of dry FIP cases and may appear as nystagmus, torticollis,
ataxia, paralysis, altered behavior, altered mentation, and seizures [72]. The wide spectrum
of signs supports the conclusion that infection is not limited to a specific portion of the
CNS [73]. Infection within the CNS is limited to monocyte and macrophage lineages and
results in pyogranulomatous and lymphoplasmacytic inflammation, which typically affects
the leptomeninges, choroid plexus, and periventricular parenchyma [74].

Documentation of neurological signs associated with SARS-CoV-2 infection of the
CNS is limited in comparison to other coronaviruses [75]. The observed signs are diverse,
ranging from headache and confusion to seizures and acute cerebrovascular events [76].
The detection of the virus in the brain is uncommon, suggesting that signs may not directly
linked to CNS infection. Viral particles have been observed in neural capillary endothelial
cells and in a subset of cranial nerves, although such detection is not correlated with the
severity of neurological signs [77]. Often, evidence of direct infection is not apparent.
Instead, inflammatory mediators such as activated microglia are noted and may contribute
to microvascular damage and disease. [78,79].

Further comparison of the neuroinflammatory properties of SARS-CoV-2 and FCoV
may bring new perspective to the neurological manifestations of COVID-19. Further
examination of neurologic signs associated with SARS-CoV-2 is vital for understanding the
progression of COVID-19 and the extent of CNS infection.

5.2. Ophthalmological

Ocular manifestations of FIP are more prevalent in the dry form of the disease [80].
Mydriasis, iritis, retinal detachment, conjunctivitis, hyphema, and keratic precipitates have
been observed [81]. The most common ocular manifestation of FIP is uveitis, which can
affect both the anterior and posterior uvea [80]. The viral antigen can also be detected in
the epithelial cells of the nictitating membrane, however the detection of the viral antigen
does not distinguish between FECV and FIPV [82].

Ocular presentations of COVID-19 include conjunctivitis, chemosis, epiphora, con-
junctival hyperemia, and increased tear production [83]. Uveitis—a common ocular presen-
tation of FIP—has also been observed with a SARS-CoV-2 infection [84,85]. Viral detection
in the tear fluid led to concern for ocular transmission in the early months of the COVID-19
pandemic [83,86]. SARS-CoV-2 RNA has been detected in lacrimal secretions and has
been isolated from ocular secretions, supporting the potential of ophthalmologic trans-
mission [87,88]. Interestingly, in the aforementioned case study in China, only 2 out of
the 12 patients with ophthalmologic signs returned positive conjunctival tests, suggesting
limited sensitivity in the detection of the virus from conjunctival samples [83].

5.3. Cardiovascular

Pericardial effusion is a less common manifestation of FIP but is well documented in
the literature [26,89–91]. FCoV has been detected in the pericardium of a cat with recurrent
pericardial effusion that later developed neurologic signs [92]. Direct FCoV infection of the
heart was documented in a 2019 case study that reported FIP-associated myocarditis with
notable left ventricular hypertrophy and atrial enlargement [93]. Immunohistochemistry
(IHC) revealed the presence of FCoV-infected macrophages and associated pyogranulo-
matous lesions. [26]. Interestingly, a severe SARS-CoV-2 infection with evidence of viral
replication within the heart and lungs was recently documented in a cat with pre-existing
hypertrophic cardiomyopathy (HCM) [94].
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In contrast to FIP, cardiac injury associated with a SARS-CoV-2 infection appears to
be much more widespread. A 187-patient study found 27.8% of COVID-19 cases to have
evidence of myocardial injury as evidenced by elevated cardiac troponin (TnT) levels [95].
High TnT levels were, in turn, associated with a higher mortality. A retrospective multicen-
ter study of 68 COVID-19 noted 27 deaths that could be attributed to myocardial damage
and/or circulatory failure as one of the primary causes of mortality, with elevated C-reactive
protein and IL-6 levels linked to higher mortality [96]. The elevation of such inflammatory
biomarkers in the blood suggests the rapid inflammatory nature of COVID-19 may have a
particularly detrimental impact on cardiac function. Diffuse edema as well as increased
wall thickness and hypokinesis have been noted in a COVID-19 infection [97]. Cardiac
tamponade has also been observed in patients with COVID-19, with the pericardial fluid
having detectable levels of SARS-CoV-2 [98]. In contrast to FIP, in which direct invasion
of FCoV-infected macrophages in the myocardium has been observed in myocarditis, a
SARS-CoV-2 infection of the myocardium is not clearly associated with mononuclear cell
infiltration or myocarditis [99]. This leads to the consideration of more systemic factors in
adverse cardiac outcomes—particularly the dysregulation of inflammatory cytokines. The
impact of a SARS-CoV-2 infection on the cardiovascular system is an important element in
our growing understanding of morbidity and mortality associated with COVID-19.

5.4. Gastroenterological

FCoV is shed in the feces and transmitted by the oronasal route. Initial FCoV infection
is targeted to the intestinal tract—infection may be subclinical or cats may develop diarrhea,
and less commonly, vomiting. Primary infection lasts several months, and the virus can
be shed for months to years [100,101]. Colonic columnar epithelial cells appear to serve
as a reservoir for persistent infection and shedding [21]. Signs tend to be mild and self-
limiting, and only a small subset of animals will progress to FIP. Fibrinous serositis and
pyogranulomatous lesions with vasculitis are the classic lesions of FIP and can be found in
both the small and large intestines of affected cats [102]. FIP can cause solitary mass lesions
in the intestinal wall, although this is considered an uncommon presentation (26/156 cats
in one study) [103]. These tend to be located in the colon or ileocecal junction and are
pyogranulomatous in nature.

Gastroenterological signs are widely reported with a COVID-19 infection. ACE2, the
cellular receptor for SARS-CoV-2, is widely expressed in the glandular cells of gastric,
duodenal, and rectal epithelium. Viral RNA and nucleocapsid have been detected in these
tissues [104], supporting their suitability for SARS-CoV-2 replication. Gastrointestinal
(GI) symptoms range from general lack of appetite to diarrhea, nausea, vomiting, and
abdominal pain [105,106]. Excluding the less-specific symptom of a lack of appetite, several
meta-analyses estimate the prevalence of GI symptoms in COVID-19 patients to be approx-
imately 10% to 20%, with the most frequently reported symptom being diarrhea [106–108].
Interestingly, GI symptoms in COVID-19 have been observed without accompaniment of
respiratory signs [105].

Viral shedding in feces has been of particular concern with COVID-19, as SARS-
CoV-2 RNA can continue to be present in fecal matter even after reaching undetectable
levels in upper respiratory samples [109]. While the detection of viral RNA in feces itself
is not necessarily indicative of the presence of infectious virions, viable viral particles
have been detected in feces [110]. The viral antigen has also persisted in the cells of the
gastrointestinal tract in the convalescent phase, up to 6 months after recovery [20]. In one
case study, persistent colonic infection was linked to persistent gastrointestinal signs in a
case of ‘long COVID’ [111], introducing a parallel to the role of the colonic epithelium as a
reservoir for FCoV.

5.5. Dermatology

Dermatological lesions have been reported in both SARS-CoV-2 and FIPV infections.
Although rare, papular cutaneous lesions are the primary dermatologic manifestation of
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FIP, with the few available case reports documenting papules [81,112–114]. On histologic
examination, pyogranulomatous dermatitis, phlebitis, periphlebitis, vasculitis, and necrosis
were noted in several FIP case reports [81,112–115].

The first report of dermatological manifestations associated with COVID-19 was
observed in Lecco Hospital in Lombardy, Italy [116]. In this study 18/88 patients (20.4%)
exhibited cutaneous involvement where 8/18 were observed upon onset and 10/18 after
hospitalization [116]. Clinical symptoms included erythematous rash (14/18 patients),
diffuse urticaria (3/18 patients), and chickenpox-like vesicles (1/18 patients) [116]. The
lesions were primarily observed on the trunk (torso) and pruritus was mild or absent [116].
The continuation of the pandemic has seen greater characterization of the first-observed
dermatological signs as well as identification of more rare presentations. An exanthematous
rash, often characterized by maculopapular lesions, appears to be the most common
dermatological manifestation of COVID-19 [117,118]. Urticaria also appears to be another
prevalent dermatological sign [118,119]. Importantly, neither exanthema nor urticaria are
specific for COVID-19, limiting their positive predictive value. Varicella-like exanthema
have been observed in a SARS-CoV-2 infection and may be a more specific presentation
given its low prevalence in viral illness. Especially with a lack of oral lesions and pruritis
observed in the COVID-19-associated rash, coupled with a previous history of varicella
infection, the specificity of this presentation is strengthened [118].

5.6. Theriogenological

Orchitis and periorchitis have been observed in multiple cases of FIP with fibrinopu-
rulent or granulomatous infiltrates as well as hypoplastic testes [1,26,120]. Inflammatory
mediators from the tunics surrounding the testes have caused testicular enlargement in FIP
cats [26,120]. In effusive FIP, scrotal enlargement has been observed due to the edema and
peritonitis of tunics [16]. Despite the obvious pathology to the feline male reproductive
system, FCoV was not detected in semen, decreasing the likelihood of a venereal route of
transmission [121]. Female reproductive pathology of FIP is less documented in the litera-
ture but has been observed with macroscopic lesions present in the ovaries of FIPV-infected
cats. The surrounding vessels of the uterus and ovaries in these cats were observed to be
surrounded by lymphocytes, macrophages, plasma cells, and neutrophils [122].

Analogous to FIP, the pathology of COVID-19 also appears to be evident in the human
male reproductive system. In one study, examining the testes of 12 COVID-19 patients,
there was edema as well as lymphocytic and histiocytic infiltrate—consistent with viral
orchitis [123]. These samples were also characterized by damage to the seminiferous tubules,
with a notable impact on the Sertoli cells, as well as decreased numbers of Leydig cells. In a
separate study, the damage to germ cells was more pronounced despite similar levels of
the Sertoli cells between SARS-CoV-2-infected individuals and uninfected controls, posing
a more direct link between infection and fertility [124]. The extent to which SARS-CoV-2
can persist in the male reproductive tract remains under investigation. While SARS-CoV-2
has been detected in human semen, whether this represents actual infection of the testicles
or is a result of a compromised blood–epididymal/deferens barrier is questioned [125,126].

Our understanding of COVID-19 in the human female reproductive system remains
limited by the amount of literature and the sample sizes of existing studies. Nevertheless,
comprehending the extent of SARS-CoV-2 in the female reproductive tract is imperative
in recognizing any deleterious impacts on fertility. ACE2 is expressed in the ovaries,
oocytes, and uterus, but the limited co-expression of proteases such as TMPRSS2 and
cathepsins L and B with ACE2 raises questions about the likelihood of ovarian/uterine
infection [127,128]. While one study of 35 women diagnosed with COVID-19 returned no
detection of SARS-CoV-2 in vaginal fluid or exfoliated cells from the cervix, SARS-CoV-2
was detected in vaginal fluid via RT-PCR in a case study from Italy (Ct 37.2 at day 7 and
Ct 32.9 at day 20 from symptom onset), suggesting that infection of the female reproductive
system may be possible [129,130].
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5.7. Immunologic Response

FIP is classically characterized as an immune-mediated disease, based on early ob-
servations of the circulation of complement and immunoglobulins, including as immune
complexes [131]. Components of type III and type IV immune reactions have been de-
scribed [132]. Vasculitis and vasculitis-like lesions are suggested to play a role in systemic
complications of COVID-19 that cannot be explained by direct organ infection, such as
microthrombosis in the brain, kidneys, spleen, and liver [133]. One report of type III hyper-
sensitivity was identified in the COVID-19 literature [134]; however, immune complexes
do not appear to play an important role in the pathology of COVID-19. The mechanism
of viral clearance and the inflammatory effects of the immune response are important
areas of study for both FIP and COVID-19. Previous work investigating SARS-CoV has
demonstrated the necessity of CD4+ T cells for viral clearance [135,136]. T cell depletion
has been a recognized consequence of FCoV and has been observed to be associated with
more severe cases of COVID-19 [137–139]. Additionally, both regulatory T cells and NK
cells decrease in FIP disease across blood, mesenteric lymph nodes, and spleen [140]. High
levels of IL-6 have previously been demonstrated in FIP ascites [50], and, likewise, elevated
IL-6 levels appear associated with disease severity and outcome in COVID-19 patients [141].
Cytokine storm, characterized by the over-expression of inflammatory cytokines, has been
implicated in the pathogenesis of both infections. In FIP, this pathology has been linked to
the activation of monocytes and macrophages, while in COVID-19, the link to macrophages
and monocytes is less clear [142]. In considering the balance between cell-mediated immu-
nity and humoral immunity, early reports indicated an association with strong humoral
immunity resulting in FIP [143]. However, in COVID-19 patients, humoral immunity
may play a more beneficial role [144], especially given the potential clinical benefits of
convalescent plasma/serum [145].

Antibody-dependent enhancement (ADE), the process by which viral–antibody com-
plexes enhance infection, was of particular concern during the SARS-CoV-2 vaccine de-
velopment process. FIPV has been shown to exhibit ADE in the presence of anti-FIPV
antibodies [146]. This enhancement of infection appears to be specific to serotype, with
passive immunization of cats against type I or type II FIPV resulting in ADE only after
challenging with the same serotype for which immunization was performed [147]. As
a result, ADE has been a significant challenge toward the development of FIP vaccines.
In human coronavirus diseases, ADE is yet to be fully understood. In SARS-CoV, higher
concentrations of anti-spike antibodies were found to have a greater neutralizing effect,
whereas more dilute concentrations were suggested to contribute to ADE in vitro [148]. In
SARS-CoV-2, ADE was observed in monocyte lineages but was not associated with upregu-
lation of proinflammatory cytokines [149]. Modeling of spike protein sequences identified
possible mechanisms for ADE, involving interaction with Fc receptors on monocytes and
mast cells [150]. Should ADE play a role in SARS-CoV-2, the most probable mechanism
would be through excessive activation of the immune cascade through Fc-mediated activa-
tion of innate immune cells [151,152]. At this time, there is not abundant evidence pointing
to ADE with SARS-CoV-2 pathogenesis, and further investigation is needed to evaluate the
true scope of risk.

6. Molecular Similarities between the FCoV and SARS-CoV-2 Spike Proteins

The viral spike protein is a main driver of tissue and cellular tropism and binds the
cellular receptor [153]. It is now well established that SARS-CoV-2 binds the angiotensin
converting enzyme-2 (ACE-2) as a primary receptor, a feature shared with SARS-CoV. Other
binding partners also exist for SARS-CoV-2, including heparan sulfate as a nonspecific
attachment and neuropilin-1 (NRP-1), which may account for tropism of the virus for
the olfactory and central nervous system [154,155]. In contrast, most alphacoronaviruses,
including type II FCoV, utilize aminopeptidases (APNs) for viral entry [9,153,156]. The re-
ceptor for type I FCoV remains to be elucidated. The spike protein also mediates membrane
fusion, which is activated by an intricate process controlled by host cell proteases [153].
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While type I FCoV possesses two protease cleavage activation sites, designated S1/S2 and
S2′, FCoV type II only possesses a single cleavage activation site (S2′) [10]. In comparison,
SARS-CoV-2 is similar to FCoV-1 (and currently unique for SARS-related viruses) in that
there are two identified cleavage sites (S1/S2 and S2′), with the former, the furin cleavage
site or FCS, thought to be a significant factor in pandemic spread [157–159]. In both cases,
the presence of the S1/S2 cleavage sites sets FCoV-1 and SARS-CoV-2 apart from their close
family members. The importance of the cleavage activation site appears to link directly to
the proteases necessary for viral infection and thus, to an additional component of tissue
tropism. In type I FCoV, the transition from FECV to macrophage-tropic FIPV was first
shown with amino acid substitutions at the S1/S2 cleavage site on FIP-confirmed pathol-
ogy samples, which were predicted to downregulate proteolytic priming by furin-like
proteases prior to S2′-mediated fusion activation [72,160,161]. In SARS-CoV-2, TMPRSS-2
or other related trypsin-like proteases are the main activator of fusion and entry at S2′ [162]
(Table 1), with furin-like proteases priming the spike and S1/S2 [163] and notably shown
to be rapidly downregulated upon adaption to Vero E6 cells in culture and possibly also in
extrapulmonary human tissues [164]. Thus, there appear to be notable similarities in host
cell adaptation between the two viruses.

Table 1. Summary of SARS-CoV-2 and the two FCoV serotypes. The spike glycoprotein of coro-
naviruses, mediated by proteolytic cleavage, is the main driver of cellular receptor binding and
membrane fusion. The taxonomic classification, host receptor, and S1/S2 and S2′ proteolytic cleavage
site amino acid sequences are summarized below.

Virus Group Receptor Consensus S1/S2 Sequence in
Circulating Viruses

Consensus S2′

Sequence in
Circulating Viruses

SARS-CoV-2 Betacoronavirus ACE2 SPRRAR|S
(*SHRRAR|S and SRRRAR|S) SKPSKR|S

FCoV-1 Alphacoronavirus
(“clade A”) unknown SRRSRR|S (in FECV; mutated

in FIPV) KR|S

FCoV-2 Alphacoronavirus
(“clade B”) APN not present YRKR|S

*, Replaced in Common Variants.

7. Prevention and Treatment: From Social Distancing towards Vaccines

To date, the role of population/public health measures has been a main driver of
mitigating the spread of both FCoV and SARS-CoV-2 [3,31,165,166]. In that regard, many
social distancing measures have been implemented for affected populations, including stay
at home orders, shuttering of nonessential businesses, and limits on public gatherings [167].
Though not termed social distancing, similar methods have been frequently implemented
or recommended in feline populations [3]. Dreschler et al. summarize the methods that
have been recommended in feline populations, particularly in multi-cat environments,
including reducing the number of cats per room, frequent cage cleaning, and grouping cats
by shedding and/or serology status [168]. Dreschler states that quarantine of FCoV/FIPV
exposed cats to limit the spread of FCoV within the population is neither efficient nor
advantageous due to the likelihood of widespread FCoV infection in multi-cat environ-
ments as well as the months it takes to develop (and uncertainty in developing) FIP. In
contrast, quarantine of SARS-CoV-2 exposed persons has the potential to reduce the spread
of disease and death [169]. Regardless of the extent of grouping or separation, careful
consideration must be taken into account across both cats and humans with respect to
the social difficulties posed by separation. With cats, particularly in the context of early
weaning from their queens, special care must be taken in the weaning process to ensure
adequate socialization of the kittens. Similarly, with COVID-19, the quarantine and/or
isolation process can be mentally burdensome for individuals. Careful cost–benefit analysis
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must be frequently undertaken to compare the public health benefits of quarantine and
isolation with the negative mental toll on persons subject to prevent unnecessary/inefficient
quarantine. When necessary, rationale as well as support should be provided to improve
wellbeing [170].

While an FIP vaccine is commercially available (Primucell), benefits of FIP vaccination
remain low. Primucell is an intranasal vaccine that uses an attenuated serotype 2 FIPV
isolate (FIPV-DF2), administered in a two-dose course 3 to 4 weeks apart to cats at least
16 weeks of age [171]. In a placebo-controlled experimental study of 138 cats, vaccinated
cats did not show a significantly decreased incidence of FIP compared to controls across
the study’s twelve-month observation period. Adjusting for FCoV titers, cats with lower
antibody titers (100 or lower) at time of first vaccination compared to those with higher
titers (400 or more), had significantly decreased incidence of FIP [172]. However, given
the high prevalence of FCoV, especially in multi-cat environments, attempting to mitigate
the incidence of FIP through vaccination of FCoV-naïve cats at least 16 weeks of age may
be unfeasible given the high potential for FCoV infection in the 16 weeks before vaccine
eligibility. Consequently, the American Animal Hospital Association and the American
Association of Feline Practitioners does not recommend vaccination against FIP [173].

ADE remains the key concern with FIP vaccines. Several studies have attempted to
reduce the incidence of FIP in experimentally infected cats with recombinant and other
experimental vaccines, but ADE has repeatedly been suggested. In one placebo-controlled
study where purebred British Shorthair cats and specific-pathogen-free (SPF) Domestic
Shorthairs were vaccinated with one of two recombinant type 2 FIPV (FIPV-DF2) vaccines,
both vaccine candidates showed significantly diminished to no protection against the
FIPV challenge in non-SPF cats—with most non-SPF animals showing ADE [174]. In a
separate study, the immunization of kittens with vaccinia virus recombined with the spike
glycoprotein gene of FIPV significantly reduced survival time after the FIPV challenge
compared to kittens immunized to wildtype vaccinia virus. Importantly, low levels of
neutralizing antibodies were observed in the FIPV-spike immunized group [175]. The
concern of ADE after FIPV immunization remains a difficult challenge in the prevention
of FIP.

COVID-19 vaccines, in contrast to FIP vaccination efforts, have played a more promi-
nent role in mitigating the spread of infection. Several vaccine types have been man-
ufactured and demonstrated safety and efficacy in preventing symptomatic infection,
severe disease, and death from COVID-19—including but not limited to mRNA vaccines
(Pfizer/BioNTech and Moderna), viral vector vaccines (Janssen, AstraZeneca), and inacti-
vated virus vaccines (Bharat Biotech, Sinovac) [176–181]. The former two vaccine platforms
use the SARS-CoV-2 spike glycoprotein as the immunogen, while the inactivated virus
vaccines have the potential to elicit an immune response to other viral components in addi-
tion to the spike glycoprotein. Despite the favorable safety profile of COVID-19 vaccines,
adverse events after vaccination have occurred, some in an antibody-mediated fashion
analogous to the concern of ADE with FIP vaccines. Thrombosis has been a documented
concern particularly in the AstraZeneca as well as Janssen vaccines. While the precise
mechanisms are under study, the current understanding is where an inflammatory response
results in increased levels of platelet-activating antibodies, which bind to platelet factor
4 and result in a hypercoagulable state [182,183]. Unlike the greater incidence of ADE in
experimental FIP vaccines, the occurrence of thrombotic events after COVID-19 vaccine
administration is low [184].

Beyond the primary endpoints of vaccine studies, which were centered on the pre-
vention of symptomatic infection, severe disease, and death from COVID-19, many of the
phase 3 vaccine trials did not engage in surveillance to assess the degree of prevention of
asymptomatic infection. Favorable efficacy against asymptomatic infection is important
from a public health perspective, especially given the potential for asymptomatic individu-
als to transmit COVID-19 and that routine surveillance testing is resource-consuming and
difficult to coordinate on a large scale [22]. Important contributions toward this area are
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real-world studies that examine vaccine effectiveness, which point to the decreased risk of
infection with SARS-CoV-2 as well as a diminished viral load in vaccine “breakthrough”
infections [185–188]. Such evidence supports the use of SARS-CoV-2 vaccines as a protec-
tive measure not only against severe COVID-19, but also as a critical asset in managing
incidence of disease.

8. Clinical Care and Therapeutic Options

In 1963, when the first clinical cases of FIP were described (prior to knowing the viral
etiology), it was noted that antibiotic therapy was frequently attempted, but obviously
yielded no benefit [189]. Since this first report, and without an effective vaccine, numer-
ous therapies have been attempted in cats presenting with FIP. Ribavirin, a nucleoside
analog, previously provided promising results against FCoV when studied in vitro [190],
yet when administered to cats as an experimental treatment, resulted in worse outcomes
in some instances [191]. Similarly, in the early part of the COVID-19 pandemic, ribavirin
had been utilized at several doses and in combination with additional drugs [192], and a
study protocol had been proposed for investigating the benefits in human patients [193].
However, a different direct-acting antiviral (DAA) (remdesivir), a nucleoside analog that
acts as a chain terminator and with less toxicity concerns compared to ribavirin, rapidly
rose to prominence in treating hospitalized COVID-19 patients, being used in an injectable
form. Despite initial enthusiasm, remdesivir has not proven to be effective in such patients
in robust clinical trials; however, several reports have demonstrated the clinical benefit
of the related nucleoside analog GS-441524 in treating cats with FIP, including effusive,
noneffusive, and neurologic forms of the disease [194–197]. At the time of writing, inves-
tigations into the efficacy of remdesivir in treating FIP are being conducted in Australia
and the United Kingdom. Interestingly, remdesivir is the pro-drug form of GS-441524 [195].
More recently, two orally-available DAAs have entered clinical trials for COVID-19 and are
currently awaiting FDA approval; molnupiravir (MK-4482/EIDD-2801) a modified form of
ribavirin, and Paxlovid (a protease inhibitor, PF-07321332, in combination with ritonavir,
which improves PF-07321332 half-life) targeting the vial main protease (Mpro). Notably
the active ingredient of Paxlovid is related to GC-376 and was previously shown to be
effective in a clinical study of FIP [196]. It will be very interesting to follow the course of
development, FDA approval, and use of these DAAs in relation to the respective diseases
caused by SARS-CoV-2 and FCoV.

Given the inflammatory nature of both FIP and COVID-19, therapy is frequently
targeted at controlling the immune response. Though glucocorticoids are frequently given
to cats with FIP in an attempt to mitigate the inflammatory sides of the disease, the clinical
benefit is negligible [198]. The use of corticosteroids in COVID-19 patients appears not to be
without consideration, with some studies showing negative profiles [199]. However, there
may be benefits of their administration in severe COVID-19 cases through an observed
reduction in mortality [200,201]. Cyclosporine, an immunosuppressive drug often used to
prevent organ rejection in transplant patients and the treatment of some autoimmune dis-
eases, has been investigated in both FIP and SARS-CoV-2. An in vitro study of cyclosporine
A (CsA) utilizing a type II FCoV virus has shown a decrease in viral replication [202], while
treatment of a 14-year-old cat with CsA, following unsuccessful IFN treatment, resulted
in clinical improvement, reduction in viral load, and survival time over 260 days [203].
While no controlled trials currently exist in regards to the use of CsA in treating COVID-19
patients, potential mechanisms of action have been suggested in addition to questions
regarding safety [204–206]. Additionally, the cyclosporine A analogue, Alisporivir, has
shown in vitro effects on viral replication [207], similar to evidence demonstrating that
replication of other coronaviruses is hindered by the blocking of cyclophilin A [208].

Across both FIP and COVID-19, numerous antibiotics have been prescribed but not
for their antimicrobial properties, rather for anti-inflammatory effects [198]. Doxycycline,
for example, may have helped with providing prolonged survival in a cat with FIP [209].
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Whether doxycycline would exhibit benefit to COVID-19 patients remains unknown at the
present, but it has been suggested as a possible component for disease management [210].

Interferons have also been investigated in controlling FIP without clear association
in clinical improvement [211]. In human COVID-19 patients, a combination therapy of
interferon-β-1b with lopinavir, ritonavir, and ribavirin, compared to just lopinavir and
ritonavir was associated with decreased length of viral shedding and improved clinical
outcomes in mild to moderate cases [212].

Monoclonal antibodies targeting components of the immune response carry the po-
tential to downregulate inflammatory cytokines. In a small study of cats experimen-
tally infected with FIPV-1146, anti-TNF-α demonstrated benefits for disease manage-
ment [213]. Tocilizumab, an IL-6 monoclonal antibody, has been administered to COVID-19
patients [214]. More research in regard to Tocilizumab is required, given the disparate
clinical outcomes reported [215,216].

The translation of knowledge between species will inevitably create an impact for
both cats and humans, and even other species. Though many compounds are effective
when studied in vitro, in vivo use can result in different outcomes, including toxicities.
Additionally, because a compound may show promise in one species does not mean that
the same effect will be observed in other species, especially when comparing similar, but
distinct, viruses and virus-induced diseases.

9. MIS-C and PASC

In April 2020, the United Kingdom’s National Health Service published an alert
of increased incidence of a multisystem inflammatory syndrome in children—many of
whom tested positive for COVID-19 [217]. As the pandemic progressed, studies from
other countries examining this inflammatory condition have provided more detail toward a
clinical understanding of what is now referred to as MIS-C, a rare presentation of COVID-19
in pediatric patients. MIS-C involves multiple organ systems. Cardiovascular dysregulation
in MIS-C is often observed in the form of ventricular dysfunction, pericardial effusion,
and coronary artery aneurysms [218,219]. Gastrointestinal signs mimic appendicitis and
include abdominal pain, vomiting, and diarrhea. Terminal ileitis is a common finding on
imaging [220]. Many patients also experience neurocognitive signs including headache and
confusion. More severe neurologic complications, including encephalopathy and stroke,
are less common [218,221].

One area of significant clinical overlap between FIP and COVID-19 is the rare inflam-
matory presentation of a SARS-CoV-2 infection—multisystem inflammatory syndrome
in children (MIS-C). MIS-C is observed in pediatric populations, similar to how FIP com-
monly affects young cats [43]. In similar fashion to FIP, MIS-C has a systemic presentation
involving multiple organ systems—including but not limited to gastrointestinal, cardio-
vascular, and hematologic abnormalities [222]. As in the presentation of the wet form of
FIP, both pleural effusions and ascites also appear in MIS-C [223]. Both syndromes also
demonstrate overlap in the vascular pathology. FIP exhibits a granulomatous vasculitis
which shares overlap with the Kawasaki-like vascular syndrome observed in MIS-C [224].
MIS-C has been suggested to be a post-infectious disorder related to prior a SARS-CoV-2
infection [223,225]. FIP, too, has a delayed onset after initial FCoV exposure and only
occurs in a small subset of cases. While cats with FIP can still shed FCoV in their feces,
mutations associated with the biotype switch from FECV to FIPV are not believed to be
transmissible—supporting a degree in similarity of the limited infectious extent of both FIP
and MIS-C.

More recently, the condition of post-acute COVID-19 sequelae (PASC) has been defined
to include memory loss, gastrointestinal distress, fatigue, anosmia, shortage of breath, etc.
and is more commonly referred to as “long-COVID”. Along with MIS-C, PASC is a highly
active area of investigation that has been summarized by others [226], and together they
provide an excellent starting point for the use of feline medicine as a model for coronavirus-
induced pathogenesis, in what might be unexpected ways [224].
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10. SARS-CoV-2 Infection of Cats

Cats have become now become widely established as permissive hosts for SARS-CoV-2
infections, in part due to the relative similarities of the human and feline ACE2 receptors.
Following reported cases in Hong Kong and Belgium during March 2020, the most notable
early natural infection was at the Bronx Zoo in New York City, USA. In April, four tigers and
three lions developed mild respiratory signs from their keepers, with SARS-CoV-2 detected
by PCR and sequencing [227]. Subsequently, infection of both domestic and non-domestic
cats has become relatively common where owners and handlers are SARS-CoV-2 positive.
Clinically, SARS-CoV-2 infection in cats has been considered to be mainly asymptomatic,
with some animals presenting with mild respiratory signs [228–230]. In general, severe
respiratory signs do not appear to occur in cats, although severe respiratory distress may
in some cases be connected to underlying feline hypertrophic cardiomyopathy (HCM) [94].
An increased incidence of canine and feline myocarditis linked to the surge of the B.1.1.7
(Alpha) variant in the UK was also reported [231]. More studies in this area are clearly
warranted, as are possible links between coronavirus infections in cats and multisystem
inflammatory syndrome in children (MIS-C), which as noted above is a rare presentation
of COVID-19.

Studies in laboratory animals have also been key to understanding a SARS-CoV-2
infection in cats, which are highly susceptible to infection by the oronasal challenge. Mild
respiratory signs or asymptomatic infection, viral shedding, cat–cat transmission and
the development of a robust neutralizing antibody response have all been confirmed in
experimentally challenged cats. Recent studies have shown that long-term immunity exists
following re-infection of cats, but that cats may develop long-term sequelae, including
persistence of inflammation and other lung lesions [232]. In summary, and as with SARS-
CoV in 2003, cats in particular may hold important clues to the pathogenesis and immune
responses induced by SARS-CoV-2.
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