Skip to main content
. 2022 Mar 11;23(6):3053. doi: 10.3390/ijms23063053

Table 2.

Performance of the three classifiers (kNN, RF, NNET) using MIE predictions, chemical descriptors, and extended fingerprints as independent variables. For each method, the average number of true positives (TP), false positives (FP), true negatives (TN) false negatives (FN) and not classified (NC) were reported. The metrics to evaluate the predictivity of the models were sensitivity (SEN), specificity (SPE), balanced accuracy (BA), Matthew’s correlation coefficient (MCC), and area under the ROC curve (AUC). Performance is the average of five-fold cross-validation results obtained over 500 iterations (100 fold-splitting procedures and five parameter combinations).

Classifier Variable TP FP TN FN NC SEN SPE BA MCC AUC
K-NN MIE predictions 30.5 11.4 19.6 7.5 0.0 0.80 0.63 0.72 0.44 0.76
Descriptors 29.5 11.5 19.5 8.5 0.0 0.78 0.63 0.70 0.41 0.76
Fingerprints 14.6 2.3 28.5 22.2 1.4 0.40 0.92 0.66 0.37 0.75
MLP-NNET MIE predictions 29.4 9.4 21.6 8.6 0.0 0.77 0.70 0.74 0.47 0.78
Descriptors 30.2 9.8 21.2 7.8 0.0 0.79 0.68 0.74 0.48 0.79
Fingerprints 28.1 12.4 18.6 9.9 0.0 0.74 0.60 0.67 0.34 0.69
RF MIE predictions 31.1 11.6 19.2 6.4 0.7 0.83 0.62 0.73 0.47 0.77
Descriptors 32.9 6.4 24.4 4.9 0.4 0.87 0.79 0.83 0.66 0.91
Fingerprints 32.9 11.9 18.8 4.8 0.5 0.87 0.61 0.74 0.51 0.80