Skip to main content
. 2022 Mar 17;22(6):2334. doi: 10.3390/s22062334
Algorithm 2: NADCA-L algorithm.
Given a sample i, U, a set of NM measures [MiNM1Mi], a set of K predictions [ΔiKΔi1] and prediction errors [CiKCi1] for the set of measures [MiKMi1] and Mi+1:
 1. Calculate the set of differences PD using the NM measures.
 2. Calculate Δi using PM and PD.
 3. Calculate Ci* and Ci**.
 4. Calculate Pi+1Sensor and Pi+1Sensor** using (4).
 5. Calculate dis1=|Mi+1SensorPi+1Sensor| and dis2=Mi+1SensorPi+1Sensor+Ci*Ci**
 6. If dis1  U and dis2 U then “No anomaly” at i + 1. Save (Δi, Ci) for the next iteration. Updating K ←K+1 allows the same IM to be used for the next iteration.
 7. If dis1>U then “fast-changing anomaly” at i + 1. Correct the anomaly at i + 1 changing Mi+1 to Pi+1. Save (Δi, Ci) for the next iteration. Updating KK+1 allows the same IM to be used for the next iteration.
 8. If dis2>U and dis1<U then “slow-moving anomaly” at i + 1. Correct the anomaly at i + 1 changing Mi+1 to Pi+1. Save (Δi, Ci) for the next iteration. Updating KK+1 allows the same IM to be used for the next iteration.