Skip to main content
. 2022 Mar 11;23(6):3053. doi: 10.3390/ijms23063053

Table 1.

External validation of QSAR models for MIEs based on ChEMBL data. For each MIE predicting QSAR the average number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) were reported. The metrics for evaluating the predictivity of the models were sensitivity (SEN), specificity (SPE), balanced accuracy (BA), Matthew’s correlation coefficient (MCC) and area under the ROC curve (AUC). Performance is the average of metrics obtained over 100 different training-test splits.

MIE TP FP TN FN SEN SPE BA MCC AUC
AChE 555.6 63.0 887.2 68.0 0.89 0.93 0.91 0.83 0.96
AMPAR 13.4 20.0 651.0 1.2 0.92 0.97 0.94 0.60 0.99
CAR 9.0 6.8 668.6 1.2 0.88 0.99 0.94 0.72 0.95
CYP2E1 4.0 35.2 645.2 1.0 0.80 0.95 0.87 0.29 0.90
GABAR 20.0 11.0 649.0 6.0 0.77 0.98 0.88 0.69 0.96
KAR 4.4 17.4 663.0 0.6 0.88 0.97 0.93 0.42 0.97
NADHOX 15.2 4.4 665.4 0.4 0.97 0.99 0.98 0.87 1.00
NIS 11.0 0.6 673.4 0.4 0.97 1.00 0.98 0.96 1.00
NMDAR 50.0 27.8 604.4 3.4 0.94 0.96 0.95 0.75 0.98
PXR 35.8 35.8 601.8 13.0 0.73 0.94 0.84 0.57 0.92
RYR 11.0 0.6 673.6 0.2 0.98 1.00 0.99 0.96 0.99
THRα 60.0 23.4 599.2 2.8 0.96 0.96 0.96 0.81 0.99
THRβ 110.2 37.8 500.0 38.4 0.74 0.93 0.84 0.67 0.93
TTR 14.8 44.0 624.0 3.8 0.80 0.93 0.87 0.42 0.94
VGSC 28.4 12.8 639.2 5.0 0.85 0.98 0.92 0.76 0.97