ﬁ Sensors

Perspective

Metadata Framework to Support Deployment of Digital Health
Technologies in Clinical Trials in Parkinson’s Disease

Derek L. Hill >*, Diane Stephenson 3, Jordan Brayanov 4, Kasper Claes

50, Reham Badawy ¢,

Sakshi Sardar 3, Katherine Fisher 7, Susan J. Lee 8, Anthony Bannon ?, George Roussos 1°, Tairmae Kangarloo 4,
Viktorija Terebaite 11, Martijn L. T. M. Miiller 3, Roopal Bhatnagar 3, Jamie L. Adams 1, E. Ray Dorsey >

and Josh Cosman °

check for
updates

Citation: Hill, D.L.; Stephenson, D.;
Brayanov, J.; Claes, K.; Badawy, R.;
Sardar, S.; Fisher, K.; Lee, S.J.; Bannon,
A.; Roussos, G.; et al. Metadata
Framework to Support Deployment
of Digital Health Technologies in
Clinical Trials in Parkinson’s Disease.
Sensors 2022, 22,2136. https://
doi.org/10.3390/522062136

Academic Editors: Silvia Del Din and

Rosie Morris

Received: 18 October 2021
Accepted: 17 February 2022
Published: 9 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Panoramic Digital Health, 38000 Grenoble, France

2 Centre for Medical Imaging, University College London (UCL), London WC1E 6BT, UK

3 Critical Path Institute, Tucson, AZ 85718, USA; dstephenson@c-path.org (D.S.); ssardar@c-path.org (S.S.);
mmuller@c-path.org (M.L.T.M.M.); rbhatnagar@c-path.org (R.B.)

4 Takeda Development Center Americas, Inc., Deerfield, IL 60015, USA; jordan.brayanov@takeda.com (J.B.);

tairmae.kangarloo@takeda.com (T.K.)

UCB Pharma, 1070 Brussels, Belgium; Kasper.Claes@ucb.com

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK;

rehambadawy@hotmail.com

7 Biogen, Cambridge, MA 02142, USA; katherine.fisher@biogen.com

8 Merck, Kenilworth, NJ 07033, USA; susi_lee@merck.com

9  AbbVie, North Chicago, IL 60064, USA; anthony.bannon@abbvie.com (A.B.); josh.cosman@abbvie.com (J.C.)

10 Birkbeck College, University of London, London WC1E 7HX, UK; g.roussos@bbk.ac.uk

11 H.Lundbeck A/S, 2500 Valby, Denmark; VITR@lundbeck.com

1 Department of Neurology, University of Rochester, Rochester, NY 14642, USA;
Jamie.Adams@chet.rochester.edu (J.L.A.); Ray.Dorsey@chet.rochester.edu (E.R.D.)

*  Correspondence: derek.hill@panoramicdigitalhealth.com

Abstract: Sensor data from digital health technologies (DHTs) used in clinical trials provides a
valuable source of information, because of the possibility to combine datasets from different studies,
to combine it with other data types, and to reuse it multiple times for various purposes. To date,
there exist no standards for capturing or storing DHT biosensor data applicable across modalities
and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-
called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT
metadata into metadata that is independent of the therapeutic area or clinical trial design (concept
of interest and context of use), and metadata that is dependent on these factors. We demonstrate
how this framework can be applied to data collected with different types of DHTs deployed in the
WATCH-PD clinical study of Parkinson’s disease. This framework provides a means to pre-specify
and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across
future studies.

Keywords: digital health technology; Parkinson’s disease; metadata standards

1. Introduction

Digital health technologies (DHTs) are attracting considerable interest in clinical trials
of new treatments for Parkinson’s disease (PD). These technologies have many potential
advantages that complement traditional clinical assessments, including high-frequency data
collection, improved objectivity, the ability to capture occasional events such as freezing
of gait, and more naturalistic data collected in a home setting [1]. There remain, however,
many challenges before these technologies can significantly impact clinical trial design and
practice. One of these challenges is the comparability of data, e.g., to make it possible to
compare results from different studies of PD patients for meta-analysis and as evidence
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for the efficacy of a digital health technology. This requires improved standardization of
data collection and analysis, and also the harmonization of the requirements for unique
data types from a potentially wide range of digital health technologies, each of which
may have been deployed and setup in different ways. Such standardization efforts have
previously been used in other drug development tool technologies such as neuroimaging [2]
and gene expression microarrays [3]. Data standards that are limited to a single modality
exist, such as for ECG: SCP-ECP, DICOM-ECG and HL7’s aECG [4]. Similarly limited to a
single modality are electrophysiology data standards such as MEF [5,6], Brainformat and
Neurodata Without Borders [7]. There are metadata standards that have been proposed for
the output of digital technologies used for patient management, and integration with the
Electronic Health Record (including IEEE P1752.1 [8] and OHDSI [9].

However, data standardization and harmonization (i.e., the identification of common
requirements for data collection and analysis) for DHTs used in clinical research is in its
infancy. While true standardization will take time, progress in this area is likely to accelerate
the regulatory acceptability of measures derived from DHTs.

Advancing of the regulatory maturity of measurements derived from DHTs is a
particular focus of the Critical Path for Parkinson’s Digital Drug Development Tools (3DT)
consortium, and the absence of a suitable metadata framework for standardizing the way
measurements are made using DHTs in clinical trials was identified as one of the key
barriers to advancing their widespread use in clinical studies intended for submission
to health regulators. Metadata is the data needed to interpret the data (such as motion
sensor data) collected by a DHT. A crucial step towards standardization and harmonization
of DHTs for use in endpoint development is defining the metadata needed to describe
how the data used to produce the study endpoint has been generated. For example, the
DHTs we are considering in this manuscript collect data from one or more individual data
collection devices (e.g., wrist-worn devices or smartphones containing inertial measurement
units (IMUs), microphones, PPG or ECG sensors). Each of these types of sensors can be
implemented in different hardware, can be incorporated into devices with different form
factors, can be worn in different body locations, and can be configured and pre-processed by
firmware and software in numerous ways before the sensor data is output from the device.

Comprehensive metadata is needed to describe how data from an individual DHT
is collected in order to properly interpret the DHT output and compare with similar data
from a different DHT or the same DHT configured in a different way. Further metadata
is needed to describe how the DHT is deployed in a particular clinical application such
as a clinical trial of a new treatment for early PD. This additional metadata needs to
detail how the clinical trial was performed, such as the clinical population being studied,
whether the DHT collected data “passively” or during performance of standardized tasks
(“actively”), and any application-specific data analysis undertaken. Previously, a metadata
concept for advancing the use of digital health technologies in Parkinson’s disease has
been proposed in Badawy et al., 2019 [10]. The framework we present here builds on
that work in the following ways. Firstly, it divides the metadata into the two categories
introduced above: application independent, and application dependent. Secondly, we propose
that this metadata framework can go beyond describing the DHT data, but also has the
potential to be used to pre-specify how data is collected in future clinical trials in order to
help standardize DHT use across studies. In the regulatory language of drug development
tools, the application-specific metadata is associated with the concept of interest and context
of use [11,12].

Once a metadata framework has been defined and implemented, it provides a way to
fully describe how DHT outputs have been obtained, which will facilitate data sharing and
collaboration as well as reproduction of the measure in future studies wishing to use a given
endpoint generated by a DHT. Using a metadata framework to pre-specify how data is
collected could also enable new ways of capturing and controlling the sources of variability
that are described in a related publication from this consortium [13]. Taken together, such
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a metadata framework could be used to advance the regulatory maturity of endpoints
derived from DHTs and pave the way for more widespread use in therapeutic development.

In this paper, we describe how metadata has helped to advance regulatory maturity
of other drug development tools. We then propose a metadata framework, which was
developed by members of the Critical Path for Parkinson’s consortium (CPP). Formulation
of this framework took into account approaches used for other drug development tools
along with our own independent efforts which were informed by the specific feedback
we obtained from health regulators in the US and Europe [14]. The proposed framework
is then applied to an example study in Parkinson’s disease, namely the measurement of
tremor using both research-grade and consumer-grade wearable sensors in the WATCH-PD
study NCT03681015 [15]. Although presented in the context of Parkinson’s disease, the
new framework is intended to be applicable to DHTs used in observational studies and
other therapeutic area.

2. Metadata and Standardization of Drug Development Tools: Learning
from Neuroimaging

A successful example of standardization and harmonization of digital data with a
similar degree of complexity to that of DHTs is neuroimaging in Alzheimer’s disease clinical
trials. An aim of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project was
to make neuroimaging measurements more acceptable to regulators for evaluating novel
treatments for Alzheimer’s disease. A key goal of ADNI was therefore to use MRI scanners
and PET scanners at multiple hospitals with different hardware and software configurations,
to make comparable measurements of disease-related change in the brains of Alzheimer’s
disease patients. The starting point was an experimental process to standardize the way the
data was collected from a pre-determined range of MRI and PET scanners manufactured by
different companies (Siemens, GE, Philips), to obtain comparable results for some defined
metrics of brain volume change (whole-brain volume, ventricle volume, hippocampal
volume) and brain function [2,16]. Amyloid PET imaging using Fluorinated tracers was
later added to the ADNI project [17].

Key aspects of the standardized approach to neuroimaging data in AD are (1) a
description of all the MRI and PET scanning parameters, augmented by a detailed set of
instructions on how patients should be prepared and positioned for scanning, (2) how
data quality assurance and handling should be performed, and (3) defining the clinically
meaningful derived measures that were suitable as study endpoints (e.g., hippocampal
volume and whole-brain atrophy from structural MRI, Cortical Average Standardized
Uptake Value Ratio from amyloid PET). This example from a different field demonstrates
that obtaining comparable data from heterogeneous data collection devices involved both
defining the application-independent metadata that described how data was collected from
those devices (in this case MRI and PET scanners), and application-dependent metadata
describing how these are used for deriving a measure relevant to the desired clinical trial
application. The increasing regulatory maturity of imaging endpoints in Alzheimer’s
disease clinical trials, which the ADNI project helped standardize, is illustrated by the
recent accelerated approval of aducanumab by the FDA. Accelerated approval is an FDA
mechanism to approve a novel drug in an area of important medical need, based on the
drug’s effect on a “surrogate endpoint” that is reasonably likely to predict a clinical benefit
to patients, rather than a more traditional clinical endpoint. In the case of aducanumab, the
surrogate endpoint was amyloid positron emission tomography standardized uptake value
ratio (PET SUVR), which the FDA concluded showed that the drug provided a dose-and
time-dependent reduction in amyloid beta plaque in patients with Alzheimer’s disease [18].

3. Proposed Metadata Framework for DHTs

The essential types of metadata that should be collected during a clinical trial to
describe the process in appropriate detail is provided in Figure 1. These metadata types
can be divided into six distinct categories:
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Participant/Population

Subject Identifier

Demographics

Inclusions/exclusions criteria

Measurement Device and Hub metadata,
Sensor and signal metadata,
Participant/Population metadata,
Analysis metadata,

Experimental metadata and

Contextual metadata

Experiment

ExperimentIdentifier
Protocol (version number)

Clinical site/study arm
Questionnaires and scales

Clinical assessments/Human observation
Patient reported outcomes
Clinical follow up frequency as a comparator

for digital measures
Clinical correlations to digital measures

e Active test details
e Passive monitoring

Comorbidities

Figure 1. A summary of the metadata elements needed to describe the collection of data from
digital health technologies in a clinical trial setting. Underlined elements are application dependent
and non-underlined items are application independent. The Patient ID and Experiment ID in the
application-dependent metadata link to the application-dependent metadata. The “device” elements
are required for the measurement device (e.g., a wearable) but also hub (might be a smartphone + app)
that works with the wearable.

Some of this metadata is quite generic and can be used to describe data collected for
many clinical applications. For example, a wearable actigraphy device could be used to
measure many different parameters in different patient populations, including total activity,
gait speed, turning gait, falls, sleep, and tremor. For all these applications, there is therefore
a core set of application-independent metadata that describes the sensor(s) and signals, and
the data collection hardware and software.

Other metadata is specific to a particular clinical application and is required, e.g., to
compare or combine measurements from DHTs obtained in different clinical trials for the
same therapeutic area, and we refer to this as application-dependent metadata. In Figure 1,
we distinguish between these two types by using underlining to indicate the application-
dependent metadata, and with application-independent metadata not underlined.

3.1. Pre-Specification of Metadata

To support standardization and quality control of DHT data in clinical trials, we
propose that the values of the metadata required for a particular study should be specified
a priori. In this way, the metadata framework does not just retrospectively describe data
that has already been collected but can be used to define how it should be collected and
enable quality assurance of that data collection. Furthermore, by using the same pre-
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specified values for different studies, such pre-specification will support standardization
of measurement across trials, and re-use of analytically validated DHT methodology.
For example, the application-independent metadata might pre-specify the desired data
acquisition rate, the location and orientation of a wrist worn accelerometer, and the required
hardware and firmware version. The application-dependent metadata could specify any
Patient-Reported Outcome (PRO) or clinical assessment completed simultaneously with
the data collection, and the time of day and expected duration of any specific “active” tasks
performed by the subjects. These pre-specified values could then be used to setup the DHTs
being deployed in this study and could also be used for an automatic quality check that the
collected data contains the pre-specified characteristics.

In the same way, we carefully specify the exact sequence of events, tests, procedures,
and measurements during the execution of a clinical trial, we should also specify the mini-
mum requirements for any data coming from DHTs, including the metadata, such that we can
ensure successful completion of this study. We propose that this detail should be provided
in a dedicated DHT Charter that might be annexed to the protocol, or treated like the
Independent Review Charters used to standardize imaging endpoints in clinical trials [19].

3.2. Application-Independent Metadata

In the DHT metadata elements listed in Figure 1, a subset of metadata is identified
as independent of the clinical application (these are the elements that are not underlined).
This application-independent metadata is therefore generic, which is appropriate, as many
digital technologies are applied to multiple clinical applications and clinical trial concepts
of interest. For example, a smartwatch could be used to assess sleep, gait, or tremor. In all
cases, to properly characterize the way data has been collected, it is important to have the
following application-independent metadata elements:

e  Measurement device and hub: Comprises metadata that uniquely identifies the:

O Measurement device used for data collection, including its brand, model, serial
number (medical device UDI where available), hardware and firmware version.
This metadata needs to allow the device location on the body and orientation
to be recorded. Furthermore, by tracking individual device ID, any change in
performance over time or repairs can be associated with the data.

O Hub: Since many wearable measurement devices (e.g., smartwatch) work in
combination with a separate device (e.g., smartphone or more generically, a
data hub) in order to interconnect with a remote database and potentially
also to perform other functions such as pre-processing and authentication, the
application-independent metadata also includes metadata to uniquely describe
the hardware/software of the hub which the measurement device connects.

O The file format and technical aspects of the data storage and transfer (compres-
sion, encryption).
O Metadata version. The metadata framework needs to be able to be refined

so it is important that there is a metadata version associated with the device
collecting data.

e Sensor and Signals: is the description of the types of data collected including the
modality (e.g., accelerometer, EEG/electroencephalogram, ECG/electrocardiogram,
PPG/photoplethysmogram), the recording mode and any calibration of the sensor
performed prior to deployment in each study, data rates and timing. A single DHT
may generate multiple signals with distinct metadata, for example, a DHT might
include an accelerometer, gyroscope, magnetometer and PPG sensor, each operating at
different acquisition frequency and with different timing information. The metadata
framework supports this through a single device supporting multiple sets of sensor
metadata. The signals can cover traditional wearable sensor signals, but may also
be used for environmental context signals, such as the ambient temperature where
subject is located, whether the subject is indoors or outdoors (this could be a binary
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signal), which room in their home they are located in (the signal would be a number
specifying the room identity) and whether they are alone in that room or accompanied.

e  Participant/Population: We propose that the application-independent metadata has a
single element of participant/population metadata, namely a unique identifier that
can be linked to this subject data in the application-dependent metadata.

e  Analysis metadata: The application-independent metadata needs to describe any
generic analysis performed in the device itself (e.g., the device might output step count
or heart rate variability), which we refer to as “pre-processing” to distinguish from
endpoint-specific analysis that is application dependent.

e  Experiment metadata: We propose that the only application-independent metadata
element for the experimental metadata is an experiment identifier. The details of the
experiment being performed are application dependent.

A practical benefit of this approach is that the application-independent metadata is
compact and generic, while at the same time, being closely associated with the application-
dependent metadata described in the next section.

3.3. Application-Dependent Metadata

The application-independent metadata alone is not sufficient to be able to reproduce
the experimental context in which a given measurement was completed. The required
metadata needs to take into account the underlying clinical sign or symptom, or biological
process (i.e., the ‘concept of interest’) that is being measured using the DHT. We call this
additional metadata the “application-dependent metadata.”

3.3.1. Implementation of Application-Dependent Metadata

The application-dependent metadata format in the framework shown in Figure 1
is necessarily flexible to handle the variety of types of sensors, therapeutic areas, and
clinical trial designs that may apply. Pragmatically, our framework does not require that
the application-dependent metadata is duplicated in a dedicated DHT dataset. It may be
more appropriate to link to existing sources of the required information, for example in
the clinical trial database, clinical trial protocol, or data analysis plan, or a dedicated DHT
charter as proposed earlier. In the latter case, it is important that a means is implemented to
extract the required linked metadata when necessary to enable the study data to be shared
or aggregated. The aspects of application-dependent metadata in Figure 1 are described
as follows:

e  Subject metadata: The application-independent metadata only includes a subject
unique identifier (UID). The application-dependent metadata includes the relevant
demographics and associated health information (e.g., medical history) relevant to the
clinical study concerned, the inclusion and exclusion criteria and any comorbidities
relevant to this study.

e  Analysis metadata: The data analysis is in many cases very specific to the clinical trial
design. We refer to this application-dependent analysis as “endpoint analysis” to distin-
guish from the generic pre-processing described in the application-independent metadata.
All relevant software versions and selectable parameters must be clearly defined.

e  Experiment metadata: This describes the clinical trial cohort in which a given subject
is enrolled, the clinical site, any clinical trial questionnaire or human (e.g., physician)
observation metadata, and a reference to the applicable protocol and its version
number. In particular, this metadata needs to include details of any active tests and
passive monitoring involved, and the details of the active test.

o  Contextual data: A description of the environment of data collection (e.g., clinic,
home) and properties of the environment (such as ambient temperature, noise level
and light level) if available should be included in the metadata.
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3.3.2. Challenges of Application-Dependent Metadata

The application-dependent metadata aspect of the framework is flexible to support use

in multiple clinical trial designs in PD and beyond. Some key challenges in implementing
application-dependent metadata, and the way in which this framework addresses these,
are listed below.

1.

Variability in metadata requirements across clinical applications and sensor modal-
ities: For example, we may be interested in monitoring gait in patients with Parkin-
son’s disease. In one specific clinical trial, we may want to evaluate a patient’s gait
using a wrist-worn wearable device in a clinical setting during the performance of a
6-min walk test. In that instance, it may be necessary to record, as metadata, the actual
length of the lab or walkway that the patient is using for the test and whether the
test was performed with or without caregiver support. This application-dependent
metadata would not be required if one would like to evaluate the same patient’s
gait at home. Similarly, in some clinical trials, data might be acquired continuously
(passively), and for other applications, data would be collected when the subject
is prompted to perform a task or complete a PRO (active). For active tasks, the
application-dependent metadata would need to include a description of the prompt
or simultaneous PRO to fully describe the data collection. The metadata framework
proposed here incorporates the necessary detail in the experiment metadata portion
of the application-dependent metadata.

Variability in metadata requirements across different stages of PD: Severity of dis-
ease would also have a significant impact on the metadata that should be recorded
within a particular trial. If studying individuals with probable PD in the pre-manifest
stage of the disease, there may be minimal motor symptoms, and as such subjects
may often engage in vigorous activities such as running that would be captured by
a continuously recording activity monitor. This would not be the case for patients
with advanced disease, who may struggle to safely and independently navigate their
own homes. Thus, if we were to devise a measure of “average daily activity” it
would greatly vary across these two populations. In the case of pre-manifest PD, a
study might measure the amount of time of moderate-to-vigorous activity per week
and in the case of advanced PD, a study might seek to measure any and all activity.
In the former group, we would need to capture extraneous factors that may have
impacted a patient’s ability to perform vigorous activity: if we are monitoring a golfer
who usually plays 2-3 times/week, a month-long weather pattern may substantially
alter their activity levels. In the latter group, these factors may not be as relevant.
The flexible design of the application-dependent metadata format in the proposed
framework allows this variability to be described in the experiment metadata and
Analysis metadata.

Data pre-processing: Another challenge we face is that DHTs do not always provide
ready access to the raw data, as we are used to collecting from research-grade clinical
equipment. Additionally, even if there is access to some version of the raw data,
these data often vary greatly across devices, based on the manufacturer or even the
version of a specific device. Smartwatch actigraphy devices that generally report
step count over a defined epoch often claim to also output raw data that we hope
to use for clinical research. Indeed, the term “raw data” is seldom the output of
the analogue to digital converters (ADCs) in the sensor, but normally has filters
or data compression applied and is often the output of a software interface (API)
provided by the manufacturer. Data streams with such differences may not be used
interchangeably. The application-independent metadata in our proposed framework
addresses this challenge by including both sensor metadata fields that records software
and hardware versions and the Device ID. The Device section of the application-
independent metadata in the framework therefore uniquely identifies the type of
pre-processed data available, even when the details of the pre-processing are not
provided by the manufacturer. Given precise specification of this device metadata,
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lab-based experiments can be used to test whether the data output from different
hardware/software versions of the same device are sufficiently similar to be combined
in a particular context.

4.  Data analysis: In addition to pre-processing on the wearable hardware itself, DHTs
involve analysis to calculate measurements of interest from the sensor data. This
analysis is normally done after pre-processing, and on one or more separate devices
such as a mobile phone app, a home hub, or cloud server. Data analysis software
can evolve and be changed, and indeed some of this type of analysis software is
“self-learning” and changes how it works in use. The proposed framework addresses
this challenge through a detailed description of all pre-processing in the application-
independent metadata, including details of hardware and software versions of any
smartphone app or hub that is used as an intermediary between a data collection
device and the data analysis platform. The application-dependent metadata in our
framework then uniquely identifies the data analysis software, including its version
number that is applied to this input.

5. Controlling environmental sources of variability: The environment of data collec-
tion is an important source of variability. For example, a clinical trial subject’s mobility
may depend on the ambient temperature as well as their symptoms and treatment,
and behaviours and activities are influenced by whether the clinical trial subject is on
their own or in the same room as a family member or care partner. The way a subject
walks may also depend on whether they are inside or outside their home, or which
room in the house they are in. A timed up and go task will be influenced by the height
of the chair from which the subject stands up. Increasingly, clinical trials are capturing
information about these environmental factors. In our framework, such environmen-
tal data is captured as a separate sensor (e.g., temperature) but other environmental
context would more appropriately be captured in an experiment metadata portion of
the application-dependent metadata, for example whether a particular assessment is
being performed in the clinic or at home, and whether it is done as part of a prompted
task or passively.

Such challenges and limitations cause difficulties in many clinical studies that deploy
digital health technologies, mostly stemming from lack of standardization in the devices
and their output. We believe our proposed framework is a practical approach to dealing
with these challenges, as it defines both the metadata that any researcher should carefully
specity, collect, and record about the clinical study design in addition to the metadata about
the sensor dataset provided by the devices.

4. Use Case Example—Tremor in Parkinson’s Disease

We illustrate the application of this metadata framework to the measurement of tremor
in Parkinson’s disease, using information from the Wearable Assessments in the Clinic
and Home in PD (WATCH-PD) study [15]. In particular, we show how the metadata
framework supports pre-specification and therefore standardization of data collection, as
well as comparisons of data for the same concept of interest collected from different types
of sensors.

WATCH-PD is a 12 month multicenter, longitudinal, digital assessment study of PD
progression in subjects with early untreated PD (clinicaltrials.gov #NCT03681015). The
primary goal is to generate and optimize a set of candidate objective digital measures
to complement standard clinical assessments in measuring the progression of PD and
the response to treatment. A secondary goal is to understand the relationship between
standard clinical assessments, research-grade digital tools used in a clinical setting, and
more user-friendly consumer digital platforms to develop a scalable approach for objective,
sensitive, and frequent collection of motor and nonmotor data in early PD.

In WATCH-PD, two different DHTs were deployed in the same subjects, and both
were capable of measuring tremor—patients wore both the APDM (Ambulatory Parkinson’s
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Disease Monitoring) Opal sensors and an Apple watch while completing a standardized
set of tremor tasks in a clinic setting.

Participants were instrumented with both the six-sensor opal system recording contin-
uously and an Apple watch placed on their most affected side. Subjects initiated recordings
on the watch using a paired mobile application. Participants were instructed while seated
to hold two positions (Figure 2) for 30 s: hands resting comfortably on their lap, and then
arms out in front of them with their palms down.

Figure 2. Illustration of WATCH-PD digital sensor instrumentation during defined motor examina-
tion test as demonstrated by co-author JC.

An example metadata framework for tremor measurement based on that in Figure 1
is shown in Table 1 below, with the elements populated based on the WATCH-PD tremor
measurement protocol outlined above. As has been previously described, the metadata
framework defines the metadata that should be used but does not specify the data format
of that metadata.

Table 1. Table of metadata concepts for WATCH-PD.

Device
Metadata Name Pre-Specified Application- Metadata Item APDM Metadata Item WATCH-PD
Value? Dependent?
Device UID No No
Brand Yes No APDM Apple
Model Yes No Opal iPhone and Apple Watch
. Apple Watch Series 5
Hardware version Yes No Opal v.2 Apple iPhone 11
. . Apple Watch Series 5
Firmware version Yes No 20190315 Apple iPhone 11
Body site Yes No Each wrist Most affected wrist (Apple Watch)
" . Watch orientation set during initial
Sensors are positioned with . , ,
. . L, £ . setup, with watch ‘crown
Orientation Yes No device’s charging ports oriented o .
. . positioned facing the hand. Watch
toward more distal body locations .
on most-affected side
Hub/App Yes No Mobility Lab Hub BrainBaseline version "WATCH-PD’
Metadata version Yes No V1.0 V1.0

Sensor and Signal

Sensor type

Accelerometer, Magnetometer,

Accelerometer, Gyroscope
Gyroscope, Barometer y P

Yes No
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Table 1. Cont.
Device
Metadata Name Pre-Specified Application- Metadata Item APDM Metadata Item WATCH-PD
Value? Dependent?
Recording mode Yes No Active Active
Calibration Yes No Opal calibration process N/A
Datatype No No Numeric Numeric
Serialization No No TBD TBD
. s (gyro); m/ s? (accel); pT (mag); o . 2
Units No No mPa (bar) s (gyro); m/s" (accel)
Outputs e Accelerometer—100 um/s?
) o Gyroscope—10 urad/s
Scaling Yes No e Magnetometer—100 pT -
e Barometer—100 mPa
Filename of
data file No No
100 Hz accel and gyro in clinic
Data rate Yes No 128 Hz from all sensors 50 Hz accel in home-base
passive monitoring
Continuous data collection from Continuous data collection during
Timing Yes No all sensors during clinic clinic assessment.
assessment 7 day home based data collection
Accelerometer [xyz], Accelerometer [xyz]
Multiple data streams Yes No Magnetometer [xyz], Gyroscope Y2l
Gyroscope [xyz]
[xyz], Barometer
Participant/Population
Subject UID No No
Demographics Yes Yes Inclusion criteria from Inclusion criteria from
Inclusion/exclusion criteria WATCH-PD protocol WATCH-PD protocol
Comorbidities No Yes Not available Not available
Analysis Metadata
Data pre-processing Yes No Not available Not available
Endpoint analysis Yes Yes WATCH-PD SAP v1.0 WATCH-PD SAP v1.0
Experiment
Experiment UID Yes No WATCH-PD WATCH-PD
Protocol Yes Yes WATCH-PD Protocol v3.0 WATCH-PD Protocol v3.0
In-clinic:
MDS-UPDRS 2.10
Questionnaires and scales Yes Yes MDS-UPDRS 2.10 In-home:
Single item 7-point Likert response
indicating current tremor severity
In-clinic:
MDS-UPDRS 3.15, 3.16, 3.17; RUE
Clinical assess- Yes Yes MDS-UPDRS 3.15, 3.16, 3.17; RUE and LUE assessments only
ments/Human observation 1 and LUE 2 assessments only In-home:
N/A—No human observation
during home assessments
Chmcalafz)ilr(;lw;lgt(f;eg;ency as Yes Yes Baseline, 1 month, 3 month, Baseline, 1 month, 3 month,
comp 6 month, 9 month, 12 month 6 month, 9 month, 12 month
digital measures
.. . Sensor collection simultaneous In clinic, sensor collection
Clinical correlations to . .. . . ..
digital measures Yes Yes with clinical assessments simultaneous with clinical
& described above assessments described above
Sensor collection simultaneous In clinic, sensor collection
Active test details Yes Yes with clinical assessments as simultaneous with clinical

per protocol.

assessment as per protocol.
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Table 1. Cont.

Device
Metadata Name Pre-Specified Application- Metadata Item APDM Metadata Item WATCH-PD
Value? Dependent?
Passive monitoring Yes Yes N/A At Home, 7 days

passive monitoring.

Contextual Data

Environment Yes Yes Clinic Clinic, home
Environmental context
(carer, temperature, Not available Yes Not available Not available

indoor/outdoor, ... )

1 RUE: right upper extremity; > LUE: left upper extremity; N/ A: not applicable.

5. Discussion

We have described challenges of using DHTs in clinical trials that could be mitigated
with an appropriate metadata framework and have proposed such a framework to help
address the challenges and enhance the utility of DHTs in drug development and other
clinical and research applications. While the exemplar application given is for Parkinson’s
Disease, we propose that this framework is more generally applicable where DHTs are used
in observational or therapeutic studies and in patient management. The proposed metadata
framework divides metadata into two classes: metadata independent of the clinical trial
design (application-independent metadata), and metadata dependent on the clinical trial
design (application-dependent metadata). Our framework proposes a method for linking
these classes of metadata, and we have provided an example of how the framework can
be applied to the measurement of tremor using two different types of sensor platform
deployed in the WATCH-PD study.

A particular innovation in this metadata framework is that it is designed to support
pre-specification of the minimum required values of the relevant metadata fields, and by
comparing pre-specified values with actual values provides a quality assurance framework
for data collected using DHTs. The framework proposes that the pre-specified values of
both application-independent and application-dependent metadata (where applicable)
are documented in a dedicated DHT Charter that describes both how DHT data should be
collected, and also how it was collected.

A further challenge in DHT metadata is to capture the environmental context in
which data was collected. For example, a measurement of gait speed may be influenced
by disease progression or effective treatment, but it is also influenced by whether the
clinical trial subject is inside or outside, the ambient temperature, the size of the room they
are in, etc. This environmental context is a key source of variability in data from DHTs
deployed in clinical trials and is an active area of research as well as a topic of attention by
regulatory agencies [14,20]. Although environmental context data was not available for the
WATCH-PD study, the metadata framework described in this paper supports the inclusion
of environmental context metadata when such metadata is available, with this information
being included as a further “signal” type in the DHT metadata.

There are several limitations to the approach outlined in this paper. First, the WATCH-
PD study is just one exemplar and this study has not yet been completed at the time of
submission of this manuscript. The metadata from this one study may not be generalizable
to other DHT studies collecting data on similar concepts of interest from different devices.
The ability to generalize this framework will need to be tested with multiple independent
prospective studies. Future work will aim to apply this metadata framework to a wider
range of sensor data and study designs, to identify how this framework could inform future
efforts to standardize metadata for DHTs.

The proposed metadata framework provides a functional method for metadata col-
lection in a manner that is agnostic to a given study design. Additionally, the modular
structure of framework has flexibility to accommodate future expansion where required.
The metadata framework achieves this using three specific innovations. First, it captures



Sensors 2022, 22,2136

12 0f13

the core information needed to optimize the value of the measures derived from a DHT.
Second, it supports comparison of measures of the same concept of interest using different
DHTs (such as APDM sensors and Apple Watch sensors in the example given above),
helping us move towards a device-agnostic approach to measurement of a given concept
of interest. Third, through the use of pre-specification, it provides a means to standardize
and assure the quality of data collected with a DHT. Taken together, the elements of the
proposed metadata framework represent an initial step toward standardization of data
collection across devices and studies, paving the way greater regulatory acceptability of
DHTs in clinical trials or research.
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