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Abstract: The blood transcriptome was examined in relation to disease severity in type I myotonic
dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve
QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were
associated with increasing disease severity, as measured by the muscle impairment rating scale
(MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways
were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray
dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression
were compared using a number of complementary pathways, gene ontology and upstream regulator
analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in
innate and adaptive immunity associated with muscle-wasting. Future studies should explore the
role of immunity in DM1 in more detail to assess its relevance to DM1.

Keywords: myotonic dystrophy type 1 (DM1); RNA sequencing; blood; immunity; muscle impairment
rating scale (MIRS); DM1 disease severity; pathway analysis

1. Introduction

Myotonic dystrophy type 1 (DM1) is a multi-system disease with, among others,
a variety of neuromuscular and central nervous system (CNS) features. Patients suffer
from myotonia, muscle weakness, and muscular dystrophy [1]. In addition, cardiac ab-
normalities, such as conduction defects, result in a higher risk of sudden death [2]. DM1
patients often present with fatigue and symptoms related to failure of smooth muscle in
internal organs [3–5]. The clinical presentation of DM1 not only involves physical disabili-
ties but also cognitive and emotional deficits, such as avoidance, apathy, and behavioral
inflexibility [6–8].

The degree of neuromuscular impairment can be clinically assessed using the muscle
impairment rating scale (MIRS) rating scale while other rating scales such as the myotonic
dystrophy health index (MDHI) and DM1-Activ assess the broader phenotype [9–11].

The etiology of DM1 lies in the repeat length expansion of the CTG trinucleotide in
the 3′ untranslated region of the Dystrophica Myotonica Protein Kinase (DMPK) gene on
chromosome 19q.13.3 [5,12–14]. The transcription of these repeat lengths from this CTG
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tri-nucleotide into messenger RNA GUC tri-nucleotides results in the accumulation of
multiple copies of the resultant mRNA in affected tissues. This toxic build-up of excessive
mRNA repeats results in the trapping of different proteins in the nucleus. DM1 can be
seen as an RNA-toxicity disease, in which the nuclear accumulation of aberrant DMPK
mRNA transcripts harboring the CTG repeat expansion, is associated with splice variation
in DM1 [15].

In turn, this prevents optimal protein production and impairs cellular communication
in tissues as varied as skeletal muscle, brain, and heart [16–18].

Currently, clinical management strategies depend on the assessment of disease severity
(e.g., via the MIRS score) together with the size of the DMPK repeat length expansion and
age at onset [19]. Due to variant repeats and other disease modifiers, patients with the
same number of repeats can present with different disease severity (not necessarily more
severe) [20]. Moreover, DM1 is a progressive disease which can be subtyped by time of onset
and DMPK repeat size which is relevant to the clinical management of the different DM1
subtypes: congenital, juvenile, adult-onset, and late-onset/asymptomatic subtypes [5].

To date, a range of biomarkers in different tissue types have been suggested for
DM1, including those in urine and muscle utilizing both transcriptomic and Magnetic
Resonance Imaging (MRI) metrics [21,22]. Studies in urine examining mRNA splice variants
in DM1 have attempted to assess symptom severity and/or identify new therapeutic
targets [22]. Gene expression profiling in peripheral blood may provide an alternative
image of the systemic aspects of the disease. It has been used to assess disease progression
and therapeutic response in other diagnostic cohorts [23]. It was previously demonstrated
that blood miRNA profiling could be used to differentiate between DM1 patients and
healthy controls [24]. While these studies are important to delineate DM1 diagnostic
cohorts and muscle-related symptoms, there is a need for a surrogate biomarker profile in
blood which assesses disease severity. This is the primary goal of the current study which
seeks to identify transcriptomic (mRNA expression) markers of DM1 severity independent
of repeat length of expansion. This is relevant as DM1 severity is not directly proportional
to the size of the DMPK repeat length expansion with some patients presenting with a high
number of repeats but relatively mild phenotype [25].

Here, we explore the molecular signatures in RNA sequencing data from blood asso-
ciated with disease severity as measured in DM1 patients with less than 400 CTG-repeat
length size in the DMPK gene in blood. These DM1 patients participated in the OPTI-
MISTIC study [26]. This approach involved stratifying those within the OPTIMISTIC study
into different patient groups with different degrees of disease severity (as measured by the
muscle-impairment rating scale (MIRS)) and assessed at baseline. Patients were divided
into groups with mild (MIRS 1–2) and severe (MIRS 3–5) neuromuscular symptoms with
different DMPK repeat length characteristics. In addition, we sought to independently
validate any findings in an independent cohort namely, those with equivalent MIRS/DMPK
repeat length data from the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI)
mRNA microarray datasets in blood [27].

2. Results
2.1. Descriptive Analyses of the OPTIMISTIC and DMBDI Samples

Characteristics of the patients included in the study are described in Table 1 including
age of onset, their modal CTG repeat lengths, and MIRS scores. Across the three groups,
as expected, earlier onset of symptoms was associated with greater Modal CTG repeat
size, as well as disease severity assessed by MIRS. The inclusion- and exclusion criteria are
specified in Figure S1.

2.2. Data Analysis of the Transcriptome of DM1 Patients Cohorts
RNA Sequencing and Exploratory Analyses in OPTIMISTIC Cohort

We used RNA sequencing to measure whole-blood gene expression profiles in 30 DM1
patients. Following data filtering and normalization, we quantified 18,034 genes as being
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robustly expressed in our dataset, out of which 17,846 were successfully annotated with
IPA. Principal Component Analysis on the normalized gene expression matrix identified
two distinct clusters in the data separated based on scores on the first principal compo-
nent (Figure S2.1A–D in Supplementary Materials). Different coloring schemes applied to
investigate if the separation was associated with a specific factor revealed that the two clus-
ters correspond to sex (Figure S2.1A), suggesting an overall differential gene expression
between the two sexes. Sex differences in DM1 have been described elsewhere [28]. To
account for this effect, sex was added to the linear model in detection of differentially
expressed genes.

Table 1. DM1 patient characteristics in the OPTIMISTIC and DMBDI cohorts.

Group
Size (n) Age (Year) Age at Disease

Onset (Year) Male Female MIRS (1–5) Modal CTG Repeat
Length

OPTIMISTIC gr. 1 10 48.5 (8.3) 40.2 (12.1) 4 (40%) 6 (60%) 1.9 (1–2) 179.8 (114.6)
OPTIMISTIC gr. 2 10 48.3 (2.1) 34.1 (8.1) 6 (60%) 4 (40%) 3.8 (3–5) 291.0 (71.2)
OPTIMISTIC gr. 3 10 49.0 (1.9) 27.6 (10.0) 1 4 (40%) 6 (60%) 3.9 (3–5) 728.5 (228.4)
DMBDI group 1 6 45.5 (14.0) 41.5 (13.2) 2 3 (50%) 3 (50%) 1.5 (1–2) 209.3 (252.8)
DMBDI group 2 6 46.3 (9.5) 22.7 (13.6) 2 (33.3) 4 (66.7%) 3.2 (3–5) 252.8 (77.1)

Dara are mean (SD), n (%), 1 One missing value for age at disease onset, 2 Two missing values for age at disease
onset, MIRS (range).

2.3. Differential Gene Expression

We found that 683 genes were differentially expressed in the OPTIMISTIC Group 2
(CTG repeat length ≤ 400, MIRS score 3–5) compared to Group 1 (CTG repeat length ≤ 400,
MIRS score 1–2) at p-value ≤ 0.01. A full list of the 683 differentially expressed genes is
visualized using a hierarchical clustering heatmap in Figure S2.2 in Supplementary Ma-
terials (created by Script S6.5) with the raw data shown in Table S8.1 in the Supplemen-
tary Materials. A heatmap of the top 20 genes (ranked on p-value), 10 with higher and 10
with lower expression in Group 2 compared to Group 1 (PLEK, FCGR1CP, MIR4435-2HG,
PRDM1, LCP2, C1QB, FAM228B, NFAT5, ENSG00000232680VPS51, RPS15AP30, HVCN1,
PFKL, SLC9A7, PGAM5, EEF1A1P24, NUDT16L1, C1orf35, APH1A, VPS51, and IRF2BP1) is
presented in Figure 1.
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Figure 1. Hierarchical Clustering Heatmap of top 20 differentially expressed genes in DM1 OPTI-
MISTIC Group 1 and Group 2 patients. The heatmap presents the top 20 significant differentially
expressed genes in subjects with DM1 from Group 2 (CTG repeat length ≤ 400, MIRS score 3–5)
compared to Group 1 (CTG repeat length ≤ 400, MIRS score 1–2). Columns represent subjects with
DM1, while rows represent specific genes of interest. The Z-score presents a measure of distance, in
standard deviations, away from the mean. The color indicates the differentially expressed genes, with
red indicating 10 higher expressed genes in Group 2 compared to Group 1 and with blue 10 lower
expressed genes.
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In the DMBDI dataset, we identified 225 genes that were differentially expressed genes
in Group 2 (CTG repeat length ≤ 400, MIRS score 3–5) compared to Group 1 (CTG repeat
length ≤ 400, MIRS score 1–2) at p-value (≤0.01). These 225 genes were also visualized
using a hierarchical clustering heatmap approach. The selection of in total 20 genes (RCAN3,
APBA2, AKAP6, CD3D, HDDC2, CSNK2A2, CCND2, PCED1B, ANK3, XKR6, ITPK1, OR8B8,
CCN3, ULBP1, TAAR1, OR51F1, OR2B6, IFNA6, DSCR4, and FUT7) with the top 10 higher
expressed genes and top 10 lower expressed genes in a separate heatmap shown in Figure 2.
These 20 genes were ranked according to the lowest p-value (≤0.01).
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Figure 2. Hierarchical Clustering Heatmap of top 20 differentially expressed genes in DM1 DMBDI
Group 1 and Group 2 patients. The heatmap presents the top 20 significant differentially expressed
genes in subjects with DM1 from Group 2 (CTG repeat length ≤ 400, MIRS score 3–5) compared to
Group 1 (CTG repeat length ≤ 400, MIRS score 1–2). Columns represent subjects with DM1, while
rows represent specific genes of interest. The Z-score presents a measure of distance, in standard
deviations, away from the mean. The color indicates the differentially expressed genes, with red
indicating 10 higher expressed genes in Group 2 compared to Group 1 and with blue 10 lower
expressed genes.

The p-value distribution resulting from the test for differential expression were anal-
ysed to ensure that the difference between the groups was larger than would be expected
by chance. The p-values for changes between Group 2 and Group 1 in the OPTIMISTIC
dataset were enriched for low p-values (Supplementary Materials Figure S2.3) indicating
that these groups indeed differ in their blood gene expression profiles. Group 3 (CTG repeat
length > 400, MIRS 3–5) versus Group 2 in the same dataset, however, did not display
a similar enrichment in low p-value distribution (Supplementary Materials Figure S2.5),
suggesting that the groups with similar severity but distinct CTG repeat lengths cannot be
differentiated based on blood gene expression. In the remainder of this paper we focus,
therefore, on the comparison of disease severity in the Group 2 vs. Group 1 cohorts. A
similar p-value distribution network was created for the DMBDI data (Supplementary
Materials Figure S2.4), confirming a difference between the groups with different severity,
albeit less strong than in the OPTIMISTC dataset.

2.4. Enrichment Analysis

The results of the enrichment analyses are summarized in four figures (Figures 3–6):
IPA pathways, IPA diseases and functions, Reactome pathways, and Gene Ontology (GO)
biological processes. For each enrichment analysis, we present gene sets which are signifi-
cant (p-value < 0.01) for at least one (OPTIMISTIC and/or DMBDI) data set.
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The heatmap in the left section shows the top-level 1 and 2 ancestor gene sets for each
of the enriched gene sets. For both IPA diseases and functions (Figure 4) and GO Biological
processes (Figure 6), the number of top-level ancestors is large. We therefore have removed
top-level ancestors, which are less populated, for these data sets.

The middle section shows the enriched gene sets and the corresponding scores (p-
values). The gene heatmap in the right section shows the genes present in each of the
enriched gene sets. The purple color gradients show whether the genes are present in the
OPTIMISTIC data set (light purple), DMBDI data set (medium purple), or in both data
sets (dark purple). For each gene the corresponding log-fold change is shown for both the
OPTIMISTIC and DMBDI data sets. A red–blue color gradient is used to depict the value of
the log-fold change. A gene with low log-fold change will result in a (almost) white color,
which makes it difficult to distinguish from a gene which is not in the gene set. Therefore,
the genes present in the gene sets are marked with a black dot. The same technique is used
for the p-values of the enriched gene sets.

Hierarchical clustering is used to organize the genes, based on the genes heatmap.
The corresponding dendrogram is shown on the bottom of genes heatmap. Hierarchical
clustering is also used to group and/or cluster top-level 1 and 2 ancestor gene sets based
on the heatmap in the left section (except for the Reactome pathways). The corresponding
dendrogram is shown on the right of genes heatmap.

2.4.1. IPA Pathway Analysis

No overlap in differentially expressed genes is found between the OPTIMISTIC and
DMBDI datasets. However, we found converging mechanisms on the IPA gene set en-
richment level. Within the OPTIMISTIC dataset, we found four pathways which were
significantly enriched (OX40 Signaling Pathway; T-cell Exhaustion Signaling Pathway; Role
of NFAT in Regulation of the Immune Response Pathway; and Systemic Lupus Erythe-
matosus (SLE) Pathway), while in the DMBDI dataset, these four pathways plus a number
of additional pathways were significantly enriched, particularly those involving immune
function (Figure 3). Of note, two enriched disease specific pathways, SLE and amyotrophic
lateral sclerosis (ALS) share differentially expressed genes with many immune-related
pathways. The enriched OX40 Signaling Pathway was significantly enriched in both the
OPTIMISTIC and DMBDI datasets, which is part of the top-level pathway ‘Cellular Im-
mune Response’. Within this top-level pathway category, a number of DMBDI enriched
pathways are seen, notably iCOS-iCOSL Signaling in T Helper Cells, T-cell Exhaustion
Signaling Pathway, Cytotoxic T Lymphocyte-mediated Apoptosis of Target-cells, Role of
NFAT in Regulation of the Immune Response Pathway, and Th1/Th2 (activation) pathways
(Figure 3). Furthermore, in both the top-level pathways, Cytokine Signaling and Pathogen
influenced signaling, a role for enriched Th1/Th2 (Activation) pathways was highlighted.
The top-level pathway Humoral immune response implicates a number of enriched path-
ways, including the ‘Role of NFAT in Regulation of the Immune Response Pathway’, the
Th2 pathway, and Th1 and Th2 activation pathways.

2.4.2. IPA Diseases and Functions Analysis

We observed enrichment in both the OPTIMISTIC and DMBDI datasets within three
main top-level 1 categories as shown in Figure 4 (dark orange colors). The first category,
‘Diseases and Disorders’, shows immune-related, metabolic, neurological, skeletal, and
muscular (e.g., agammaglobulinemia, vascular malformation, Th2 immune response, in-
sulitis, Myasthenia gravis, and neuromuscular disorder) pathways. The second and third
main top-level 1 categories show some overlap in Molecular and cellular functions together
with Physiological System Development and function, particularly in a range of processes
affecting B and T lymphocytes, notably their life cycle, function, activity, and homeosta-
sis pathways. There are some shared biological functions between the OPTIMISTIC and
DMBDI datasets, such as mitochondrial import of protein, priming of macrophages, and
expansion of Th2 cells.
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2.4.3. Reactome Pathway Analysis

As shown in Figure 5, the Reactome pathways analyzed can be divided in two main
top-level 1 categories; Cell cycle and Immune system. Regulation of the cell cycle is a
prominent feature in the DMBDI dataset but is not shared with the OPTIMISTIC dataset. In
contrast, the main overlap between both the OPTIMISTIC and DMBDI datasets is pathways
involving adaptive immunity, consistent with the IPA analysis. Within, the immune
system top-level 1 category, there is enrichment in three pathways. The first of these
involves Cytokine signaling in immune system (e.g., IL17-, IFNγ signaling, and MAP kinase
activation). The second involves Adaptive immunity (e.g., T-cell receptor (TCR) related
signaling and major histocompatibility complex class II (MHCII) antigen presentation). The
third enriched pathway is innate immunity (e.g., MyD88 related signaling and Toll-like
receptor (TLR) related cascades).

2.4.4. Gene Ontology (GO) Biological Process Analysis

The results of the GO biological process analysis are shown in Figure 6. Of these, the
top-level 1 categories highlight a role for cellular processes, particularly those involving
the immune, metabolic and stimulus–response aspects. Interestingly, the GO biological
processes also implicate a role for the cellular immune response and highlight enriched
biological processes where T-cells play an important role. The cellular immune response is
also the only shared biological process between the OPTIMISTIC and DMBDI datasets. In
addition, enriched pathways implicating apoptosis are also highlighted.

2.5. Master Regulators of Gene Expression

Causal Network analysis identified interacting master upstream regulators based
on genes that were differentially expressed in OPTIMISTIC and DMBDI datasets. In
Figure 7, we present networks of “significant” master regulators and their target genes
in OPTIMISTIC (Figure 7A) and DMBDI (Figure 7B) datasets. The full list of master
regulators for OPTIMISTIC and DMBDI is presented in the Supplementary Materials
(Tables S9.1 and S10.1, respectively). In the OPTIMISTIC dataset, we identified 17 master
regulators. The top ranked transcription factors FOXD1 and FOXJ1, indirectly (through
other regulators: IFNγ, IL4, and IL2) target 71 differentially expressed genes and are pre-
dicted to be activated. Three other transcription regulators (PAX5, CIITA, and SALL4) are
predicted to be inhibited and interact with other regulators in the network. Other regula-
tors include growth factor VEGFA, enzyme KRAS, and drugs: picropodophyllin and ADI
PEG20—all predicted to be inhibited, as well as titanium dioxide and E. coli B4 lipopolysac-
charide (LPS)—predicted to be activated. In DMBDI, transcription regulators MXI1, MLX,
and MXD1 are predicted to be inhibited, while CCNT1 to be activated. Other regulators
predicted to be activated include: Cytokines IL3 and TNFSF13, transporter BAX, MAP2K7
kinase, and chemical toxicant 3-nitropropionic acid, while chemical drugs/reagents: 5-
fluorourcil, sirolimus, and AKT inhibitor VIII are predicted to be inhibited.

2.6. Splice Variant Analysis

The splice variant analysis is presented in Supplementary Materials Figures S2.6 and S2.7
does not show any significant splicing differences between the Group 2 and 1 in the
OPTIMSTIC study.
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3. Discussion
3.1. Limitations of the Current Study

The findings of the current study have to be seen in light of limitations, such as the
small number of patient samples in each condition (which are 10 per condition) (first group;
a CTG repeat length smaller than 400 with a MIRS of 1 or 2; second group CTG repeat
length smaller than 400 with a MIRS of 3 to 5; and the third group CTG repeat length more
than 400 with a MIRS of 3 to 5). As such the findings should be seen as a pilot study. We
do not observe any significant genes expression differences after correction for multiple
testing. The p-value distributions shown in Supplementary Materials Figures S2.3 and S2.4
suggest that the expression profiles of the two groups are distinct. Additionally, clear effects
with differential effects across gender were noted. Increased sample size will be required
to resolve this. The current study does not control for Intelligence Quotient (IQ), age, or
ethnic group. Budgetary constraints dictated sample size.

Furthermore, this study only examines transcriptomic profiles associated with base-
line DM1 and not the effect of intervention. Nor does it assess whether there are similar
proteome changes as in the transcriptome. Quality analyses examining the effect of site
where the study samples were collected (Newcastle, Nijmegen, Paris, and Munich) deter-
mined no site related differences in the transcriptome. This cooperation among the sites
illustrates that a multi-center study is feasible in terms of harmonization of these aspects.
With the current RNA sequencing depth, we will find the majority of low to medium to
high abundant genes but may miss very rare low abundantly expressed genes. We are
aware of the need for stringency of the current findings and acknowledge that the analysis
does not correct for the false discovery rate. This reflects the current power given the
relatively small sample size of the current study. The cross comparison of the microarray
DMBDI dataset is still useful to compare with the RNA-seq data from the OPTIMISTIC as
there is a large overlap in the exome examined both approaches. A number of other gene
expression studies have examined transcriptomic signatures principally to compare DM1
with non-DM1 populations. Mis-splicing and gene expression differences in DM1 skeletal
muscle link disease status with muscle strength [29]. Others report alternative splicing
events in muscle as proxies of disease severity and therapeutic response [30] but are not
indicated as causal in DM1 pathology [31]. Indeed our own data suggests no changes in al-
ternative splicing with increasing DM1 severity which may suggest any splicing events that
may occur in DM1 are independent of severity. Some studies have implicated MBNL2 loss
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of function as a critical step in DM1 pathology [30] while others have highlighted whole,
differentiation stage specific, splicing complexes that are misregulated in DM1 as shown
by transcriptomic analysis in DM1 myoblasts [32]. Others have reported gene expression
changes in inflammatory markers associated with DM1 glial cell lines, notably the immune
mediators CXCL10, CCL5, CXCL8, TNFAIP3, and TNFRSF9 [33]. Furthermore, there have
been reports of upregulated interferon-regulated genes (IRGs) and genes associated with
the innate immune response when comparing DM1 versus healthy controls [34]. Some tran-
scriptomic studies have examined the role of other RNA species beyond mRNA. Notable,
four circular RNAs (circRNAs) have been implicated as differentially expressed in DM1
muscle biopsies: CDYL, HIPK3, RTN4_03, and ZNF609. These circRNAs are associated
with skeletal muscle strength, and those with more severe symptoms [35]. Regulatory
elements such as microRNAs (miRNA) can also influence mRNA expression. Increased
miRNA levels have been implicated in muscle-wasting and weakness in DM1 patients,
including miR-1, miR-133a, miR133b, and miR-206 which were compared to disease stable
DM1 patients [36]. The current investigation addressed mRNA related changes and does
not address the potential role of other RNA species.

While it is clear that there is little/no overlap on the specific gene expression level
when comparing the OPTIMISTIC and DMBDI datasets, there are converging mechanisms
on the gene set enrichment level—pathways and GO terms between the two datasets.
These introduce complementary information reflecting different aspects of immune system
dysregulation, particularly in adaptive immunity and to a lesser degree in innate immunity.
Furthermore, there is overlap between OPTIMISTIC and DMBDI on the gene enrichment
level in terms of macrophage priming, mitochondrial import of proteins and Th2-cell
expansion. On a higher level, adaptive immunity processes are common to both the
OPTIMISTIC and DMBDI datasets. However different aspects/pathways within adaptive
immunity are highlighted in the two datasets respectively.

The design of the OPTIMISTIC study is a within-DM1 intervention study (only in-
volving patients with different degrees of DM1 symptom severity). As such we did not
have access to healthy controls to compare. Therefore, we framed the research question to
investigate transcriptomic markers related to disease severity in DM1 as this is the only
cohort that was recruited.

The current study sought to (a) ascertain if increasing disease severity (as measured
by the muscle impairment rating scale (MIRS)) in DM1 from the EU FP7 OPTIMISTIC
cohort are associated with changes in the blood transcriptome and (b) establish if these
changes in mRNA expression and associated biological pathways were also observed
in an independently performed DMBDI microarray dataset in blood (with equivalent
MIRS/DMPK repeat length).

3.2. A Role for Dysregulated Immunity in DM1

The current analysis suggests that DM1 severity may be associated with common
biological processes namely innate and adaptive immunity. This is seen in both the OPTI-
MISTIC and DMBDI datasets but different aspects of innate and adaptive immunity are
highlighted in the two datasets. The evidence supporting a role for adaptive immunity
is observed in both IPA (Figure 3) and Reactome (Figure 5) pathway analyses where a
number of processes influencing T-cell function are implicated. Reactome analyses suggest
the overlap between both the OPTIMISTIC and DMBDI datasets in pathways involving
adaptive immunity (e.g., T-cell receptor related signaling and antigen presentation) and
cytokine signaling in the immune system (e.g., IL17-, IFNγ signaling, and MAP kinase
activation). The Reactome analysis also highlights a role for innate immunity (Figure 5).
Increased DM1 severity may be associated with alterations in immunity (see Figure 8A).
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Figure 8. (A) A hypothetical framework (based on pilot data presented here) highlights four key
immune processes which are possibly dysregulated. 1; higher expression of the NFAT pathway
results in impaired antigen presentation capacity, through lowered CIITA and MHCII gene expression.
2; impaired Th1 differentiation which may lead to diminished IFNγ release, which normally controls
macrophage subtype 1 (M1) migration and M2 activation which guide muscle tissue repair [37]. 3;
diminished follicular helper T (Tfh) cell differentiation resulting in altered B memory cell expansion
and altered plasma B cell expansion which may result in less antibody synthesis [38]. 4; Th2 expansion
coupled with lowered IL4 expression with increased DM1 severity. Together these affected pathways
may result in dysregulated immunity resulting in a more severe DM1 phenotype. (B) Schematic
representation of the concept that increased DM1 severity is associated with accelerated cellular
aging, muscle-wasting, and dysregulation of immunity.

Adaptive immunity involves the activation of MHCII and antibody (Ab) production
following the presentation of an antigen. MHCII are present on antigen-presenting cells
such as phagocytes but also (skeletal) muscle cells. Both T-cell activation and expansion
as well as antibody production [39–42] result from MHCII binding to an antigen. With
increasing MIRS severity, a decrease in the expression of genes encoding MHCII, namely
HLA-DRA, -DOA, and -DMB genes was seen in DM1. Furthermore, analysis of the master
regulators of MHCII predicts inhibition of IFNy which may explain the observed down
regulation of another master regulator CIITA in our dataset which is also a key controller
of MHCII expression [43]. In any case, MHCII expression is diminished with increased
DM1 severity with, as possible consequence, reduced capacity for adaptive immunity.
Beyond MHCII capacity, adaptive immunity is involved with increasing DM1 severity as
the current analyses suggest that pathways resulting in a reduced differentiation of the
antibody producing plasma cells. Further evidence of a diminished adaptive immune
response comes from analysis of the amount of the antibody immunoglobulin G (IgG)
present in DM1 [44,45]. Total Ig (IgG, IgG1, and IgG3) levels in the blood of DM1 patients
were significantly reduced compared to controls [44,45] and is associated with DM1 disease
duration [46]. A hypothetical framework (which requires experimental validation) of
dysregulated immunity associated with increased disease severity is shown in Figure 8B.

3.3. Pathway Analysis—Shared Pathways

In both the OPTIMISTIC and DMBDI studies, the data suggest pathway related
changes in OX40 and SLE signaling, indicating an impairment in immunity with increasing
DM1 severity [47].

OX40L–OX40 signaling is a feature of Antigen Presenting Cells (APCs) and other
activated T-cells. OX40 regulates the effectiveness of antigen binding to T-cells and signals
to downstream NFkB in the absence of T-cell receptor signalling. While OX40 signalling
overlaps between the OPTIMISTIC and DMBDI datasets, it appears that the underlying
gene expression change is in different directions. Therefore, its role in DM1 severity is
difficult to interpret.

SLE signalling involves a strong immune component [48]. A connection between SLE
and myotonic dystrophy was first highlighted in 1966 as both diseases are associated with
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muscle mass loss [49] and muscle strength impairments [50]. Clinically, SLE and DM1
also share common fatigue and daytime sleepiness symptoms. Whether the changes in
immunity are associated with these common symptoms is not yet clear.

3.4. Pathway Analysis—Non-Shared Pathways

Some pathways are not shared by both the OPTIMSTIC and the DMBDI data set. In
particular, two pathways which are only linked to the OPTIMISTIC data set, namely (i) the
NFAT regulation of the immune response and (ii) the T-cell exhaustion pathway.

3.4.1. NFAT Regulation of the Immune Response

NFAT is a mediator of multiple adaptive T-cell functions. NFAT modulates immune
response through the transcriptional regulation of cytokines, chemokines, and growth
factors in immune cells playing an essential signal for T-cell activation and proliferation.
Furthermore, Ca2+/NFAT signaling in T-cells plays a key role in synthesizing humoral
immunity, immune tolerance, and also autoimmunity (57). NFAT pathways also regulate
energy and nutrient metabolism during T-cell activation by stimulation of glycolysis [51].
The NFAT pathways act to alter the expression of key immune components in Tfh cells
essential for an immune response. These include a number of receptors CXCR5, ICOS,
PD-1, and CD40L) on both T- and B-cells as well as cytokines (IL2, IL4, and IL21) which are
necessary to synthesize catabolic Immunoglobin G (IgG) antibodies and their IgG producing
plasma and memory B cells [51,52]. Decreases in IgG production may hypothetically lead
to less antigen presentation resulting in an impaired immunity which is associated with
higher DM1 disease severity. NFAT is also a key regulator of muscle functionality and
controls activity dependent myosin switching [53] via the transcription factor PRDM1
whose protein product BLIMP1 activates slow-twitch differentiation and represses fast-
twitch differentiation [54,55]. BLIMP1 is also responsible for the transformation of CD8+
T-cells into short-lived effector cells instead of memory CD8+ T-cells. As such, its regulation
by NFAT may also influence immunity in this manner.

3.4.2. T-Cell Exhaustion

The second pathway which is highlighted in the OPTIMISTIC dataset is T-cell exhaus-
tion. T-cell exhaustion is typically seen in patients with chronic viral infections that lack
immunity and is the loss of effect and memory in T-cell populations. Diminished cytokine
secretion in exhausted T-cells, may lead to reduced levels of the pro-inflammatory cytokines
IL2 and IFNγ, possibly resulting in impaired functioning and activation of autoimmunity
by continuous antigen stimulation to the T-cell receptor (TCR) [56,57]. Impaired functioning
of T-cell memory leads to the lack of recall of an immune response after re-infection such
that after a second viral infection, there is no synthesis of clonal antibodies to protect against
infection [58,59]. Interestingly, T-cell exhaustion pathways overlap with those involved
NFAT regulation of the immune response.

3.5. Biological Processes and Functions

Analysis of the biological processes and functions (Figure 4) again highlights immune
dysregulation. A role for immune-related, metabolic, neurological, skeletal and muscu-
lar (e.g., agammaglobulinemia, vascular malformation, Th2 immune response, insulitis,
Myasthenia gravis, and neuromuscular disorder) pathways across datasets is observed.
In addition, processes affecting B and T lymphocytes, notably their life cycle, function,
activity, and homeostasis pathways appear to be associated with increasing DM1 severity.
In addition, the GO data from Figure 6 implicates a role for cellular immune responses,
particularly those influencing T-cell function.

There are three shared biological processes between the OPTIMISTIC and DMBDI
datasets, including (i) the mitochondrial import of protein, (ii) priming of macrophages,
and (iii) expansion of Th2 cells.
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3.5.1. Mitochondrial Import of Proteins

The import of (precursor) mitochondrial proteins from the cytosol into mitochondria
utilizes protein translocases with import signals directing each protein to the mitochondrial
surface and, subsequently, to their final destination. Mitochondrial dysfunction, has been
causally linked to muscle-wasting and aging [60,61]. Chronic adaptation to mitochondria-
induced proteostatic stress in the cytosol may induce muscle-wasting rather than bioen-
ergetic deficiency and oxidative stress. Beyond DM1, other muscular dystrophies, such
as Facioscapulohumeral Dystrophy (FSHD) and Oculopharyngeal muscular dystrophy
(OPMD), show dysregulation of mitochondrial protein import genes, such as the protein
translocase ANT1 and PABPN1 (part of the TIM-23 complex), respectively [62]. Mitochon-
drial dysfunction in DM1 has been associated with impaired DMPK anchoring [18] resulting
in oxidative metabolic impairments in DM1 and subsequent muscle-wasting [18,63,64].

3.5.2. Macrophage Priming

Priming of macrophages is performed by LPS binding to TLR4 leading to a transient
inflammatory response [65]. A primed macrophage is able to phagocytose the ubiquiti-
nated proteins or antigens to the proteasome for degradation [66]. IFNγ (which is pre-
dicted to be inhibited with increased DM1 severity in Figure 8B) is a known macrophage
primer cytokine capable of stimulating innate immunity. As such blunted macrophage
priming leading to diminished innate immunity processes. Whether downstream ubiquiti-
nation/degradation mechanisms are also impaired with increasing DM1 severity remains
to be seen. Interestingly, in SLE, an autoimmune condition (which shares aspects of the
DM1 phenotype), upregulation of proteasomes is also seen [67–69].

3.5.3. Th2 Cell Expansion

Th2 development and expansion are triggered by IL4-producing cells, such as acti-
vated T-cells and under the control of the calcineurin/NFAT-dependent pathway [70] and
activation of the ICOS signaling pathway. By regulating Th2 cell number, it can impact on
autoimmunity. Interestingly, the SLE signalling pathway which was flagged earlier also
implicates autoimmune processes. SLE itself is also documented as an autoimmune dis-
ease [71] and whether increasing DM1 severity is also the result of autoimmune processes
needs to be clarified.

3.5.4. Additional Evidence for Immune-Related Changes in the Blood of DM1 Patients

A comprehensive analysis of blood cell composition and biochemistry has been per-
formed in DM1 and compared with healthy control reference values [72]. In summary,
an increase in white blood cell count (critical to mounting an immune response) is seen
in those with DM1. Moreover, a number of biomolecules, including enzymes (such as
lactate dehydrogenase, gamma-glutamyltranspeptidase, and creatine kinase), cholesterol,
and hormones (luteinizing hormone), that play a role in immunity are reported to be
altered. Furthermore, changes in blood enzyme activity in DM1 patients compared to
healthy controls, implicate decreased superoxide dismutase and catalase activities [73]. In
DM1 sera, a link between the catabolic Immunoglobin G (IgG) rate and the CTG repeat
length expansion is found, whereby increased repeat length was correlated to reduced
IgG levels [44]. In congenital myotonic dystrophy (CDM) muscle an upregulation of the
pro-inflammatory interleukin-6 (IL-6) myokine signaling pathway is implicated but this
has not been reported in adult DM1 [74]. As noted above, gene expression changes in
inflammatory markers in DM1 glial cell lines [33], and genes associated with the innate
immune response in DM1 [34] have previously been documented.

3.5.5. Immune System Involvement in Other Muscular Dystrophies

These changes are by no means unique to DM1. Indeed, muscular health depends on
the ability of the immune system to repair damage. However, in a number of muscular
dystrophies, immune system changes are associated with increases in disease severity [75].
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It is clear that inflammatory processes can lead to neuromuscular cell death thereby causing
functional impairments [76]. Among the best studied changes examining this has been in
Duchenne muscular dystrophy (DMD) which involves inflammatory processes which result
in an imbalance in macrophage 1 and 2 phenotypes from the innate immune system [77].
Other muscular dystrophies such as the X-linked Becker muscular dystrophy has also been
reported to involve immune system impairments [78]. Moreover, in polymyositis, an inflam-
matory myopathy wherein the immune system attacks the muscles and thus impairs muscle
function, acts in an autoimmune manner [79]. Facioscapulohumeral muscular dystrophy
(FSHD) is an autosomal dominant slowly progressive muscular dystrophy where Inflam-
matory changes in skeletal muscle are implicated in disease-onset [80]. The role of immune
related changes in other muscular dystrophies, including limb-girdle muscular dystrophy
and Emery-Dreifuss muscular dystrophy, has not yet been comprehensively studied.

3.6. Master Regulators
3.6.1. Immune System Related Master Regulators

A number of master regulators are implicated in the immune response in the current
analyses. PRDM1 is a master upstream regulator of several processes related to immunity
affecting multiple T-cell types and B-cell maturation. Moreover, there is cross-talk between
the T-cell exhaustion and SLE signaling pathway as both pathways can impact autoimmu-
nity [81–83]. Alterations in PRDM1 expression may influence memory T-cell production
and as a result alter the ability upon re-infection to mount an immune response. FOXD1 is
involved in autoimmunity through its regulation of IFNγ, IL2, IL4, and NFAT complexes.
Of note, FOXD1 and FOXJ1 bind together [84]. FOXJ1 can impair autoimmunity as it is a
modulator of Th1 activation, with its deficiency resulting in autoimmunity due to a role in
antagonizing NFκB activity. This regulates inflammatory responses. CIITA is responsible
for the MHCII expression on the cell membrane playing a key role in pathogen sensing in
the immune system, while another master regulator SALL4 is an immunogenic antigen
which influences HLA-DR expression. The master regulators also act to influence immunity
by regulation of B lymphocytes. For example, PAX5, commits cells to a B-cell fate and affects
secretion of IgG, a key element of the immune response. Some regulators such as VIM code
for a receptor (vimentin) expressed on the cell surface, which is required for the attachment
of pathogens. Another regulator QKI alters inflammation by downstream regulation of
the AHR and NFκB signalling and as such, similar to the Fox genes can also regulate
autoimmunity. MXI1 has been implicated in IFNα mediated immune system activation
and its dysregulation in SLE [85] while Mxd1 regulates inflammation via Vitamin D and
also alters leukocyte proliferation and therefore immunity via cross-talk with microRNA
155 [86], a microRNA which was also implicated to interact with QXI. While another key
transcriptional regulator BAX, is often implicated in apoptosis, it plays an important role in
innate immunity [87]. Decreased muscle mass (and diminished antigen presentation cell
capacity) may be important linking elements demonstrating the interplay between muscle
and immunity.

3.6.2. Muscle Related Master Regulators

Many master regulators, e.g., FOXD1 [88], PAX5 [89], CIITA [90], QKI [91–93], VEGFA [94],
VIM [95], IL4 [96], and MLX [97] are implicated in muscle differentiation and/or repair
processes. These two processes are essential for muscle-wasting observed in DM1. Despite
that expression profiles (pathway and top-levels) were measured in blood, a number of
master regulators that are implicated in muscle differentiation and/or repair processes
were associated with DM1 severity in this study.

Previous studies have shown that muscle degeneration observed in muscular dystro-
phies results from secondary pathological mechanisms that exacerbate the primary genetic
defect, such as reduced blood flow, inflammation, and fibrosis [98]. This is in line with the
predicted inhibition of VEGFA and activation of E. coli B4 LPS, pointing at the impairment
of blood flow in muscles, leading to a lack of nutrients needed for muscle repair [94,99].
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LPS is a strong inducer of many cytokines, which are important regulators of muscle
protein balance [100]. Rapamycin (Sirolimus) has been previously shown to ameliorate
dystrophic phenotypes in muscular dystrophy mouse models [101,102]. Rapamycin via
mTOR/mTORC1 inhibition improves immune function in the elderly, and also prevents
aging of skeletal muscle [103] which is relevant in light of reports of progeria in DM1 [104].
There is a link between BAX as a regulator of (mitochondrial) apoptosis and muscle mass
which reinforce our earlier pathway analysis and gene set / mutation analysis findings in
Figures 3 and 6.

3.7. Increased DM1 Severity in Relation to Aging as Result of Dysregulated Immunity and
Muscle-Wasting

The severity of neuromuscular symptoms can be captured using the MIRS score, a
five-point scale characterizing skeletal muscle function [105]. Others have demonstrated
that impaired muscle function is related to the degree of muscle-wasting and failure of
muscle repair processes which itself is thought to reflect accelerated cellular aging [106–108].
DM1 is a progeroid disease [104], characterized by age-related symptoms such as insulin
resistance, impairments in leptin, and testosterone production [109]. Low levels of free
testosterone and growth hormone are key features in aging DM1 male patients. This is
also seen in healthy aging males which have associated reduced muscle mass [109–112].
Aging itself is associated with skeletal muscle mass loss [105,113,114] which also confers a
loss of immunity as skeletal muscle acts has antigen presentation capacity. Higher muscle
inflammatory vulnerability is a feature of both normal aging and DM1; however, in DM1
the gradient of muscle dystrophy is higher and muscle repair is more limited [55]; see
Figure 8B. Taken together, the accelerated aging processes in DM1 may not only lead
to muscle mass loss but also losses in immunity. A number of molecular mechanisms
highlighted in the enriched gene set analyses here (e.g., mTOR, NFAT, and miR-155), may
reflect muscle-wasting and increasing muscular impairment in DM1 [105]. Taken together,
we speculate that muscle-wasting, accelerated cellular aging, and immunity changes are
linked together resulting in increased DM1 severity.

4. Materials and Methods
4.1. RNA Isolation, Sequencing, and Differential Gene Expression (DGE) Analysis
4.1.1. RNA Isolation and Sequencing

We performed RNA sequencing analysis of differential gene expression and alternative
splicing in whole blood samples obtained from the preselected 30 individuals with DM1.
Whole peripheral blood RNA samples were collected using Tempus Blood RNA Tubes
(Life Technologies, Grand Island, NY, USA), and total RNA was extracted using MagMAX
kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instruc-
tions. RNA samples were further quantified using the NanoDrop 1000 Spectrophotometer
and Qubit Fluorometer (Thermo Fisher Scientific, MA, USA) and RNA integrity was as-
sessed with the 2200 TapeStation Instrument (Agilent Technologies, Santa Clara, CA, USA).
Globin mRNAs and ribosomal RNAs were depleted using the Globin-Zero Gold rRNA
Removal Kit (Illumina, San Diego, CA, USA). Barcoded RNA libraries were generated
according to the manufacturer’s protocol using the Ion Total RNA-Seq Kit v2 and the Ion
Xpress RNA-Seq barcoding kit (Thermo Fisher Scientific). The size and concentration of
the libraries were assessed using the 2200 TapeStation System. Sequencing templates were
prepared on the Ion Chef System using the Ion PI Hi-Q Chef Kit (Thermo Fisher Scientific).
Sequencing was performed on an Ion Proton machine using an Ion PI v3 chip (Thermo
Fisher Scientific) according to the manufacturer’s instructions.

4.1.2. Data Analysis and Differential Expression Analysis

The FASTQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, ac-
cessed on 14 May 2021) was used to assess and summarize the quality of the raw sequence
data in terms of library size, read length distribution, mean read quality distribution, mean

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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quality for each position in the read, and base frequency for each position in the read.
Reads were aligned to the reference genome (Homo sapiens, GRCh38.86, downloaded from
Ensembl) (http://www.ensembl.org/, accessed on 14 May 2021) using STAR [115] and
bowtie2 [116] aligners to find full and partial mappings (https://www.thermofisher.com/,
accessed on 14 May 2021, the Ion Torrent RNASeqAnalysis Plugin). Alignment was an-
alyzed by Picard tools [117] to extract read counts. Reads with at least 0.5 counts per
million (cpm) across 10 samples were retained and further normalized for sample-specific
effects using weighted trimmed mean of the log expression ratios (trimmed mean of M
values (TMM)) method [118], accounting for sequencing depth and RNA composition
bias. Principal Component Analysis (PCA) was applied on normalized gene expression
values to explore the patterns present in the data. Statistical analyses (differential expres-
sion analysis) were carried out with R (www.cran.r-project.org, accessed on 14 May 2021)
using R/Bioconductor [119] (www.bioconductor.org/, accessed on 14 May 2021) package
“limma” with voom transformation [120], at the gene level, regressing gene expression
with group status while adjusting for covariates (sex) (design model of ~0+group+sex).
Only genes with p-value < 0.01, independent of magnitude of change, were considered as
differentially expressed and used in the subsequent analyses. Heatmaps of the differentially
expressed genes in both the OPTIMISTIC and DMBDI datasets were created on normalized
data using the RStudio heatmap.2 function (see Supplementary Materials Script S6.1).
The OPTIMISTIC histogram of the p-value distribution of the resulting differential gene
expression (DGE) which can be found in the Supplementary Materials Script S6.2 and S6.3.

The DMBDI procedures for RNA isolation and microarray performing are described
elsewhere [27]. We processed the raw CEL files using the “oligo” Bioconductor R pack-
age [121] with RMA normalization [122] and filtering out features with low median intensi-
ties (less than 4 in 6 samples). Next, we used the “limma” R package for statistical analysis
of differential expression, using a linear model fit including sex for the contrast between
the Group 2 and Group 1. As with OPTIMISTIC dataset, only genes with p-value < 0.01,
independent of magnitude of change, were considered as differentially expressed and were
included in further analyses. The DMBDI histogram of the p-value distribution of the
resulting DGE was created (Supplementary Materials Script S6.4).

4.2. Functional Analysis
4.2.1. Gene Enrichment Analysis in IPA

Using Ingenuity Pathway Analysis (IPA, version 00.06; Ingenuity Systems Inc., Red-
wood City, CA, USA) [123], we performed gene set enrichment analyses, in which genes
and their corresponding proteins are assigned to the functional categories, ‘canonical path-
ways’ and ‘biofunctions’. For background expression (reference set) we used all genes
detectably measured in each of the datasets.

IPA Canonical Pathway analysis identifies signaling and metabolic pathways that are
most likely to be perturbed based on the differentially expressed genes in our datasets.
IPA Biofunctions Analysis identifies the biological functions and diseases that are most
significant to our datasets. Both methods employ a right-tailed Fisher’s Exact Test to
identify statistically significant over-representation of the differentially expressed genes in
a given pathway/biological function and/or disease and p-value of less than 0.01 was used
as a cut off to indicate a non-random association.

4.2.2. Causal Network Analysis in IPA (Master Regulators)

Causal Network Analysis (CNA) identifies network of upstream regulators that can
work together and control the expression of dataset genes. It uses experimentally observed
causal relationships between regulators and dataset genes and allows multiple interaction
steps to gene expression changes. Therefore, CNA allows to detect potential novel master
regulators that operate though other regulators, especially in cases where few or no relation-
ships exist directly between it and the dataset genes. We selected the most relevant master
regulators with a distance of up to two steps based on the criteria: overlap p-value and
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network bias corrected p-value cutoff of 0.05, and an absolute value of activation z-score
above 1.5. After identification of the upstream regulators their activation or inhibition was
predicted, given the observed gene expression changes in our dataset. Analysis is based on
expected causal effects between upstream regulators and target genes derived from the lit-
erature compiled in the IKB. The term “upstream regulator” refers to any molecule that can
affect the expression, transcription, or phosphorylation of another molecule endogenous
or exogenous (drug). IPA uses a z-score algorithm to make predictions. For the detailed
description of the method please refer to the following reference [123].

4.2.3. Gene Enrichment Analysis in Reactome

For the gene enrichment analysis two independent gene sets were used, the OPTI-
MISTIC study with mRNA-sequencing data, and the DMBDI study with gene expression
data. From both gene sets, genes with a p-value < 0.01 were selected. For the gene en-
richment analysis we used the ReactomeFIPlugIn (v7.2.0) in Cytoscape (v3.7.1), which is
designed to find pathways and network patterns (www.reactome.org/tools/reactome-fiviz,
accessed on 14 May 2021).

Both Reactome pathway analysis and gene set/mutation analysis on a network and
module level were performed. The Reactome pathway enrichment analysis is based on the
hierarchical organized pathways structure similar to the Reactome web application (www.
reactome.org/PathwayBrowser/, accessed on 14 May 2021). For the gene set/mutation
analysis on network and module level in Reactome we used the Functional Interaction (FI)
network (v2018, https://reactome.org/, accessed on 14 May 2021), a manually curated
pathway-based protein functional interaction network covering human proteins, which
allows the construction of a FI sub-network based on a set of genes. This FI sub-network was
then used for (i) pathway enrichment for pathways originating from different databases,
(Reactome, KEGG, Panther, NCI-PID, and BioCarta) and (ii) gene ontology (GO) term
enrichment analysis for the three GO domains: biological process, molecular function,
and cellular component. A network clustering algorithm [124] was applied on the FI
sub-network, which allows pathway and gene set enrichment for both pathways and GO
terms on cluster (module) level.

In the results section we show the results of the Reactome pathway analysis (Figure 5)
and the GO term enrichment analysis for biological processes (Figure 6) on network level. In
the Supplementary Materials S5, we also provide the results of the (i) pathway enrichment
for pathways originating from the following databases: Reactome, KEGG, Panther, NCI-
PID, and BioCarta, both on network and module level and (ii) GO term enrichment analysis
for the three GO domains: biological processes, molecular function, and cellular component,
both on network and module level.

Additionally, by analysing the gene set hierarchy, we detected the (two) top-level
ancestors for the enriched Reactome and KEGG pathways, and GO terms. To find the top-
level ancestors for the GO terms, only the “is a” relationship is used (http://geneontology.
org/docs/ontology-relations/, accessed on 14 April 2021).

4.3. Splice Variant Analysis

Since the DM1 transcriptome is associated with a number of known splicing events
compared to controls, splice variant analysis (described in the Supplementary Materials S7)
was performed to assess if DM1 severity was also associated with changes in the same or
other splice variants.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

4.4. Study Participants and Clinical Information

Study participants were recruited from the European OPTIMISTIC project, a multi-
center randomized trial conducted in neuromuscular referral centers in: Nijmegen, the
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Netherlands; Munich, Germany; Paris, France; and Newcastle, United Kingdom; and in-
cluded in the final dataset based on the flow diagram in Supplementary Materials Figure S1.
Inclusion criteria for this trial were ambulatory patients with genetically confirmed DM1
who suffered from severe fatigue, as detailed elsewhere [26]. From a total of 344 patients
assessed for eligibility, 89 patients were ineligible due to physical and mental disabilities
and other clinical reasons (for further details [125]. Out of 255 DM1 patients recruited in
the trial, we selected a sample of 30 individuals based on CTG repeat length and neuromus-
cular severity as ascertained by the muscular impairment rating scale (MIRS) [125]. The
30 samples were divided in three equal groups (n = 10). Group 1 consisted of participants
with CTG repeat length ≤ 400 and MIRS score 1 or 2. Group 2 was defined by CTG repeat
length ≤ 400 and MIRS score 3 to 5. Group 3 was defined by CTG repeat length > 400
and MIRS 3 to 5. Information on age of onset was not available for two participants, one
participant in Group 1 and one participant in Group 3.

For the independent dataset we selected a subgroup using the same MIRS and CTG
repeat length criteria from the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI)
microarray dataset, as described in [27]. This resulted in data from 12 subjects selected,
n = 6 in Group 1 and n = 6 in Group 2, using the same criteria as used in the OPTIMISTIC
dataset. Further characterization of the individuals in the two groups are given in Table 1.

4.5. Ethical Approval

Prior to participation in the OPTIMISTIC study, all participants had provided written
informed consent. The study was conducted in accordance with the declaration of Helsinki
and approved by the medical-ethical scientific committee for human research at each of
the four participating clinical centers. Ethical approval for the DMBDI dataset was already
present from their participating clinical centers at LMU Munich, Germany, University of
Rochester, New York, and the University of Florida Institutional Review Board, Gainesville,
FL, USA.

5. Conclusions

Symptom severity in DM1 is associated in two independent datasets (OPTIMISTIC
and DMBDI) with a transcriptional signature in blood associated with innate and adaptive
immunity in gene-enrichment analyses. Whether increased DM1 severity is associated with
a dysregulated immune system needs to ascertained. If true, strategies to alter immunity
in DM1 may be helpful to decrease disease severity. Furthermore, it will be intriguing to
see if more general regulatory inflammatory pharmacology [17] and non-pharmacological
interventions improving DM1 symptoms (e.g., cognitive behavioral therapy and exercise)
converge on reductions in inflammation and restoration of immunity leading to symp-
tomatic improvement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms23063081/s1.
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