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Abstract: Beta-lactamase (BL) production is a major public health problem. Although not the most
frequent AmpC type, AmpC-BL is increasingly isolated, especially plasmid AmpC-BL (pAmpC-
BL). The objective of this study was to review information published to date on pAmpC-BL in
Escherichia coli and Klebsiella pneumoniae, and on the epidemiology and detection methods used by
clinical microbiology laboratories, by performing a systematic review using the MEDLINE PubMed
database. The predictive capacity of a screening method to detect AmpC-BL using disks with
cloxacillin (CLX) was also evaluated by studying 102 Enterobacteriaceae clinical isolates grown in
CHROMID ESBL medium with the addition of cefepime (FEP), cefoxitin (FOX), ertapenem (ETP),
CLX, and oxacillin with CLX. The review, which included 149 publications, suggests that certain
risk factors (prolonged hospitalization and previous use of cephalosporins) are associated with
infections by pAmpC-BL-producing microorganisms. The worldwide prevalence has increased over
the past 10 years, with a positivity rate ranging between 0.1 and 40%, although AmpC was only
detected when sought in a targeted manner. CMY-2 type has been the most prevalent pAmpC-BL-
producing microorganism. The most frequently used phenotypic method has been the double-disk
synergy test (using CLX disks or phenyl-boronic acid and cefotaxime [CTX] and ceftazidime) and
the disk method combined with these inhibitors. In regard to screening methods, a 1-µg oxacillin
disk with CLX showed 88.9% sensitivity, 100% specificity, 100% positive predictive value (PPV),
98.9% negative predictive value (NPV), and 98.9% validity index (VI). This predictive capacity
is reduced with the addition of extended-spectrum beta-lactamases, showing 62.5% sensitivity,
100% specificity, 100% PPV, 93.5% NPV, and 94.1% VI. In conclusion, there has been a worldwide
increase in the number of isolates with pAmpC-BL, especially in Asia, with CMY-2 being the most
frequently detected pAmpC-BL-producing type of microorganism. Reduction in its spread requires
routine screening with a combination of phenotypic methods (with AmpC inhibitors) and genotypic
methods (multiplex PCR). In conclusion, the proposed screening technique is an easy-to-apply and
inexpensive test for the detection of AmpC-producing isolates in the routine screening of multidrug-
resistant microorganisms.

Keywords: plasmidic AmpC betalactamase; Enterobacteriaceae; multi-resistant bacteria diagnosis; screening

1. Introduction

The loss of susceptibility to beta-lactam antibiotics in Gram-negative bacteria is an emerg-
ing problem worldwide and is mainly attributable to the production of beta-lactamases, espe-
cially extended-spectrum (ESBL) and AmpC type (AmpC-BL) beta-lactamases and carbapen-

Microorganisms 2022, 10, 611. https://doi.org/10.3390/microorganisms10030611 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10030611
https://doi.org/10.3390/microorganisms10030611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-5185-3247
https://orcid.org/0000-0003-4467-7403
https://orcid.org/0000-0002-5227-5167
https://orcid.org/0000-0001-6146-9740
https://doi.org/10.3390/microorganisms10030611
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10030611?type=check_update&version=2


Microorganisms 2022, 10, 611 2 of 24

emases [1]. The CESPM group (Citrobacter freundii, Klebsiella aerogenes, Enterobacter cloacae,
Serratia marcescens, Providencia stuartii, and Morganella morganii) comprises common
Enterobacteriaceae species responsible for nosocomial and community infections produced
by inducible chromosomal AmpC beta-lactamases. However, other more prevalent species
in patients, such as Escherichia coli and Klebsiella pneumoniae, can present these enzymes with
plasmid gene encoding (pAmpC-BL). There has been limited research on pAmpC-BL in
comparison to the more frequently detected ESBL- and carbapenemase-producing microor-
ganisms [1–3]. There has been no estimate of the true worldwide prevalence of pAmpC-BL-
producing microorganisms [4], and no consensus on the most effective laboratory technique
for their detection [5]. AmpC-BL-producing microorganisms can also be associated with other
types of resistance, highlighting the coexistence of AmpC-BL and ESBL [3].

Colonization of the intestine and larynx may serve as an important reservoir for re-
sistance genes [6,7] of the microorganisms that inhabit them, and can be a risk factor for
infection. There is a need for simple, effective, easy-to-apply, and inexpensive techniques
to screen for these pathogens in the digestive tract of infected or colonized patients. ESBL-
producing Enterobacteriaceae colonies can be detected by various techniques, including
the use of CHROMID ESBL (bioMérieux, France). This transparent medium contains
cefpodoxime and other substances that inhibit Gram-positive bacteria growth, and chro-
mogenic substrates that presumptively identify genera and species according to their color
(pink/burgundy for E. coli; blue/green for Klebsiella, Enterobacter, Serratia, or Citrobacter; and
light to dark brown for Proteae) [8]. The inclusion of cefoxitin (FOX), cefepime (FEP), and
ertapenem (ETP) disks on CHROMID ESBL medium has been proposed for the presump-
tive identification of ESBL- and/or carbapenemase-producing microorganisms through
their resistance to these antibiotics, and a halo diameter breakpoint of 16 mm has proven
diagnostically useful [9]. However, the diagnostic performance can be further improved
by the addition of other antibiotic disks to reveal the possible presence of AmpC-BL. The
production of carbapenemase, ESBL, and AmpC-BL is frequently studied in episodes of
colonization by multi-resistant Gram-negative bacteria, and the addition of ETP, FOX,
FEP, and cloxacillin (CLX) disks to this medium may offer a simple and effective method
for this purpose. CLX shows greater activity against AmpC-BL-producing Enterobac-
terales but lesser activity against carbapenemase- or ESBL-producing Enterobacterales or
carbapenemase-producing Pseudomonas spp. and A. baumannii; hence, CLX disks may be
useful to detect the presence of microorganisms with AmpC [10].

Tests using cultures for the detection of colonies of resistant microorganisms offer an
advantage over PCR tests because they detect viable microorganisms and facilitate their
recovery, avoiding their loss. Unfortunately, no commercial culture tests are available for
the simultaneous detection of Gram-negative microorganisms with different mechanisms
of resistance to β-lactam antibiotics. The objectives of the present study were: carry out a
systematic review of epidemiological information on pAmpC-BL in K. pneumoniae and E.
coli species; and evaluate the behavior of microorganisms with AmpC-BL in the ChromID®

ESBL medium by using the disk diffusion test with FOX, FEP, ETP, and CLX disks.

2. Material and Methods
2.1. Systematic Review

The PubMed® database was searched using the search term “(AmpC [Title/Abstract])
AND (Plasmid [Title/Abstract])”. Review inclusion criteria were: (i) study on the concep-
tualization of AmpC type resistances; (ii) study on the epidemiology and clinical relevance
of these resistances from 2010 onwards; and (iii) study on their detection. Exclusion criteria
were: (i) study of isolation of bacterial species other than K. pneumoniae or E. coli; (ii) study
of their isolation in food production chains, animals, farms, aqueous media, and other
environmental settings; (iii) language other than English or Spanish; and iv) inability to
access the text. The search yielded 1001 publications published up to 7 January 2021; 395 of
these met the eligibility criteria, and 149 were finally included in the review.
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2.2. Behavior of Enterobacteriaceae with AmpC-BL in ChromID® ESBL Medium, Using the Disk
Diffusion Test with CLX Disks

A retrospective study was conducted in the Microbiology Department of our hos-
pital in Granada (Spain), which covers a population of around 440,000 inhabitants. It
included all Enterobacterales strains (67 from rectal swabs and 35 from urine cultures)
detected during February 2021 with suspicion of colonization or urinary tract infection
by ESBL or carbapenemase microorganisms in individuals aged >14 years). Species were
grouped according to their resistance mechanisms, as defined by EUCAST 2021 crite-
ria [11], finding: 47 with ESBL (25 E. coli, 19 K. pneumoniae, 1 C. freundii, 1 Proteus mirabilis,
and 1 Klebsiella oxytoca); 39 with the carbapenemases oxacillinase (OXA) (16 K. pneumoniae,
11 E. cloacae, and 1 E. coli), Klebsiella pneumoniae carbapenemase (KPC) (6 K. pneumoniae), and
Verona integron-encoded metallo-beta-lactamase (VIM) (5 K. pneumoniae); 9 with AmpC
(5 M. morganii, 2 Kluyvera intermedia, 1 E. cloacae, and 1 K. aerogenes); and 7 with ESBL and
AmpC (6 E. cloacae and 1 K. pneumoniae).

Isolates were identified using the MicroScan system (Beckman Coulter, Brea, CA,
USA) and mass spectrometry (Maldi-Tof®, Bruker Daltonik GmbH, Bremen, Germany).
Resistances were characterized with the MicroScan microdilution system, followed, when
appropriate, by carbapenemase determination using the Rapidec® Carba NP colorimetric
test (BioMerieux, Marcy l’Etoile, France) and immunochromatography (NG5-Test Carba,
NG Biotech, Guipry, France). The carbapenemase-producing type was confirmed by the
Andalusian Molecular Typing Laboratory of the Spanish PIRASOA Program using mass
sequencing (Illumina Inc, San Diego, CA, USA), CLC Genomics Workbench v10 software (Qi-
agen), ResFinder (Lyngby, Denmark) (https://cge.cbs.dtu.dk/services/ResFinder, (accessed
on 30 November 2021)), and CARD (Hamilton, ON, Canada) (https://card.mcmaster.ca/,
(accessed on 30 November 2021)) databases. ESBL production was defined by resistance
to cefotaxime (CTX) and/or ceftazidime (CAZ) and synergy with clavulanic acid (CLAV)
and FEP, and by susceptibility to amoxicillin/CLAV, piperacillin/tazobactam, FOX, and car-
bapenems. AmpC production was defined by synergy with cloxacillin [3] (with gradient test,
cefotetan/cefotetan-CLX E-Test (CTT/CXT), Liofilchem®—MIC Test Strip Technical Sheet
AmpC), resistance to FOX, amoxicillin/clavulanic acid/CLAV, piperacillin/tazobactam, and
CTX and/or CAZ, with an increased minimal inhibitory concentration (MIC) in the presence
of CLAV and susceptibility to FEP and carbapenems.

A 0.5 McFarland suspension of each isolate was prepared from colonies grown on
lamb blood agar (Becton Dickinson, Franklin Lakes, NJ, USA). Next, a sterilized swab was
soaked with the homogenized suspension, excess liquid was removed, and it was uniformly
seeded on one half of the plate on CHROMID ESBL medium, streaking the bacterial load
on the other half with a calibrated inoculation loop. FEP (30 µg, Becton Dickinson), FOX
(30 µg, Becton Dickinson), ETP (10 µg, Becton Dickinson), and CLX (in two variants [test 1
and test 2] to detect AmpC) disks were then placed equidistantly on the seeded area for
growth/inhibition measurement with a separation of 1.5 cm between each. The medium
was then incubated at 37 ◦C, with readings at 24 h. Test 1 used a sterile paper disk (BBL TM

TAXO TM Blank Paper Disks, Becton Dickinson) with a diameter of 13 mm located at the
center of the plate with the addition of 20 µL CLX (50 mg/mL) (Sigma-Aldrich, Madrid,
Spain); and Test 2 used a disk with 1 µg oxacillin (Becton-Dickinson) with addition of 10 µL
CLX (50 mg/mL). IBM SPSS Statistics 19 and Microsoft Excel 2019 were used for statistical
analyses. Calculations were made of the diagnostic value of the presence of synergy when
applying Tests 1 and 2.

3. Results
3.1. Systematic Review
3.1.1. Worldwide AmpC-BL Epidemiology

Three AmpC-BL categories have been described: chromosomal type AmpC-BL with
inducible expression; chromosomal type AmpC-BL with stable derepression and non-
inducible expression (enzyme hyperproduction by mutations in AmpC regulating genes);

https://cge.cbs.dtu.dk/services/ResFinder
https://card.mcmaster.ca/
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and plasmid type AmpC-BL (encoded by genes in transfer plasmids) (12). The for-
mer enzymes are expressed constitutively and at low concentrations in Citrobacter spp.,
Enterobacter spp., Serratia spp., Morganella spp., and Providencia spp. (CESPM group), and
in Pseudomonas aeruginosa [5,12,13]. However, exposure of these bacterial species to certain
beta-lactams can lead to hyperexpression of the encoding gene and elevated production
of cAmpC-BL, with the expression of AmpC-BL being inducible. This is attributed to
mutations that affect the enzyme responsible for regulating the AmpC-BL gene [3]. Its
constitutive expression at low concentrations has also been documented in other bac-
teria, such as E. coli, and in Shigella spp., but it is not inducible in these cases because
the chromosomal genes of the enzyme lack the natural promoter (ampR). Nonetheless,
Pfeifer et al. (2010) described cases of resistance to cephalosporins in E. coli mediated by
the inducible expression of cAmpC-BL, caused by mutations that increased expression
of the enzyme [14]. The rise in plasmid type AmpC-BL over the past few years has been
described as an epidemic by some authors [12]. In 1989, it was discovered that ampC genes
may be transmittable by plasmids [4,15], after the finding in South Korea of an isolate highly
resistant to FOX, designated plasmid CMY-1 [15]. pAmpC-BLs have traditionally been
described in Enterobacteriaceae and other Gram-negative bacilli [3,5] (Table 1). The various
plasmid AmpC families have been grouped as follows: CIT group of C. freundii (including
LAT- and some CMY-, such as CMY-2 and BIL); EBC group of Enterobacter spp. (MIR-1,
ACT-1); DHA group of M. morganii (DHA-1, DHA-2); ACC group of H. alvei (highlighting
ACC-1); MOX group of Aeromonas spp. (MOX- and the rest of CMY); and FOX group,
observing a very close genetic relationship between these plasmids and their chromosomal
origins [4,16].

Table 1. Isolation of the first pAmpC-BLs (modified by Jacoby, 2009) [3].

pAMPC-BL
Enzyme

Country of
Discovery Year of Isolation

First Species in
Which It

Was Isolated

Chromosomal
Origin Species

% Similarity
(with Respect to the
Chromosomal Gene)

CMY-1 South Korea 1989 K. pneumoniae A. hydrophila 82

CMY-2 Greece 1996 K. pneumoniae C. freundii 96

MIR-1 USA 1990 K. pneumoniae E. cloacae 99

MOX-1 Japan 1993 K. pneumoniae A. hydrophila 80

LAT-1 Greece 1993 K. pneumoniae C. freundii 95

FOX-1 Argentina 1994 K. pneumoniae A. caviae 99

DHA-1 Saudi Arabia 1997 S. enteriditis M. morganii 99

ACT-1 USA 1997 K. pneumoniae E. asburiae 98

ACC-1 Germany 1999 K. pneumoniae H. alvei 99

CFE-1 Japan 2004 E. coli C. freundii 99

pAmpC-BL: plasmid AmpC beta-lactamases.

Species that can express pAmpC-BL include K. pneumoniae, Salmonella, E. coli, P. mirabilis,
and C. freundii, in which these genes are constitutively expressed at high concentrations [15].
All pAmpC-BLs are expressed constitutively, except for DHA-1, ACT-1, DHA-2, and CMY-13
enzymes. These have been described as inducible because the plasmids that contain them
include not only the encoding ampC genes for the enzyme but also ligated ampR genes. These
genes are transcription factors responsible for decreasing or increasing the expression of
inducible ampC genes depending on the cofactor that interacts with AmpR [3,5,13,15,17,18].
Since the discovery of this type of plasmid, it has been repeatedly observed that the most
frequently recorded ampC gene worldwide is CMY-2 [7,14,17–20], followed by DHA-1 [18].
Enzymes in the CIT group (CMY-like) are predominant in E. coli, while enzymes of the DHA
family predominate in Klebsiella spp. [19–23].
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As in the case of Gram-negative bacteria families, AmpC-BL-producing microorgan-
isms produce various types of infection, both nosocomial and community-acquired: urinary
tract infections (UTIs, E. coli being the most frequently isolated pathogen in this type of infec-
tion), intra-abdominal infections, pneumonias, and soft tissue infections, among others [23].
The literature describes various risk factors associated with infections by pAmpC-BL-carrier
microorganisms, observing that they do not differ from those described for ESBLs [24],
associating AmpC-BL acquisition with previous hospitalization even more than ESBL
acquisition [25].

Independent risk factors have been reported for infection by pAmpC-BL-producing mi-
croorganisms, including the previous receipt of fluoroquinolones [2,26,27] and cephalosporins
such as cephamycin and FOX [2,3,26–28], demonstrating the possible therapeutic failure of
using cephalosporins as empirical treatment (30) even being considered as an independent
risk factor [2,25]. In addition, not all AmpC plasmid families are associated with the same
mortality rate; thus, according to the report of Pai et al. (2004), infections produced by
AmpC-BL DHA-1 have a higher mortality rate than those produced by CMY-2 [29]. Other
risk factors are prolonged hospitalization [2–4,28,30] or patient institutionalization (in the
study by Rodríguez-Baño et al. (2015)) [25], more than 50% of infections were associated with
community outbreaks, especially in patients with associated health care), hospitalization
in intensive care units (ICUs), and use of central and urinary catheters [3,25,28], mainly in
the case of nosocomial infections. Age, presence of diabetes mellitus, hospital admission,
institutionalization in care homes, and the use of urinary catheters were associated with
community-acquired infections [2].

The worldwide epidemiology of pAmpC-BLs was evaluated by classifying studies
according to their target population in the following three groups: hospital (isolates of
patients admitted to hospital centers, including ICUs and health institutions), community
(isolates from community sampling, studies performed in primary care, infections acquired
in the community, and non-hospitalized patients), and hospital and community. The
prevalence of AmpC in the reviewed literature was evaluated by considering the total
number of isolates in each study. Tables 2–5 display data were obtained from Europe,
America, Africa, and countries in Asia, Oceania, and the Middle East, respectively.

PRESENCE IN EUROPE (Table 2). Major regional differences can be observed in the
percentage of pAmpC-BL positivity. It has remained relatively low in Europe over the
past 10 years, ranging from 0.06% Denmark (2010) [31] to 2.6% in Holland (2014) [30,32].
However, higher percentages of positivity have occasionally been observed, such as Hol-
land in 2012 with 5% [33], Spain in 2018 with 14.2% [34], and Germany in 2020 with 11.9%
positivity. These higher positivity rates may result from differences in screening method
or study population (36). For instance, resistance of clinical isolates to carbapenems was
used in the 2018 Spanish study [34] while the 2012 study in Holland evaluated isolates with
reduced susceptibility to FOX [33]. pAmpC-BL positivity in E. coli is generally less frequent
in Europe than that observed in other parts of the world, with percentages of 0.06% re-
ported in Denmark (2010) [31], 0.46% in France (2010) [35], 0.73% in Holland and Germany
(2017) [36], 1.28% in Portugal (2019) [37], and 2.4% in Holland (2018) [38]. The prevalence
was slightly higher (7.55%) in the study by Findlay et al. (2020) in England, because all of
the clinical isolates evaluated showed CTX resistance, used as a screening method [39]. An
elevated prevalence of pAmpC-BL was also obtained in Ireland (19%) because the isolates
had a AmpC phenotype (positivity in the phenotypic detection procedure) [40]. In the same
way, the elevated percentage (12.5%) described in Switzerland (2013) [41] was obtained
in isolates with resistance to third-generation cephalosporins. Reports on the positivity
of K. pneumoniae isolates have varied among European countries, with findings of 0.5% in
France (2012) [42], 0.47% in Holland (2012) [33], and 1.04% in Portugal (2019) [37].

PRESENCE IN AMERICA (Table 3). Our search of the literature retrieved few pub-
lications on the prevalence of pAmpC-BL in America. In general, the global prevalence
of pAmpC-BL has been relatively low in the USA, ranging between 1.3% in 2016 [32]
and 3.42% in 2019 [52]. Reports on the prevalence of pAmpC-BL in E. coli have ranged
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widely between 2.23%, as described by Tamma et al. (2019) [52], and 16.33%, reported by
Park et al. (2012), who studied the presence of pAmpC-BL in FOX-resistant isolates [53]. In
Mexico, Paniagua-Contreras et al. (2018) found a higher prevalence (23.7%) of AmpC-BL
among E. coli isolates [54].

PRESENCE IN AFRICA (Table 4). Reports on the prevalence of pAmpC-BL have
varied widely among African countries. E. coli percentages have ranged from 0.50 in
Tanzania (2016) [56] and 0.59% in Morocco (2013) [57] to 14.68% in Egypt (2014) [58], with
reports of 4.23% in Nigeria (2014) [59] and 10.86% in Mozambique (2021) [60]. Likewise,
the percentages of K. pneumoniae isolates have ranged between 0.88 in Morocco (2013) [57]
and 3.97% in Libya (2017) [61]. Overall, the highest prevalence rates of pAmpC-BL have
been described in Uganda (2014) [60], with a rate of 39.6% among FOX-resistant isolates; in
Egypt (2014) with 18.8% [58]; and in Nigeria (2014) with 11.23% [59].

PRESENCE IN ASIA, OCEANIA, AND THE MIDDLE EAST (Table 5). These re-
gions have reported the highest prevalence rates of pAmpC-BL isolation. The rate of
K. pneumoniae ranges from 0.01% in Japan (2010) [21] to a very high rate of 44.95% in a
Hong Kong study (2016) [71]. Elevated rates have also been described in India (2010 and
2012) [72,73] with 13.14% and 13.27% positivity, respectively; Pakistan (2013) [74], with
12.37% positivity among isolates with ESBL phenotype; and China (2015) [75], with 31.50%
positivity among multi-drug resistant K. pneumoniae isolates. Positivity rates in E. coli have
ranged from 0.07% in Japan (2010) [21] to India (2010 and 2012) [72,73] with 24.57% and
24.89% positivity, respectively.

3.1.2. Phenotypic Detection Methods

Since the discovery of AmpC type resistances several decades ago, the approach to their
detection has been controversial, attributable to the lack of clear guidelines from CLSI or
EUCAST. This has led to an underdiagnosis of AmpC-BLs, contributing to underestimation of
the prevalence and global spread of this type of resistance. In 2018, Conejo et al. (2018) called
for an improvement in the phenotypic detection of AmpC-BLs in Spanish clinical laborato-
ries [97]. The ability of a laboratory to detect both types of AmpC resistance is essential, and
the detection of pAmpC-BLs is of vital epidemiological importance, given their transmission
and dissemination capacity and their association with outbreaks of community and nosoco-
mial infections [17,98]. AmpC-BL detection is especially difficult in microorganisms that can
produce chromosomal and plasmid AmpC-BL (e.g., E. coli). In these cases, the presence of a
plasmid needs to be investigated to monitor their spread more closely [99] and address the clin-
ical, therapeutic, epidemiological, and organizational repercussions, including the isolation of
infected patients. For the laboratory detection of these resistances, the presence of pAmpC-BLs
should be surveilled in species without chromosomal AmpCs that have proven able to dissem-
inate these enzymes, mainly K. pneumonia [100]. The behavior of antibiotics against pAmpC-
BL-producing microorganisms is characterized by a decreased susceptibility to oxyimino-
cephalosporins (e.g., CTX or CAZ) and methoxy-cephalosporins (e.g., FOX), and a suscep-
tibility to fourth-generation cephalosporins (e.g., FEP) [17,101]. Therefore, isolates showing
some of these characteristics in the antibiogram should be suspected of pAmpC-BL production
when there is no other apparent cause. However, there have been multiple reports of AmpC-
producing bacteria that appeared susceptible to both oxyimino-cephalosporins and FOX in the
antibiogram [18,19,24,97,99,102–106]. This may be attributable to a so-called “inoculum effect”
(susceptibility in vitro at low microorganism concentrations but inefficacy in vivo) [24,106] or
to the conventional consideration of these isolates as susceptible to cephalosporins in vitro
according to now-outdated CLSI or EUCAST cutoff points [103,106]. It should be borne in mind
that pAmpC-BL-producing isolates occasionally present with more than one beta-lactamase
and are multidrug resistant [4,75,94,101]. The presence of AmpC can mask the coexistence of
ESBL, hampering differentiation of the two resistances [22,79,99,105,107,108], because the two
enzyme groups are hydrolytically very similar, except that AmpC-BL is not inhibited by CLAV,
with reports of an increased cephalosporin MIC in its presence [107].
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Table 2. Epidemiology of pAmpC-BLs in Europe (2010–2020).

Author (Reference)
Year of Population

Study
Year of

Publication
Country of Target

Population
Population

(H/C) a
Specific

Conditions
n

AmpC (%) b

Global c Genetic
Identification

Most Frequent
AmpC EnzymesE. coli K.pneumoniae

Jørgensen et al. [31] 2006 2010 Denmark H ECI 74 0.06 - - PCR/WGS CMY-2

Courpon-Claudinon
et al. [35] 2005 2010 France H 3GCR 1051 0.46 - - PCR/WGS CMY-2

Illiaquer et al. [42] 2007–2009 2012 France H KPI 1505 - 0.50 - PCR/WGS DHA-1

Voets et al. [33] 2009 2012 Holland C ESBL 636 3.93 0.47 5.03 PCR/WGS CMY-2

Miró et al. [43] 2009 2013 Spain H EI 100,132 0.69 1.02 0.64 PCR/WGS CMY-2

Seiffert et al. [41] 2011 2013 Switzerland H/C ECI 611 12.50 - - PCR/WGS CMY-2

Gude et al. [44] 2008–2010 2013 Spain H EI - - - 0.56 PCR/WGS CMY-2

Galán-Sánchez
et al. [45] 2011–2012 2014 Spain H/C ECI - 0.78 - - PCR/WGS CMY-2

Reuland et al. [30] 2007 2014 Holland H 3GCR 503 - - 2.60 PCR CMY-2

Jones-Dias et al. [46] 2004–2008 2014 Portugal H 3GCR 124 - - 0.80 PCR/WGS CMY-2

Reuland et al. [47] 2011 2015 Holland C EI 550 1.30 - - PCR CMY-2

Ibrahimagić
et al. [48] 2009–2010 2015 Bosnia and

Herzegovina H/C ESBL 85 - - 8.23 PCR CMY-2

Alonso et al. [49] 2010–2011 2016 Spain H/C ECI 21,563 1.10 - - PCR/WGS CMY-2

Li et al. [40] 2011–2012 2015 Ireland H 3GCR 95 19 - - PCR/WGS CIT group

Pascual et al. [50] 2010–2011 2016 Spain H/C 3GCR 841 2.02 - - PCR/WGS CMY-2

Zhou et al. [36] 2012–2013 2017 Holland/Germany H/C EI 1087 0.73 - - PCR/WGS CMY-2

Gómara et al. [34] 2013–2014 2018 Spain H CR 63 - - 14.2 PCR CIT group

Den Drijver et al. [38] 2013–2016 2018 Holland H EI 2126 2.40 - - PCR CMY-2

Ribeiro et al. [37] 2010–2016 2019 Portugal H 3GCR 1246 1.28 1.04 2.60 PCR/WGS DHA-1

Findlay et al. [39] 2017–2018 2020 England C 3GCR 225 7.55 - - PCR/WGS DHA-1

Rohde et al. [51] 2014–2015 2020 Germany C 3GCR 828 - - 11.90 PCR/WGS CMY-2

a Type of population studied: Hospital (H)/Community (C). b Percentage positivity for AmpC among all isolates evaluated in the study. c Percentage global positivity that includes species
other than E. coli and K. pneumoniae and/or does not differentiate between cAmpC-BL and pAmpC-BL. PCR: polymerase chain reaction; WGS: whole genome sequencing; ECI: E. coli
isolates; 3GCR: third-generation cephalosporin-resistant; EI: Enterobacteriaceae isolates; KPI: K. pneumoniae isolates; ESBL: extended spectrum beta-lactamase; CR: carbapenemase resistant.
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Table 3. Epidemiology of pAmpC-BLs in America (2010–2020).

Author (Reference)
Year of Population

Study
Year of

Publication
Country of Target

Population
Population

(H/C) a
Specific

Conditions
n

AmpC (%) b

Global c Genetic
Identification

Most Frequent
AmpC EnzymesE. coli K.pneumoniae

Park et al. [53] 2008–2012 2012 USA H 3GCR 300 16.33 - - PCR/WGS CMY-2

Suwantarat et al. [32] 2014–2015 2016 USA H EI 854 - - 1.30 PCR/WGS CMY-2

Logan et al. [55] 2011–2015 2016 USA H MDR 225 14.22 - - PCR/WGS CMY-2

Paniagua-Contreras
et al. [54] Data not available 2018 Mexico C ECI 194 23.70 - - PCR CIT group

Tamma et al. [52] 2014–2015 2019 USA H EI 1,929 2.23 0.88 3.42 PCR CMY-2

a Type of population studied: Hospital (H)/Community (C). b Percentage of positivity for AmpC among all isolates evaluated in the study. c Percentage global positivity that includes
species other than E. coli and K. pneumoniae and/or does not differentiate between cAmpC-BL and pAmpC-BL. PCR: polymerase chain reaction; WGS: whole genome sequencing; ECI:
E. coli isolates; 3GCR: third-generation cephalosporin-resistant; EI: Enterobacteriaceae isolates; MDR: multidrug resistant.

Table 4. Epidemiology of pAmpC-BLs in Africa (2010–2020).

Author (Reference)
Year of Population

Study
Year of

Publication
Country of Target

Population
Population

(H/C) a
Specific

Conditions
n

AmpC (%) b

Global c Genetic
Identification

Most Frequent
AmpC EnzymesE. coli K. pneumoniae

Ogbolu et al. [62] 2005–2007 2011 Nigeria H EI 134 - - 4.50 PCR/WGS DHA-1

Barguigua et al. [63] 2010 2013 Morocco C ECI 1,174 0.59 - - PCR/WGS CIT group

Barguigua et al. [57] 2010–2011 2013 Morocco C KPI 453 - 0.88 - PCR/WGS EBC group

Yusuf et al. [59] Data not available 2014 Nigeria H/C EI 543 4.23 3.50 11.23 - -

Helmy et al. [58] 2011–2012 2014 Egypt H EI 143 14.68 2.09 18.18 CIT group

Nakaye et al. [64] 2013 2014 Uganda H 3GCR 293 - - 39.60 PCR EBC group

Gharout-Said
et al. [65] 2005–2010 2015 Algeria H EI 922 - - 1.60 PCR/WGS CMY-4

Chérif et al. [66] 2006–2009 2015 Tunisia H EI 11,393 - - 0.59 PCR/WGS CMY-2

Tellevik et al. [56] 2010–2011 2016 Tanzania H/C EI 603 0.50 - - PCR/WGS CMY-2

Zorgani et al. [61] 2013–2014 2017 Libya H EI 151 1.98 3.97 5.96 PCR CIT group

Tanfous et al. [67] 2002–2011 2018 Tunisia H KPI 128 - 2.30 - PCR/WGS CMY-4

Tanfous et al. [68] 2002–2013 2018 Tunisia H ESBL 128 - 2.34 - PCR/WGS CMY-4
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Table 4. Cont.

Author (Reference)
Year of Population

Study
Year of

Publication
Country of Target

Population
Population

(H/C) a
Specific

Conditions
n

AmpC (%) b

Global c Genetic
Identification

Most Frequent
AmpC EnzymesE. coli K. pneumoniae

Rensing et al. [69] 2013 2019 Egypt H/C EI 225 1.45 0.97 2.91 PCR CIT group

Mohamed et al. [70] 2018 2020 Egypt C EI 440 2.04 2.04 4.09 PCR/WGS DHA-1

Estaleva et al. [60] 2015 2021 Mozambique H/C ECI 230 10.86 - - PCR/WGS FOX/MOX

a Type of population studied: Hospital (H)/Community (C). b Percentage positivity for AmpC among all isolates evaluated in the study. c Percentage global positivity that includes
species other than E. coli and K. pneumoniae and/or does not differentiate between cAmpC-BL and pAmpC-BL. PCR: polymerase chain reaction; WGS: whole genome sequencing; ECI:
E. coli isolates; 3GCR: third-generation cephalosporin-resistant; EI: Enterobacteriaceae isolates; KPI: K. pneumoniae isolates; ESBL: extended spectrum beta-lactamase.

Table 5. Epidemiology of pAmpC-BLs in Asia, Oceania, and the Middle East (2010–2020).

Author (Reference)
Year of Population

Study
Year of

Publication
Country of Target

Population
Population

(H/C) a
Specific

Conditions
n

AmpC (%) b

Global c Genetic
Identification

Most Frequent
AmpC EnzymesE. coli K. pneumoniae

Yoo et al. [76] 2008–2009 2010 South Korea H EI 276 1,81 16.66 - PCR DHA-1

Yamasaki et al. [21] 2002–2008 2010 Japan H/C EI 22,869 0.07 0.01 0.13 PCR/WGS CMY-2

Singtohin et al. [77] 2005–2006 2010 Thailand H EI 2,712 1.62 0.29 1.91 PCR CMY-2

Mohamudha
et al. [72] 2008 2010 India H EI 175 24.57 13.14 44.57 - -

Mohamudha
et al. [73] 2009–2010 2012 India H EI 241 24.89 13.27 38.17 PCR DHA-1

Manoharan et al. [78] 2007–2008 2012 India H 3GCR 312 - - 15.38 PCR CIT group

Matsumura et al. [79] 2010 2012 Japan H ECI 1,327 1.73 - - PCR/WGS CMY-2

Gupta et al. [80] 2008–2009 2012 India H KPI 100 - 32 - PCR CMY-2

Sasirekha et al. [81] 2008 2012 India H EI 90 4.44 3.33 7.77 - -
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Table 5. Cont.

Author (Reference)
Year of Population

Study
Year of

Publication
Country of Target

Population
Population

(H/C) a
Specific

Conditions
n

AmpC (%) b

Global c Genetic
Identification

Most Frequent
AmpC EnzymesE. coli K. pneumoniae

Shafiq et al. [82] 2008 2013 Pakistan H/C ESBL 511 7.97 12.37 - - -

Azimi et al. [83] 2013 2015 Iran H KPI 303 - 1.60 - PCR/WGS CMY-

Hou et al. [75] 2011 2015 China H KPI- MDR - 31.50 - PCR DHA-

Liu et al. [84] 2012 2016 China H ECI 96 12.50 - - PCR DHA-1

Liu et al. [85] 2012 2016 China H KPI 130 - 10.80 - PCR/WGS DHA-1

Ghosh et al. [86] Data not available 2016 India H EI 148 16.89 - - PCR/WGS CMY-2

Luk et al. [71] 2004–2008 2016 Hong Kong H KPI 109 - 44.95 - PCR DHA-1

Sadeghi et al. [87] 2014 2016 Iran H EI 307 - - 21.50 PCR/WGS CMY-2

Baljin et al. [88] 2014 2016 Mongolia H EI 478 0.41 - - PCR/WGS CMY-2

Noguchi et al. [89] 2011–2012 2017 Japan H EI 316 0.63 0.95 - PCR/WGS DHA-1

Khurana et al. [29] 2013–2015 2017 India H GNB 761 0.52 - - PCR FOX-1/FOX-5b

Abdalhamid
et al. [90] 2015 2017 Saudi Arabia H EI 3,625 - - 1 PCR/WGS CMY-2

Harris et al. [22] 2014–2015 2018
Australia, New

Zealand,
Singapore

H 3GCR 30 17.10 - - PCR/WGS CMY-2

Nishimura et al. [91] 2005–2011 2018 Japan H EI 8,299 0.54 - 1.75 PCR/WGS CIT group

Kim et al. [92] 2007–2016 2019 South Korea H ECI 1,047 1.52 - - PCR/WGS DHA-1

Rizi et al. [93] 2018 2020 Iran H EI 602 - - 9.30 PCR CMY-2

Shrestha et al. [94] 2013–2014 2020 Nepal H/C ECI 2,661 9.86 - - - -

Aryal et al. [95] 2017–2018 2020 Nepal H GNB 226 - - 40.26 PCR CIT group

Bala et al. [96] 2018 2020 India H ECI 470 11.10 - - PCR CIT group

a Type of population studied: Hospital (H)/Community (C). b Percentage positivity for AmpC among all isolates evaluated in the study. c Percentage global positivity that includes
species other than E. coli and K. pneumoniae and/or does not differentiate between cAmpC-BL and pAmpC-BL. PCR: polymerase chain reaction; WGS: whole genome sequencing; ECI:
E. coli isolates; 3GCR: third-generation cephalosporin-resistant; EI: Enterobacteriaceae isolates; KPI: K. pneumoniae isolates; ESBL: extended spectrum beta-lactamase; GNB: Gram-negative
bacilli; MDR: multidrug resistant.
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There appears to be a consensus that AmpC-BL screening should consider reduced sus-
ceptibility to cephamycins and/or oxyimino-cephalosporins, specifically FOX resistance,
alongside the occasional resistance to conventional inhibitors such as CLAV. However,
CLAV resistance should be evaluated with caution, given that some isolates may ap-
pear susceptible [4]. Accordingly, Meini et al. (2019) proposed routine laboratory FOX
screening in laboratories for the detection of AmpC-BLs, proposing FOX MIC > 8 mg/L
combined with resistance to CTX and/or CAZ as phenotypic indicator of the presence
of pAmpC-BL [17,30]. EUCAST recommends investigating the presence of AmpC when
the aforementioned antibiogram results are obtained [98]. Other authors have also rec-
ommended screening for susceptibility to FEP, to which AmpC-BLs are susceptible [109].
However, it should be borne in mind that some E. coli isolates can have reduced suscep-
tibility to FEP (MICs ranging from 0.5 to 12 µg/mL), being known as E. coli producing
extended-spectrum AmpC (ESAC) beta-lactamases [110]. Other drawbacks of phenotypic
tests are their incapacity to differentiate pAmpC-BL producers if they present inducible
cAmpC-BL. Known limitations of phenotypic tests also include confluence with other resis-
tance mechanisms such as ESBLs and porin loss [111]. Specific phenotypic tests are based
on the detection of AmpC enzyme hydrolytic activity or utilization of AmpC inhibitors and
their capacity to suppress beta-lactamase expression [112]. Various phenotypic methods
have been proposed for detecting AmpC-producing microorganisms:

- Disk approximation method. This technique is employed to detect inducible AmpC-
BLs. In the case of pAmpC-BLs, it would be valid for the AmpCs of DHA-1, DHA-2,
ACT-1, and CMY-13 families. Two disks are used, one with a substrate antibiotic such
as an oxyimino-cephalosporin (e.g., CAZ) or piperacillin/tazobactam, and the other
with an inducer antibiotic (e.g., FOX, CLAV, or imipenem, etc.). The microorganism
produces an inducible BL if the substrate antibiotic inhibition halo is reduced in the
area close to FOX [113].

- Methods with AmpC-specific inhibitors. CLX and boronic acid (BA), and their deriva-
tives, have proven to be the most active and effective commercially available inhibitors
to detect AmpC-BLs [105,113–115], with CLX being more specific [114,116]. The com-
bination of CTT with other inhibitors, such as Ro48-1220 and LN-2-128 [117,118] or
Syn2190 [101,118], especially Syn2190, have demonstrated high sensitivity and speci-
ficity to detect AmpC-producing microorganisms; however, they are not commercially
available. The main methods include:

(a) Double-disk potentiation method with BA or CLX [98,113,119–121]. Cephalosporin
disks, especially CTT, FOX, CAZ, or CTX, are used alone and supplemented
with BA or CLX, obtaining a positive result when the difference in inhibition
halo in the disk with inhibitor is >5 mm.

(b) Double-disk synergy method with double BA [113,115,120] or CLX [3,28,120]. A BA
or CLX disk is placed with a CAZ disk and CTX disk on both sides. The test is
positive when the inhibition halo is distorted (augmented).

(c) AmpC detection disks. This technique, described by Black et al. (2005) [122], uses
Tris-EDTA to permeabilize the bacterial membrane and release beta-lactamases.
The bacterium suspected of producing pAmpC-BL (study bacterium) is added
to the AmpC disks, which contain Tris-EDTA. The medium is inoculated
with an isolate known to be susceptible to FOX (control bacterium), and a
FOX disk with AmpC disks (containing the studied bacterium) is placed
on both sides. A flattening of the FOX inhibition halo indicates antibiotic
inactivation (i.e., the presence of AmpC enzyme released into the medium
from the studied bacterium) and therefore a positive result for the presence of
pAmpC-BL [28,113,122].

(d) Three-dimensional method. A FOX disk is placed in an agar plate inoculated with
a strain susceptible to this antibiotic. An incision is made in the agar near the
disk for inoculation with the microorganism under study. The result is positive



Microorganisms 2022, 10, 611 12 of 24

when the inhibition halo is flattened, which is caused by the growth of the
AmpC-producing microorganism [73,113,121].

(e) Mast disks (MastDics® Combi AmpC and ESBL Detection Set, Merseyside,
UK) (Figure 1A–D) [123]. This technique, which can be used to detect both
AmpC and ESBL, utilizes cefpodoxime disks, alone and combined with AmpC
inhibitor and/or ESBL inhibitor. The result is positive when the difference in
halo diameter between disks with versus without inhibitor is >5 mm [112].

(f) E-test® AmpC (Biomérieux SA, 69280, Marcy-l´Etoile, France) (Figure 1E) [124].
This test utilizes strips impregnated with CTT at increasing concentrations on
both sides, with the presence of CLX on only one side. The result is positive if
there is a CTT MIC reduction of at least three dilutions or deformation of the
ellipse in the presence of CLX [52,112,121].

(g) ESBL + AmpC Screen ID Kit (ROSCO, Albertslund, Denmark). Similar concept
to the Mast disks referred to in point e). In this case, the cephalosporin is
cefotaxime [125,126].
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Figure 1. Phenotypic methods of AMPc beta-lactamase detection (Available online: https://mast-
group.com/uk/products/amr/antibiotic-resistance-detection-sets/d68c/ (accessed on 25 October
2021)). Mast Disk test, with four disks [123]: Disk A(Cefpodoxime), disk B (Cefpodoxime + ESBL
inhibitor), disk C (Cefpodoxime + AmpC inhibitor), disk D (Cefpodoxime + AmpC inhibitor + ESBL
inhibitor). (A): positive result for AmpC production alongside ESBL production; (B): positive result
for AmpC production; (C): positive result for ESBL production; (D): no AmpC or ESBL production.
Image (E) depicts the AmpC E-test with cefotetan (CN) and cefotetan with cloxacillin (CNI), showing
a positive result for the presence of AmpC beta-lactamase with a major reduction in MIC at the CNI
end [124].

3.1.3. Genotypic Detection Methods

Multiplex PCR has been considered the gold standard technique for the detection
of pAmpC-BL since its development by Pérez-Pérez et al. in 2002. It permits the detec-
tion and differentiation of plasmid AmpC families and of their chromosomal or plasmid
origin (valuable for species with both types of AmpC, such as E. coli) [16]. Modifications

https://mast-group.com/uk/products/amr/antibiotic-resistance-detection-sets/d68c/
https://mast-group.com/uk/products/amr/antibiotic-resistance-detection-sets/d68c/
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have been introduced since its invention, including simple PCRs that offer the same di-
agnostic value and may even be used for screening (Dallenne et al., 2009] [127]; real-time
PCR (Brolund et al., 2010) [128] for rapid detection, using affordable reagents; and, more
recently, multiplex real-time PCR (Chavda et al., 2016) [129], which offers the identifi-
cation of AmpC along with other types of resistance, again in a relatively short time.
Voets et al. (2011) [130] developed a novel multiplex PCR capable of identifying up to
25 types of beta-lactamases in one amplification reaction (including ESBL, pAmpC, car-
bapenemases, etc.), and Geyer et al. (2012) [131] obtained 100% sensitivity and specificity
using multiplex real-time PCR. Liu et al. (2015) [132] created a rapid and more cost-
effective technique that allowed 96 samples to be tested within 2 h using standard real-time
PCR equipment.

It was initially considered impossible for a single isolate to express more than one
pAmpC-BL for two reasons: AmpC detection is not sufficiently precise, and the amount of
AmpC in the bacterium is too limited for it to be a viable pathogen [16,132]. However, it
is now considered possible, given that various authors have reported the finding of more
than one ampC gene in the same isolate [45,52,61,66,93].

3.1.4. Behavior of Enterobacteriaceae with AmpC-BL in ChromID® ESBL Medium, Using
Disk Diffusion Test with CLX Disks

The behaviors of test 1 (Figure 2A) and test 2 (Figure 2B) are exhibited in Tables 6–8.
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Figure 2. Screening method for the phenotypic detection of AmpC. (A): Image of test 1, depicting the
synergy between the large white disk with CLX (20 µL at concentration of 50 mg/mL) and ETP and
FEP susceptibility halos. (B): Image of test 2, depicting the same synergy phenomenon as in A, but in
this case between the oxacillin disk with CLX (10 µL at concentration of 50 mg/mL) and ETP and
FEP disks. CLX (cloxacillin); ETP (ertapenem); FEP (cefepime); FOX (cefoxitin).

Table 6. Detection of isolates with AmpC using test 1.

Test 1 Negative Test 1 Positive Total

No AmpC 86 0 86

AmpC ± ESBL 11 5 16

97 5 102

Test 1 Negative Test 1 Positive Total

No AmpC 86 0 86

AmpC alone 4 5 9

90 5 95
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Table 7. Detection of isolates with AmpC using Test 2.

Test 2 Negative Test 2 Positive Total

No AmpC 86 0 86

AmpC ± ESBL 6 10 16

92 10 102

Test 2 Negative Test 2 Positive Total

No AmpC 86 0 86

AmpC alone 1 8 9

87 8 95
ESBL: extended-spectrum beta-lactamase.

Table 8. Usefulness of screening methods with tests 1 and 2.

(CI 95%) Test 1 Test 2

Indicators AmpC ± ESBL AmpC Alone AmpC ± ESBL AmpC Alone

Prevalence 15.7% 9.5% 15.7% 9.5%

Sensitivity 31.3% (14.2–55.6) 55.6% (26.7–81.1) 62.5% (38.6–81.5) 88.9% (56.5–98)

Specificity 100% (95.7–100) 100% (95.7–100) 100% (95.7–100) 100% (95.7–100)

PPV 100% (56.6–100) 100 (55.6–100) 100% (72.2–100) 100% (67.6–100)

NPV 88.7% (80.8–93.5) 95.6% (89.1–98.3) 93.5% (86.5–97) 98.9% (93.8–99.8)

Validity Index 89.2% (81.7–93.9) 95.8% (89.7–98.4) 94.1% (87.8–97.3) 98.9% (94.3–99.8)

Youden’s Index 0.313 0.556 0.625 0.889

PPV: positive predictive value; NPV: negative predictive value; ESBL: extended-spectrum beta-lactamase; CI:
confidence interval.

Screening test 1 (Figure 2A) to detect AmpC producers, either as sole resistance
mechanism or in combination with ESLB production, had a sensitivity of 31.3%, specificity
of 100%, positive predictive value of 100%, and negative predictive value of 88.7%. When
the test was applied to detect AmpC producers alone (not combined with ESBL), the
sensitivity was 55.6%, the specificity 100%, positive predictive value 100%, and negative
predictive value 95.6%.

Screening test 2 (Figure 2B) to detect AmpC producers, either as a sole resistance
mechanism or in combination with ESLB production, had a sensitivity of 62.5%, specificity
of 100%, positive predictive value of 100%, and negative predictive value of 93.5%. When
the test was applied to detect AmpC producers alone (not combined with ESBL), the
sensitivity was 88.9%, specificity 100%, positive predictive value 100%, and negative
predictive value 98.9%.

Comparison of test results using the Youden index showed that test 2 had greater
predictive capacity. Notably, a Youden index of 0.889 was obtained for the detection of
AmpC-producing isolates without the presence of ESLB producers.

4. Discussion

This review reveals increasing research interest in pAmpC-BLs over the past few
years. Numerous scientific publications have described their detection in the environ-
ment, including aquatic media, in food production, and in samples from animals and
humans [133].

The reviewed data show that the overall prevalence of pAmpC-BL is higher in the
region comprising Asia, Oceania, and the Middle East than in the rest of the world, espe-
cially India (44.47% in 2012) [72], Nepal (40.26% in 2020) [95], and Iran (20.50% in 2020) [87].
The lowest prevalence has been reported in Europe, followed by America. Nevertheless, it
should be taken into account that some studies did not differentiate between cAmpC-BL
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and pAmpC-BL, and may therefore have overestimated the prevalence of pAmpC-BL.
Prevalence data also vary markedly according to the methodology applied, which may
at least in part explain the wide differences reported among countries [51,61,72,86,91,93]
and among regions, bacterial species, and study dates [121]. For example, the percent-
age of pAmpC-BL positivity described by Shrestha et al. (2020) in Nepal was very high
(40.26%) because they studied a sample of gram-negative bacilli, in general, including
non-fermenting gram-negative bacilli [95].

However, there can be no doubt that the worldwide prevalence of pAmpC-BL has
increased, rising globally in the USA from 1.3% (2016) [32] to 3.42% (2019) [52] and in Egypt
from 2.91% in E. coli isolates in 2019 [69] to 4.09% in 2020 [70]. In India, the prevalence in
E. coli isolates increased from 4.44% in 2012 [81] to 11.10% in 2020 [96]. Major efforts are
needed to control the spread of this type of beta-lactamase and avoid hospital/community
outbreaks and endemic dissemination, such as that observed between 2010 and 2012
in Hungary, the first European country with endemic dissemination of a pAmpC-BL,
specifically DHA-1 plasmid [134].

In Spain, the prevalence of pAmpC-BL in E. coli has been reported in various studies
as 0.69% (2013) [43], 0.78% (2014) [45], 1.1% (2016) [49], and 2.02% (2016) [50], and the
prevalence in K. pneumoniae was 1.02% in 2013 [43]. One of the studies in 2016 (50) suggested
that pAmpC-BLs are the main mechanism of AmpC production in Spain.

Although the most frequent type of plasmid worldwide is CMY-2 of the CIT family, a
high percentage of DHA-1 isolates has been reported in Asia, especially in China, where
DHA-1 is the most commonly isolated plasmid [28,75,84,132]. DHA-1 is also the most
frequent plasmid in K. pneumoniae isolates, whereas CMY-2 is the most common in E. coli
isolates, as noted above. A striking finding is the predominance of FOX/MOX plasmids
recently observed in Mozambique (2021), surpassing both CMY-2 and DHA-1 plasmids [60].

The presence of pAmpC-BL should be suspected when isolates have a BL resistance
pattern that differs from their wild phenotype [121], given the well-documented valida-
tion of AmpC-BL screening detecting a reduced susceptibility to FOX [17]. Importantly,
however, this screening procedure cannot detect AmpC-BLs of the ACC family, which
are incapable of hydrolyzing FOX, and microorganisms that express these appear as sus-
ceptible to it in the antibiogram [5,17,103,114,116]. Reduced susceptibility to FOX may be
due to not only AmpC-BL production but also to a reduced permeability of the external
bacterial membrane [20,106]. Among the phenotypic methods reviewed, the “AmpC disk
method” is a highly sensitive and specific method that can differentiate resistance to FOX
due to the presence of AmpC-BL from that caused by a reduction in external membrane
permeability [122], which cannot be achieved by the BA disk synergy method [20].

Phenotypic techniques are simple, generally inexpensive, rapid, and readily inter-
preted [112,114], favoring their incorporation in routine laboratory analyses to detect
possible resistance-producing microorganisms. However, they are not capable of differenti-
ating between pAmpC-BLs and cAmpC-BLs [3,17,19,98,115,116,119] or between different
pAmpC-BL families [3]. Hence, a study of E. coli based on phenotypic methods alone would
have high sensitivity but low specificity, because it may detect many E. coli isolates that are
hyperproducers of chromosomal AmpC [98]. In Klebsiella spp., which lacks cAmpC-BL, a
positive phenotypic result for AmpC would be confirmatory because it would imply the
presence of pAmpC-BL [120,121]. One limitation of phenotypic methods using BA and its
derivatives is that dimethyl sulfoxide is usually employed for their dilution, and this toxic
substance needs to be handled with caution. However, their dilution in distilled water
has also been described, resolving this problem [113,135]. A further limitation is that BA
is not specific for AmpC, and positive results can result from the presence of ESBL and
carbapenemases [121].

Few recommendations have been published on the application of these techniques,
which require clear guidelines for their interpretation [104]. A good approach to the de-
tection of AmpC may be to apply lower cutoff points than those habitually used for CAZ,
ceftriaxone, and CTX. For instance, Agyekum et al. (2016) [136] described all isolates
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with CTX MIC > 1 mg/L as non-susceptible. Another shortcoming of phenotypic meth-
ods is that they are not all equally effective at detecting all AmpC families [20,137], and
Ingram et al. (2011) found that inhibitors such as CLX or BA are more sensitive to DHA
than CMY [114].

Proposed phenotypic methods that have demonstrated greatest diagnostic usefulness
are those based on inhibitors. Thus, acceptable sensitivity and specificity values (>90%) are
obtained using the double-disk synergy method with CLX + FOX [20,30,114] and the AmpC
disk method [114,122]. The AmpC E-test has obtained the worst results, possibly because it
contains CTT, showing lower sensitivity but higher specificity to detect AmpC [114].

The rapid fluorogenic method (1.5 h) recently developed by Park et al. (2020) has
demonstrated high sensitivity and specificity to detect pAmpC-BL. It utilizes an antimi-
crobial bound to a fluorogenic substance that emits fluorescence in the presence of a
beta-lactamase capable of its hydrolyzation. This method can also be combined with direct
diagnostic techniques (Vitek2® or MALDI-TOF®) for the rapid detection of the bacterial
species [138]. This represents an advancement in the development of novel methods for
pAmpC-BL detection.

The coexistence of ESBL and AmpC poses a diagnostic challenge, given that ESBL
resistance may go unnoticed in AmpC-producing organisms by presenting this resistance
to CLAV. It is also possible that FOX resistance may be produced by a combination of
ESBL production and reduced external membrane permeability [120]. A possible solu-
tion to the diagnostic challenge posed by the coexistence of ESBL and AmpC is to in-
clude FEP, which is not affected by the presence of AmpC, in ESBL screening along with
CLAV [17,99]. In cases of ESBL and AmpC coexistence, BA is a more diagnostically valu-
able inhibitor [128]. Song et al. (2007) [139] modified the CLSI ESBL detection technique,
which uses CLAV, by adding BA to CTX or CAZ disks and to CTX/CAZ disks with CLAV,
producing CTX/CAZ+BA disks and CTX/CAZ+CLAV+BA disks. An increase of ≥3 mm
in the halo of the CTX/CAZ+CLAV+BA versus CTX/CAZ+BA disk is considered positive
for ESBL [113,135,140].

Genotypic methods are considered the gold standard techniques for the detection
of AmpC resistances [3,30,114] and are able to differentiate between chromosomal and
plasmid AmpC-BLs [98]. However, most of them are expensive, technically complex, and
time-consuming methods that are mainly used in research and are reserved for doubtful
cases in a clinical setting (e.g., E. coli isolates) [140]. Another major drawback is that
they can detect ampC genes that are already known but not new mutations or AmpC
families [16,98,112,115,132].

Based on the data gathered in this review, we developed an algorithm similar to that
depicted in Figure 3. Accordingly, the presence of AmpC-BL should be suspected when
there is resistance to cephamycins (MIC > 8 mg/L for FOX) and oxyimino-cephalosporins
(pattern of resistance to CTX or CAZ). This helps avoid a search for AmpC-BL in ESBL-
producing bacteria, which would meet the second but not the first criterion because they are
susceptible to FOX. A phenotypic method should then be applied to confirm the presence
of AmpC, with the double-disk synergy test being the most highly recommended approach.
Finally, a PCR or a genotypic analysis should be carried out in doubtful cases to verify the
presence/absence of AmpC-BL encoding genes, bearing in mind that some isolates present
positivity in the double-disk method that even PCR cannot detect [102,135].
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Regarding our screening proposal (see Section 2.2) for the phenotypic detection of
AmpC-producing Enterobacteriaceae, test 2 obtained the best results. In comparison, Reu-
land et al. [30] obtained 91% sensitivity and 96% specificity using the double-disk synergy
method with CLX in 66 isolates with reduced susceptibility to FOX and third-generation
cephalosporins, and 85% sensitivity and 95% specificity when they applied the same
method but with BA [30]. The use of CTT disks alone, and with the addition of BA as phe-
notypic confirmation, was recommended in a study with 635 isolates of Enterobacteriaceae
not susceptible to FOX (MIC ≥ 32 mg/dL) [141]. In another study using the double-disk
synergy method to test 255 isolates, the addition of CLX to a FOX disk, obtaining the best
predictive values when the halo increase ≥4 mm, was considered positive, achieving 95%
sensitivity and 95% specificity [20]. Finally, Polsfuss et al. used the double-disk synergy
method in 305 isolates and described 97.2% sensitivity and 100% specificity [114]. With
regard to other techniques, Black et al. used the AmpC disk to screen 140 isolates not
susceptible to FOX and obtained 100% sensitivity and 98% specificity [122]. Ingram et al.
compared different screening and confirmatory methods in a study of 246 isolates, con-
cluding that the screening method with the AmpC disk obtained the best result, offering
95% sensitivity and 98% specificity [109]. In a sample of 125 pAmpC-BL-positive isolates,
the CTT/CXT E-Test showed 98.6% sensitivity and 35.4% specificity, while the AmpC disk
method obtained slightly lower sensitivity (96%) but higher specificity (58%) values [44].
Hence, the results achieved with test 2 are comparable to the best results described for
screening phenotypic tests, with the added advantage of integrating this fourth disk in the
screening test with FEP, FOX, and ETP disks, previously proposed by our group for the
detection of microorganisms with ESBL and/or carbapenemase [9].

Test 2 yields lower values in the presence of ESBL. As noted above, the coexistence of
AmpC and ESBL production hampers the phenotypic detection of both resistance mecha-
nisms, and phenotypic methods are recommended with the addition of CLAV (AmpC in-
ducer and ESBL inhibitor) and even genotypic methods for a definitive diagnosis [17]. Song
et al. used BA as AmpC inhibitor in their study of 182 isolates, comparing CTX/CA/BA
disks with CTX and/or CAZ/CA/BA with CAZ disks as well as CTX/CA/BA disks
with CTX/BA disks and/or CAZ/CA/BA disks with CAZ/BA disks, reporting that both
approaches markedly improved sensitivity and specificity values in comparison to the
utilization of CA alone [139]. However, a review proposed the double-disk synergy method
using CTX and CAZ with and without the addition of CLX as the optimal phenotypic
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confirmation test for AmpC in the presence of ESBL [119]. The diagnostic usefulness of test
2 in these isolates is enhanced by increasing the amount of CLX on the oxacillin disk.

Limitations

Studies with larger samples of AmpC-producing isolates are required to obtain more
accurate predictive values. In common with other phenotypic techniques, our method can-
not differentiate between the presence of plasmid or chromosomal AmpC except when the
isolate is known to produce plasmid AmpC producer alone, as in the case of K. pneumoniae.
In addition, the detection of pAmpC-BL is hampered by confluence with other resistance
mechanisms such as ESBL production, porin loss, or E. coli producing ESAC beta-lactamases.
Reference methods used for the detection of AmpC producers were the cefotetan/cefotetan-
CLX E-Test and an increased CTX and CAZ MIC in the presence of CLAV, because the
means required for genotypic identification of the AmpC resistance mechanism were
not available.

5. Conclusions

There has been an increase in pAmpC-BL-producing isolates over the past 10 years,
especially in the Asian continent, and CMY-2 producers are the most frequently responsible.
Prevention of their spread requires the implementation of routine surveillance procedures
that combine phenotypic and genotypic approaches (multiplex PCR). Among phenotypic
screening methods, double-disk synergy and AmpC disk methods can be especially recom-
mended for their predictive capacity. Our proposed screening method, which involves the
addition of CLX on an oxacillin disk, is an easy-to-use and inexpensive test for the detec-
tion of AmpC-producing isolates, especially when there is no other resistance mechanism.
Moreover, it can be combined on a single plate with a screening method for the detection
of Enterobacteriaceae with ESBL and/or carbapenemases through the addition of FOX, FEP,
and ETP disks.
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