
����������
�������

Citation: Mészár, Z.; Kókai, É.; Varga,

R.; Ducza, L.; Papp, T.; Béresová, M.;

Nagy, M.; Szücs, P.; Varga, A.

CRISPR/Cas9-Based Mutagenesis of

Histone H3.1 in Spinal Dynorphinergic

Neurons Attenuates Thermal

Sensitivity in Mice. Int. J. Mol. Sci.

2022, 23, 3178. https://doi.org/

10.3390/ijms23063178

Academic Editor: Christina Piperi

Received: 20 December 2021

Accepted: 14 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

CRISPR/Cas9-Based Mutagenesis of Histone H3.1 in Spinal
Dynorphinergic Neurons Attenuates Thermal Sensitivity
in Mice
Zoltán Mészár 1 , Éva Kókai 1, Rita Varga 1, László Ducza 1 , Tamás Papp 2, Monika Béresová 2 ,
Marianna Nagy 2, Péter Szücs 1,† and Angelika Varga 1,*,†

1 Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen,
H-4032 Debrecen, Hungary; meszarz@anat.med.unideb.hu (Z.M.); kokai.eva@med.unideb.hu (É.K.);
varga.rita@anat.med.unideb.hu (R.V.); ducza.laszlo@anat.med.unideb.hu (L.D.);
szucs.peter@med.unideb.hu (P.S.)

2 Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
papp.tamas@med.unideb.hu (T.P.); beres.monika@med.unideb.hu (M.B.);
nagy.marianna@med.unideb.hu (M.N.)

* Correspondence: varga.angelika@med.unideb.hu; Tel.: +36-(52)-255-567; Fax: +36-(52)-255-115
† These authors contributed equally to this work.

Abstract: Burn injury is a trauma resulting in tissue degradation and severe pain, which is processed
first by neuronal circuits in the spinal dorsal horn. We have recently shown that in mice, excitatory
dynorphinergic (Pdyn) neurons play a pivotal role in the response to burn-injury-associated tissue
damage via histone H3.1 phosphorylation-dependent signaling. As Pdyn neurons were mostly
associated with mechanical allodynia, their involvement in thermonociception had to be further
elucidated. Using a custom-made AAV9_mutH3.1 virus combined with the CRISPR/cas9 system,
here we provide evidence that blocking histone H3.1 phosphorylation at position serine 10 (S10) in
spinal Pdyn neurons significantly increases the thermal nociceptive threshold in mice. In contrast,
neither mechanosensation nor acute chemonociception was affected by the transgenic manipulation
of histone H3.1. These results suggest that blocking rapid epigenetic tagging of S10H3 in spinal
Pdyn neurons alters acute thermosensation and thus explains the involvement of Pdyn cells in the
immediate response to burn-injury-associated tissue damage.

Keywords: histone; dynorphinergic neuron; spinal cord; heat sensation; epigenetic regulation; pain

1. Introduction

Neurons in the superficial dorsal horn (SDH) of the spinal cord are known to play
a key role in the regulation of nociceptive information flow. Despite the increasing number
of neuroepigenetic studies in pain research, the molecular mechanisms involved in the
processing and differentiating of painful modalities are not well-characterized. While some
post-translational modifications (PTM), e.g., histone H3.1 acetylation, in the maintenance
of pathological pain have been already studied in detail [1–3], the role of other PTMs, such
as phosphorylation at position serine 10 (S10) of histone H3.1 in nociception, has only
recently been scrutinized (S10H3; p-S10H3) [4–6]. Based on our previous observations,
phosphorylation of the histone H3.1 protein appears to be a reliable marker of enhancement
of neuronal activity in the SDH following certain noxious stimuli [5,6].

General inhibition of S10H3 phosphorylation either by pharmacological blockage of
the mitogen- and stress-activated kinases (MSK) [4] or by transgenic technology (using
MSK1/2-gene-deficient mice) [5] prevents the development of heat hypersensitivity with-
out affecting the development of mechanical allodynia following carrageenan-induced
inflammation [5]. Several recent studies showed that somatosensory modalities are likely
to be processed by definite but somewhat overlapping interneuronal populations in the
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SDH [7–9]. Of these inhibitory subgroups, dynorphinergic (Pdyn) neurons are regarded as
primarily responsible for the gating of mechanical and pruritic pain [7,8,10,11]. We recently
reported that spinal excitatory Pdyn neurons have a major contribution in the response to
burn-injury-associated tissue injury via p-S10H3-dependent signaling [6]. Therefore, we
hypothesized that specific blocking of histone H3.1 phosphorylation at position serine 10
(S10) in spinal Pdyn neurons alone would reduce or even eliminate central sensitization
and heat hypersensitivity, consequently leading to a certain level of antinociception. In situ
genetic manipulation of histone H3.1, however, is quite challenging due to its redundancy
in the genome and its essential function during the mitosis of the cell cycle. To overcome
this obstacle and test our hypothesis that p-S10H3 plays a critical role in the processing of
noxious-heat-associated pain, in this study, we designed a recombinant-adenoassociated-
virus (AAV9)-based expression vector that combines dominant-negative and CRISPR/cas9
technology. The vector induces expression of the mutant histone H3.1 in which serine is
replaced with alanine at position 10 (S10A) and CRISPR elements for targeted deletion of
the wild-type histone H3.1 genes. Intrathecal application of our AAV9 construct revealed
that Pdyn neuron selective inhibition of S10 phosphorylation on histone H3.1 leads to
a significant increase in the thermal nociceptive threshold, while leaving perception of
other modalities intact.

2. Results
2.1. Distribution of Dynorphinergic Neurons in Various Brain Regions of the Pdyn::cas9-EGFP
Hybrid Mouse

Somatic visualization of certain types of neuropeptides following standard immunos-
taining procedure often suffers from significant detection problems due to biosynthetic
and trafficking characteristics of those molecules [12–16]. To overcome this problem in the
case of dynorphin, several solutions have been developed and utilized recently. Antibodies
raised against the dynorphin precursor preprodynorphin (PPD) in in situ hybridization
(ISH) or even genetically engineered transgenic animals are all available to label cells
selectively with a knocked-in fluorescent tag [6,15,17–21].

In the hybrid that we used throughout the study, Pdyn expression is linked to cas9-
EGFP due to the cre-dependence of cas9. Thus, Pdyn could be identified based on their
EGFP expression in this animal. To confirm the reliability of EGFP expression in Pdyn
neurons, we used conventional immunohistochemistry on coronal sections of the whole
brain (Figure 1 and Supplementary Figure S1). Neurolucida reconstruction of the location
of EGFP-positive cell bodies, after HRP-DAB conversion, proved that the great majority of
DAB+ cells were restricted to those areas which have been designated as dynorphinergic-
neuron-rich areas in the Allen Brain Atlas by ISH (Pdyn-RP_050505_04_B03-coronal. Avail-
able online: http://mouse.brain-map.org/gene/show/18376 (accessed on 25 August 2021);
Figure 1) [22]. This finding confirmed that the hybrid selected for the experiments is in-
deed suitable for cas9-based manipulation of dynorphinergic neurons and for the selective
insertion of S10A into Pdyn-expressing neurons exclusively.
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cell bodies (revealed by the HRP/DAB method) through the telencephalon/diencephalon (A), the
midbrain (B), and the medulla (C) of a Pdyn::cas9-EGFP mouse. On the right side of each panel, blue
dots represent the location of Pdyn-immunopositive neurons, detected and reconstructed with the aid
of Neurolucida (EGFP + somata). The left side of each panel shows the corresponding reference image
of in situ hybridization (ISH) data from the Allen Brain Atlas (ABA) [22] displaying Pdyn mRNA
expression pattern. PrMo, primary motor area; PrSs, primary somatosensory area layer 2/3 and
layer 5; Dg, dentate gyrus; Thal, mediodorsal nucleus of the thalamus; Hy, dorsomedial nucleus of the
hypothalamus; CP, caudoputamen; Am, central amygdalar nucleus; 3V, third ventricle; IC, inferior col-
liculus; PAG, periaqueductal gray; PBn, parabrachial nucleus; DR, dorsal nucleus raphe; CA, cerebral
aqueduct; CER, cerebellum; nST, nucleus of the solitary tract; snTr, spinal nucleus of the trigeminal;
nR, reticular nucleus. Scale bar, 500 µm. For original images, see Supplementary Figure S1.

In addition, we observed a high level of colocalization between the antibodies against
the neuropeptide precursor preprodynorphin (PPD) and the EGFP signal in the superficial
laminae of the spinal dorsal horn (SDH; Figure 2A) from a Pdyn::cas9-EGFP mouse, whereas
in deeper laminae, where mainly excitatory Pdyn neurons are present [15,23], EGFP-
immunoreactive neurons lacked Pdyn (Figure 2A).
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Figure 2. Cell-type specific targeted delivery of the necessary components for genome editing of
histone H3.1 via CRISPR/cas9 strategy. (A) Immunostaining with antibodies against EGRP (green),
Pdyn (magenta) in a projected image of seven optical sections with a 40× lens from a transverse
spinal cord section of a Pdyn::cas9-EGFP mouse. The overlay shows a merged image. The numerous
EGRP-immunoreactive neurons are predominantly visible in the superficial layers of the lumbar
spinal cord. The majority of these are Pdyn+ (arrowheads), while some of them lack Pdyn (arrow).
Few Pdyn-expressing neurons lack the EGFP signal (asterisk). D, dorsal; M, medial; scale bar, 50 µm.
(B) Schematic drawing representing the CRISPR/cas9 strategy to establish the mutant histone H3.1
(mutH3.1) in Pdyn neurons. The abbreviation mutH3.1 refers to serine-to-alanine exchange (S10A) at
position serine 10 of the wild-type histone H3.1. IT, intrathecal; AAV9_mutH3.1, the mutant histone
H3.1-containing recombinant adenoassociated virus serotype 9. (C) Schematic representation of the
final insert synthesized and cloned into a recombinant AAV9. This cassette encoded mutH3.1 flanked
by loxP sites (purple), three single-guide RNAs (sgRNAs; blue) driven by the human polymerase III
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U6 promoters (green), and a mCherry fluorescent protein (red). In this approach, S10A point
mutation would be introduced into only cre-expressing neurons (i.e., into Pdyn-expressing neurons
in Pdyn::cas9-EGFP hybrids). CMV, human cytomegalovirus (CMV) immediate early enhancer
and promoter; CBH, chicken beta-actin promoter with CMV enhancer. For sgRNA sequences
targeting wild-type histone H3.1, see Supplementary Table S3. See also Supplementary Data S1 for
further technical details. (D) 3D volume reconstruction of micro-CT images, used for validating the
intrathecal position of the inserted cannula before the osmotic pump implantation. The intrathecal
catheter (arrow) is shown within the subarachnoid space in a living deeply anesthetized Pdyn::cas9-
EGFP mouse. The catheter was introduced at the level of L5-L6 vertebral laminae and pushed up
to L1-L2. Scale bar, 5000 µm. (E) In contrast to the hippocampus (hc), mCherry-specific RT-PCR
produced a single sharp band in the spinal cord (sc) sample of a wild-type mouse that had been
transfected with the AAV9_mutH3.1. GAPDH was amplified in both samples. BenchTop 100 bp DNA
ladder was used as a reference.

Given that EGFP+/Pdyn-neurons were more numerous in the deeper dorsal horn
laminae of the spinal cord in adult mice, those of neurons probably transiently expressed
Pdyn at an earlier stage of their development. This might also be true for some of the
supraspinal regions where abundant EGFP expression was detected. This hypothesis,
however, could not be confirmed from the ABA (Figure 1 and Supplementary Figure S1).

2.2. Validation of Our Experimental Strategy

Schematic representation of our experimental design and the final insert, which was
synthesized and cloned into an adenoassociated viral vector serotype 9 (AAV9), are illus-
trated in Figure 2B,C, respectively. Prior to the osmotic pump implantation, the position
of the intrathecal catheter was confirmed in the case of each animal with either microcom-
puted tomography (micro-CT) or conventional X-ray (see also in Methods; Figure 2D).
Using RT-PCR, we confirmed the presence of the mCherry mRNA in the spinal cord,
but not in the hippocampus of a wild-type mouse that had been transfected with the
AAV9_mutH3.1 (Figure 2E), indicating that the intrathecal route of AAV9 delivery re-
sults in not only efficient but also spatially restricted transduction of spinal cord neurons
(Supplementary Table S2). It must be noted, however, that RNA was isolated more than
3 weeks after post-transduction, and this may have led to a failure in detection of mCherry
expression, driven by the relatively weak CMV promoter. Higher titer of the virus and RNA
isolation at an earlier stage of infection, might have resulted in a detection of virus-coded
mCherry signal at supraspinal areas.

To further confirm our strategy, we used anti-p-S10H3 antibody on lumbar spinal cord
sections from Pdyn::cas9-EGFP mice transduced with AAV9_mutH3.1 (n = 3) and from non-
transduced wild-type animals (n = 2). Prior to immunostaining against p-S10H3, mice were
exposed to burn injury to induce S10H3 phosphorylation as detailed in our earlier report [6].
Image analyses revealed that there was a significant difference in the intensity profiles of
p-S10H3-positive ROIs between the wild-type control (n = 98) and the AAV9_mutH3.1-
treated hybrid mice (n = 145) suggesting that following CRISPR/cas9-based mutagenesis
of histone H3.1 in spinal dynorphinergic neurons can indeed downregulate p-S10H3
(Supplementary Figure S2). We also found an approximately 30% decrease in the amount
of p-S10H3 immunopositive nuclei among the Pdyn-positive neurons in Pdyn::cas9-EGFP
mice transduced with AAV9_mutH3.1 compared to the untreated Pdyn::cas9-EGFP mice [6].

2.3. Intrathecal Delivery of the Viral Constructs Effectively Transfects SDH Neurons

Viral infection in the SDH of Pdyn::cas9-EGFP mice was confirmed with immunocyto-
chemistry, 5 weeks after the intrathecal administration. Transverse sections from the lumbar
spinal cord of the sacrificed and perfused animals were immunostained with antibodies
against GFP and RFP that recognized the genetically encoded EGFP and mCherry proteins,
respectively (Figure 3).
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Figure 3. Distribution of AAV9 viral particle in the spinal dorsal horn of Pdyn::cas9-EGFP mice as
identified by the presence of mCherry tag encoded by the virus. Representative images showing
immunostaining with antibodies against EGFP (green), mCherry (magenta), and DAPI (blue) in
projected images of 10 optical sections (each 0.5-µm-thick) taken with a 40× lens in the spinal cord
from an AAV9_mutH3.1 vector treated (A), an AAV9_control treated (B) and a sham-operated (C)
Pdyn::cas9-EGFP mouse. (A) Neurons showing mCherry-immunoreactivity are scattered throughout
the SDH. Some Pdyn neurons (green to to their EGFP expression) show strong mCherry signal
especially in the superficial region of the dorsal horn. (B) Administration of AAV9_control virus into
Pdyn::cas9-EGFP mice produced an expression pattern of mCherry, similar to that shown in panel
A. (C) The mCherry-specific fluorescent signal is completely missing in the transverse spinal cord
sections of animals in the sham-operated group. White dotted lines indicate borders between white
and gray matter. Scale bars is 50 µm.

Due to the cre-independency of mCherry expression in the AAV9_mutH3.1 vector, and
the earlier reported tropism of AAV9 to glial cells when administered in the CSF [24], non-
Pdyn neurons and even non-neuronal cells occasionally also showed mCherry expression
in the sections.

Animals in the AAV9_mutH3.1-treated group showed a granulated-looking red fluo-
rescence indicating mCherry scattered in the entire dorsal horn. However, the granulated
staining was almost confluent in the cytoplasm of cells located in the more superficial region
(laminae I–II) of the dorsal horn (Figure 3A). In deeper laminae (III–VI), the granulated
mCherry signal was sparser resembling cytoplasmic dots around the nucleus labeled with
DAPI (Figure 3A). This staining pattern is probably due to the lower expression rate of
mCherry in this construct, which is a known issue when CMV promoter is used to drive
protein expression in adult neurons [25].

Localization and pattern of the enhanced mCherry signal in animals of the AAV9_
control-treated group exhibited an almost identical pattern to that observed in their lit-
termates infected with AAV9_mutH3.1 (Figure 3B). The AAV9_control vector expresses
mCherry as a fusion protein cre-dependently, thus, in theory, the mCherry signal should
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have been restricted to Pdyn-expressing neurons. However, mostly in the deeper laminae,
some non-Pdyn cells still contained a weak mCherry fluorescence in a dotted fashion
(Figure 3B) that is likely the result of leakage expression of this bicistronic fusion protein.

Sections taken from animals in the sham-operated group had no mCherry signal
anywhere in the spinal cord (Figure 3C).

To determine the percentage of EGFP-positive Pdyn neurons that express mCherry in
Pdyn::cas9-EGFP mice that had been infected with AAV9_mutH3.1 (n = 2 mice), papain-
based single-cell suspensions from the lumbar segment of the spinal cord were analyzed
by flow cytometry (FACS; Supplementary Figure S3). In average, 1.45% ± 0.25 of the total
number of cells/events exhibited EGFP-positivity (n = 2 mice). Of that, 52.6% ± 5.6 showed
mCherry labeling suggesting that more than half of Pdyn neurons were infected by the
AAV9_mutH3.1 based on their mCherry fluorescence (Supplementary Figure S3).

2.4. Intrathecal Administration of AAV9_mutH3.1 Virus into Pdyn::cas9-EGFP Mice Increases the
Thermal Nociceptive Threshold

Although prior works have reported that dynorphinergic neurons in SDH do not
contribute to heat sensation in mice [7,8], our previous findings demonstrated that exci-
tatory dynorphinergic neurons exhibited phosphorylation of S10H3 shortly after noxious
heat-induced burn injury. Therefore, to evaluate their role in thermosensation, the thermal
nociceptive threshold was determined using a hot plate with constant temperature (50 ◦C)
in a set of in vivo experiments. AAV9_mutH3.1 or AAV9_control vectors were adminis-
tered via intrathecal route into the subarachnoid space of Pdyn::cas9-EGFP hybrid and
wild-type mice (Figure 4A,B). The thermal nociceptive threshold was measured before
(BTM; baseline threshold measurement) and after the osmotic pump installation (days 7,
14, and 21; Figure 4A,B).

The elevation in thermal nociceptive latency (represented as paw withdrawal latency;
PWL) was most pronounced by the end of the first week (measured on day 7) after os-
motic pump implantation in the group of AAV9_mutH3.1-treated mice (to 243.7% ± 28.4)
as compared to the presurgery baseline (Figure 4A; Kruskal–Wallis ANOVA; details in
Supplementary Table S4). The elevation, although less pronounced, remained signifi-
cant throughout the 3-week observational period. At each time point after the infec-
tion, AAV9_mutH3.1-treated Pdyn::cas9-EGFP hybrid mice exhibited significantly higher
thermal withdrawal latencies compared to values of the hybrid animals infected with
the AAV9_control virus or the sham-operated groups (non-parametric Mann–Whitney
test; see Supplementary Table S4). The average paw withdrawal latencies (PWL) in the
AAV9_mutH3.1 treated mice before (BTM) and after (day 7) the infection was 15.0 ± 1.7 s
and 33.8 ± 3.3 s (n = 7), respectively; while the corresponding values of the AAV9_control
mice were 21.7 ± 1.1 s and 24.9 ± 1.3 s (n = 6), respectively. See also Supplementary Figure S4
for raw data.

Animals in the AAV9_control and sham-operated groups did not show significant
alterations in PWL to noxious thermal stimulus compared to their baseline (BTM) values
(Figure 4B; Supplementary Figure S4; for statistical analysis see Supplementary Table S4).
Like the other control groups, wild-type mice infected with AAV9_mutH3.1 only exhibited
moderate alteration in PWL (n = 4). These data strongly suggest that S10H3 phosphoryla-
tion in Pdyn neurons is a crucial process for normal acute noxious heat sensation.
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exhibited higher thermal nociceptive threshold compared to the AAV9_control and sham operated 
groups at day 7. This significant elevation was persistent until the end of the observational period. 
* p < 0.05 and ** p < 0.01 compared with the AAV9_control group (details in Supplementary Table 
S4). # p < 0.01 when the overall influence of the treatment with the AAV9_mutH3.1 on paw with-
drawal latency (PWL) in response to noxious heat compared with the pre-surgery baseline (p = 0.009, 
n = 7, Kruskal–Wallis ANOVA). (C) Paw withdrawal latency to painful mechanical stimuli showed 
no significant alterations within, and differences between the groups. (D) Formalin-induced somatic 
pain was quantified as the integrated time spent exhibiting nocifensive behavioral during early (0–
15 min) and late (15–60 min) phases of formalin application. Formalin-induced nocifensive behavior 
was reduced by 40% in the second phase in mice that had been infected with AAV9 irrespectively 
from their transgenes to be expressed, although, this reduction did not reach a statistically signifi-
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led to a modest body weight loss by day 7 that resolved later in all groups. 

  

Figure 4. Intrathecal administration of AAV9_mutH3.1 into Pdyn::cas9-EGFP mice increases the
thermal nociceptive threshold. (A) Schematic time scale of the experimental procedures. WT, wild-
type C57Bl/6; IHC, immunohistochemistry; IF, immunofluorescent staining. (B,C) Changes in paw
withdrawal latencies (PWL) to thermal- and mechanical pain were evaluated before (day 0) and
after the surgery (day 7, 14, 21) in different groups of Pdyn::cas9-EGFP mice (i.e., AAV9_mutH3.1,
AAV9_control, sham-operated) and in wild-type animals transduced with the AAV9_mutH3.1. Val-
ues at Day 0 represent the pre-surgery baseline values (BTM). (B) AAV9_mutH3.1-treated animals
exhibited higher thermal nociceptive threshold compared to the AAV9_control and sham operated
groups at day 7. This significant elevation was persistent until the end of the observational period.
* p < 0.05 and ** p < 0.01 compared with the AAV9_control group (details in Supplementary Table S4).
# p < 0.01 when the overall influence of the treatment with the AAV9_mutH3.1 on paw withdrawal
latency (PWL) in response to noxious heat compared with the pre-surgery baseline (p = 0.009, n = 7,
Kruskal–Wallis ANOVA). (C) Paw withdrawal latency to painful mechanical stimuli showed no
significant alterations within, and differences between the groups. (D) Formalin-induced somatic
pain was quantified as the integrated time spent exhibiting nocifensive behavioral during early
(0–15 min) and late (15–60 min) phases of formalin application. Formalin-induced nocifensive behav-
ior was reduced by 40% in the second phase in mice that had been infected with AAV9 irrespectively
from their transgenes to be expressed, although, this reduction did not reach a statistically signif-
icant level. For additional details for statistical comparison see Supplementary Table S4. See also
Supplementary Figure S5 for raw data of the formalin-induced nocifensive behavior. (E) Changes in
body weight were evaluated before (day 0) and after the surgery (day 7, 14, 21) in different groups of
Pdyn::cas9-EGFP mice (i.e., AAV9_mutH3.1, AAV9_control, sham-operated). Day 0 represents the
pre-surgery baseline value. Transduction with the viruses (AAV9_mutH3.1 or AAV9_control) led to
a modest body weight loss by day 7 that resolved later in all groups.
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2.5. Intrathecal Administration of AAV9_mutH3.1 Virus into Pdyn::cas9-EGFP Mice Does Not
Affect Mechanical Sensitivity

Several recent studies demonstrated that Pdyn neurons in the SDH of mice contribute
to the suppression of mechanical sensation [7,8,10]. Thus, the mechanical withdrawal
threshold (represented as PWL) was measured using von Frey filaments with increasing
forces before and after the inhibition of S10H3 phosphorylation. PWL to noxious mechanical
stimuli showed an increase on days 7 and 14 and reached 149.7% ± 12.0 by day 21, however,
this alteration in tactile sensitivity was not statistically significant (Figure 4C), suggesting
that blocking phosphorylation of S10H3 in Pdyn neurons did not affect mechanical sensa-
tion. Statistical analysis also revealed that there were no significant differences between the
changes in AAV9_mutH3.1-treated hybrid mice compared to the corresponding values in
the AAV9_control or sham-operated groups (see further details in Supplementary Table S4).
There was a similar trend in PWL to mechanical forces applied to the paw in wild-type
animals infected with the AAV9_mutH3.1 (n = 4). See also Supplementary Figure S4 in
panel B for raw data.

2.6. Acute Chemosensation Was Influenced by the Viral Infection Itself but Mutant Histone H3.1
as Assessed by Formalin-Induced Nocifensive Behavior

Formalin test was chosen as a model to assess the effect of blocking phosphorylation
of S10H3 on acute pain sensation [26,27]. Intraplantar injection of formalin (5%; i.pl.)
evoked nocifensive behavior, in two phases depending on the participating peripheral
components of the pain pathway [26,27]. In the first phase (0–15 min; direct activation of
primary sensory neurons) the total duration of nocifensive reactions of animals in the sham-
operated, AAV9_mutH3.1- and AAV9_control treated groups were 23.97 ± 2.0, 38.92 ± 2.6,
and 38.53 ± 6.5 s, respectively (Supplementary Figure S5). Interestingly, in the second
phase of the test (15–60 min which corresponds to the effect of the inflammatory mediators
released, the values in the sham-operated, AAV9_mutH3.1- and AAV9_control treated
groups were 224.01 ± 32.7, 145.38 ± 2.6 and 146.73 ± 6.4 s, respectively (Figure 4D and
Supplementary Figure S5). Thus, while an almost 40% reduction was observed in the
nocifensive responses among animals in the virus-treated groups (AAV9_mutH3.1. and
AAV9_control) compared to the sham-operated animals, there was no significant difference
between animals infected with the two types of AAV9 (Supplementary Table S4).

Thus, our data suggest that the response to formalin-induced acute pain was not
affected by the S10A phenotype of histone H3.1 during the direct/early activation of
sensory nerve terminals, nor during the release of acute inflammatory neuromodulators in
the second phase.

2.7. Changes Related to the Mutant Phenotype of Histone H3.1 Were Not a Consequence of the
Deterioration of the General Health of the Experimental Animals

To monitor the general well-being of mice after the surgery, body weight was followed
for 3 weeks, performing measurements before each behavioral assessment. The body
weight of animals decreased slightly at day 7 in both the AAV9_mutH3.1. (to 95.8% ± 0.7)
and in the AAV9_control (to 97.1% ± 0.7) groups, with no significant difference between
them (Figure 4E). By day 14 animals in both groups regained their baseline weight that
was almost identical to those of the animals in the sham-operated group (Figure 4E; for
statistical analysis see Supplementary Table S4). There was a similar tendency in post-
operative weight change in the case of the wild-type animals that had been infected
with the AAV9_mutH3.1 (n = 4). Interestingly, animals that received the AAV9_mutH3.1.
virus intrathecally started to gain weight by the end of the third week, but the further
investigation of this change was beyond the scope of this study and the experimental setup
did not allow the follow-up of this weight change.

3. Discussion

We previously reported that Pdyn neurons had the largest share among p-S10H3-
expressing neurons following burn injury both in wild-type and Pdyn::cas9-EGFP trans-
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genic mice [6] suggesting their possible key involvement in the development of heat
hyperalgesia after burn injury. Thus, in the present study, we tested the hypothesis that
phosphorylation of S10H3 might be a crucial post-translational modification (PTM) in acute
thermosensation by combining the AAV system, dominant-negative approach, transgenic
technology, and CRISPR-based genome editing.

3.1. Validity of the Pdyn::cas9-EGFP Transgenic Model

Transgenic cre-recombinase-expressing driver mice strains occasionally show inho-
mogeneity in the expression level of the enzyme among CNS regions that, otherwise, are
known to contain the type of neuron tagged with the cre enzyme. Therefore, we first tested
whether our selected Pdyn-IRES-cre strain would be suitable for detecting Pdyn neurons
in the spinal cord. The distribution of the reporter EGFP molecule in Pdyn::cas9-EGFP
double-heterozygous progenies showed a close to identical expression pattern to the corre-
sponding reference atlas (Allen Brain; Pdyn-RP_050505_04_B03-coronal. Available online:
http://mouse.brain-map.org/gene/show/18376 (accessed on 25 August 2021)) in various
regions of the brain [22]. Moreover, double-labeling experiments showed that the large
majority of EGFP-expressing spinal dorsal horn cells in Pdyn::cas9-EGFP mice were also
recognized by a specific antibody raised against Pdyn.

3.2. Cell-Specific Blocking of S10H3 Phosphorylation as a Precision Tool for Deciphering the Role of
This PTM in the Complex Function of Pdyn Neurons

Histone H3 protein is encoded by twelve genes altogether in the mouse, which code for
two isoforms: H3.1 and H3.2. Among those 12 genes, 4 produce H3.1 transcripts according
to the HISTome2 database [28]. Post-translational modification, including acetylation,
phosphorylation, and methylation of the core histone proteins, plays an important role in
the epigenetic regulation of transcription in eukaryotes [29,30]. Phosphorylation of serine
10 in the N-terminal tail of histone H3 is not only involved in cell division in mitotic cells
such as microglial cells but also participates in stimulus-dependent gene transcription in
post-mitotic cells such as neurons [31,32], affecting only a certain subset of genes instead of
the whole genome.

Given that this epigenetic tag is essential for survival [32], targeting histone phos-
phorylation with knockout technology is not an option. Due to using multiple copies
of histone H3.1 genes [28] to generate a viable “partially” knockout mouse (i.e., point
mutation at position serine 10 of histone H3.1), gene editing had to be designed in such
a way that it would be restricted to only a distinct subpopulation of SDH neurons, in our
case Pdyn neurons. The AAV-CRISPR system proved suitable for in vivo genome editing
in a cell-specific manner in nondividing cells, such as postmitotic neurons [33]. Thus,
neuron-specific mutagenesis of histone H3.1 at position S10 via viral-based in vivo genome
editing was utilized to achieve relatively long-term expression of CRISPR components.
Recombinant AAV vectors for transgene delivery offer several advantages, such as tissue-
specific serotypes, lack of immune response, low toxicity, minimal integration capacity,
and high transduction efficiency [33,34]. However, limited packaging size (up to 4.5 kb)
of the viral vector and the transient nature of the transgene expression are regarded as
disadvantages of the use of AAVs [33–35]. As we managed to solve packaging by using
cas9-expressing transgenic lines, the major hurdle to the delivery of the multicomponent
CRISPR complex was circumvented. With this approach, transgene expression is strictly
controlled spatially on one hand by the cre-dependency of cas9 protein and on the other
hand by administration of the AAV-CRISPR virus directly into the subarachnoid space
through a limited interval via an osmotic minipump. We believe that these measures
minimized the probability of off-target mutagenesis and undesirable side effects of this
AAV9-CRISPR-based strategy in organs other than the spinal cord [33].

http://mouse.brain-map.org/gene/show/18376
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3.3. Technical Considerations

One important feature of our approach is the fact that cas9, whose expression otherwise
is a rate-limiting step in the CRISPR/cas9 system, is available immediately after transduc-
tion with the virus due to the use of transgenic technology. It should be noted that long-term
expression of cas9 may activate humoral immune response [35]. Although phenotypic
signs of off-target effects were undetectable, target mismatch tolerance of CRISPR/cas9
cannot be excluded [36,37]. Together, these might contribute to the slight degree of weight
loss at 7 days after administration of the viruses via osmotic pump implantation. Further
screening of CRISPR off-target effects was beyond the scope of this study.

The CRISPR/cas9 system with homolog-directed repair (HDR) could not be used in
our approach as HDR functions inefficiently in postmitotic neurons [38]. Therefore, we
used a dominant-negative technology in combination with multiplex CRISPR/cas9-based
genome editing for targeting the histone H3.1 gene in a single expression cassette. Using
the multiple copies of the U6 promoter to drive sgRNAs, one cannot rule out genetic
recombination in the viral sequence [39].

3.4. Putative Parallel Roles of Spinal Pdyn Neurons

Blocking histone H3.1 phosphorylation in Pdyn neurons specifically by introducing
the S10A mutation caused a significant and sustained elevation in the thermal nociceptive
threshold that peaked at postoperative day 7. At the same time, neither mechanical
sensitivity nor acute peripheral chemonociception to formalin was affected by blocking
the same PTM. A robust confirmation of the role of Pdyn neurons was that wild-type
C57/B6 mice injected with the AAV9_mutH3.1 showed no significant changes either in
thermal or mechanical responses as S10A mutation only integrated into Pdyn neurons in
a cre-dependent manner.

Several recent reports concluded that spinal Pdyn neurons play a role in gating me-
chanical pain [7,8], while our results seemingly do not support these earlier findings.
A possible explanation for this discrepancy comes from the different strategies by which the
somatosensory dorsal horn neural network was targeted. With a chemogenic approach [7,8],
the entire spinal inhibitory pool of Pdyn interneurons was ablated/erased from the spinal
sensory circuits, which led to a reduced level of mechanosensation. In our experimental
design, Pdyn neurons remained intact and fully functional in all other aspects except
for a single PTM (phosphorylation of histone H3.1 on S10) and the consequential down-
stream target-derived actions. We recently found that the majority of p-S10H3-expressing
dynorphinergic neurons were Lmx1b-IR (83.3%) in laminae I-IIo following burn injury [6],
suggesting that noxious thermal pain is probably processed by a distinct excitatory sub-
group of Pdyn neurons in the SDH. In line with our observation, a recent comprehensive
transcriptomics study revealed that the glutamatergic subset of Pdyn neurons mediates
hyperalgesia induced by peripheral tissue damage in rats [40]. Interestingly, it has been
reported that thermosensitive neurons in the lateral parabrachial nucleus (LPb), a relay
nucleus for ascending somatosensory pathway for pain, produce dynorphin [41]. Nox-
ious cold, which fails to induce tissue injury, does not upregulate p-S10H3 expression in
the spinal cord [5]. Therefore, the effect of this S10A histone mutation on noxious cold
sensitivity was not tested. As the mutation induced by our strategy remained confined
within the spinal cord, spinal Pdyn neurons can likely also participate in acute thermosen-
sation through strictly controlled epigenetic regulation/machinery. Thus, it seems very
likely that the reported Pdyn-dependent suppression of mechanical sensitivity [7,8] is
regulated by other types of epigenetic mechanisms and that Pdyn neurons in the SDH
contribute to the processing of more than one sensory modality while participating in the
same anatomical circuit.
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3.5. Selective-Mutation-Based Fine Dissection of Complex Neuronal Functions—Future
Perspectives for the SDH

Combining novel biotechnological tools, we provided evidence for the importance of
histone H3.1 phosphorylation at position S10 in the Pdyn neuron in the response to painful
thermal stimulation. In certain pathological pain states (inflammation or nerve injury), this
neuroepigenetic signal may be one of the molecular mechanisms that results in increased
neuronal activity and consequential hyperalgesia through permissive transcription of
certain pain-related genes such as prodynorphin itself [21,40,42–45].

Pdyn neurons are members of the endogenous-opioid-releasing neurons that partici-
pate in the descending pain modulatory networks [42,46]. Thus, it is reasonable to suggest
that similar epigenetic tags on the same or other motifs may be equally important in the
regulation of parallel functions of other neuronal types within the same system, such as
enkephalinergic neurons.

A thorough description of the modulatory effects of different PTMs within the neuro-
chemically discrete groups of SDH neurons upon different somatosensory modalities is
a necessary but tedious task. Nevertheless, we believe that this approach would explain
some of the contradictory findings concerning the function of certain neuronal populations
in the SDH and might shed light on how complex sensory processing of different modalities
is solved with a limited number and variety of neurons within the SDH.

4. Methods
4.1. Animals

Animal experiments were approved by the Animal Care and Protection Committee
at the University of Debrecen (No.: 23-1/2017/DEMÁB) and were performed in line with
the European Community Council Directives and the IASP Guidelines. Pdyn-IRES-Cre
mice (see key resources provided in Supplementary Table S1) that expressed Cre recom-
binase under the direction of the Pdyn (prodynorphin) promoter [19] were crossed with
Rosa26-LSL-Cas9 (Supplementary Table S1) knock-in mice with Cre-dependent expression
of CRISPR-associated protein 9 endonuclease (cas9) and enhanced green fluorescent pro-
tein (EGFP) directed by a CAG promoter [20]. Genotyping of litters from both strains was
routinely performed by PCR (for primer sequences, see Supplementary Table S2). In the re-
sulting hybrid mice (Pdyn::cas9-EGFP), all Pdyn-containing neurons showed strong somatic
EGFP expression in the brain (Figure 1) as well as in the spinal cord (Figures 2A and 3).
Adhering to the 3R principle (replacement, reduction, refinement), altogether 30 adult male
mice were used (between 24.9 g and 34.1 g; 22 Pdyn::cas9-EGFP hybrids and 8 wild-type
C57BL/6 mice). All the mice underwent surgical intervention, either cannulation for the
osmotic pump or sham operation.

4.2. Designing the Construct Containing the Mutant Histone H3.1 and CRISPR Elements

The dominant-negative mutant S10A H3.1 coding sequence, multiplex single-guide
RNAs (sgRNAs), and even a fluorescent reporter gene were incorporated into the all-in-
one AAV construct. The dominant-negative sequence, including the complete histone
H3.1 sequence with serine-to-alanine point-mutation at position S10 (S10A; mutH3.1)
driven by a strong synthetic hybrid CMV enhancer/chicken β-actin (CBh) promoter, was
incorporated into a pCBh cloning vector in silico using SnapGene software (Ver. No.: 5.1.0;
see Supplementary Table S1). from Insightful Science; Available online: http://www.
snapgene.com, accessed on 15 March 2022). Both ends of this template sequence contained
loxP sites, ensuring cre-dependent transcription of mutH3.1. Thus, in addition to cas9
expression provided by the transgenic line applied, the expression of the mutant H3.1
template was also restricted to Pdyn neurons due to their cre dependency.

For multiplex CRISPR/cas9-based genome editing, a human U6 small nuclear pro-
moter was chosen to express three different sgRNAs targeting the same gene (histone H3.1
gene) in a single-expression cassette. sgRNA sequences targeting wild-type histone H3.1
are shown in Supplementary Table S3.

http://www.snapgene.com
http://www.snapgene.com
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Additionally, mCherry fluorescent coding sequence under the control of constitutive
CMV promoter was also placed behind the mutH3.1_sgRNA cassette without adding loxP
sites. This way, the cre-independent expression of mCherry allowed verification of the viral
infection by detecting the immunohistochemically enhanced red signal with fluorescent
microscopy. The final construct (Figure 2C), which contained the mCherry sequence and
the mutH3.1_sgRNA cassette, was flanked by BamHI restriction sites at both ends. Its total
length was 4399 bp. This insert was then synthesized and cloned into a commonly used
cloning vector pUC57 by GenScript. Complete insert sequences with color codes can be
found in Supplementary Data S1. MutH3.1-containing final insert in a pUC57 plasmid
was packaged into serotype 9 recombinant adenoassociated virus vector (AAV9) in a pilot
scale (15 × 150 mm plate) and purified with iodixanol for in vivo application by SignaGen
Laboratories (Frederick, MD, USA; titer > 1 × 1013 VG/mL), resulting in AAV9_mutH3.1.
After ultracentrifugation, viral titer (in VG/mL) was determined by titration via qPCR.

4.3. Intrathecal Administration of the Viral Vector

Before the implantation pumps were soaked in sterile 0.9% saline for a couple of hours
to promote the priming procedure, pumps were filled with the viral solution in a final
volume of 100 µL in a titer of 3 × 109 VG/mL under the fume hood using a cut-ended
pipette microtip. Till the insertion of the osmotic pump, the pump reservoir was placed in
an upright position into an Eppendorf tube to avoid evaporation of the solution from the
pump. The release rate for the applied ALZET pump model (Cat. No.: 1003D; DURECT
Corporation, Cupertino, CA, USA) was 1 µL/h, and the duration of the complete release
was 3 days.

After induction of anesthesia using intraperitoneal administration of sodium pentobar-
bital (<50 mg/kg), each mouse was placed in a prone position. The skin on the back of the
animal was shaved and disinfected with 70% ethanol, and an incision in the midline was
made. For intrathecal cannulation, the tip of a 26G needle was gently inserted at about a 90◦

angle into the L4-L5 intervertebral space at the midline. As soon as the tip of the needle
passed through the dura mater, the characteristic tail-flick reflex could be observed. Next,
the angle of the needle was decreased to about 30◦ and slightly pushed rostrally for 1–2 mm
in the subarachnoid space. The needle was replaced by a polyurethane mouse intrathecal
catheter including a Teflon-coated stylet for easier placement. After validating the correct
position of the catheter in the intrathecal space using microCT or X-ray, the cannula was
attached to the Alzet osmotic pump, which had been filled with the viral solution. The
wound was sutured, and the mice were allowed to fully recover. Three days after the
surgery, both the pump and the catheter were removed from the reanesthetized animals.

4.4. Control Groups

Three sets of controls were included in this study. In the first control group, referred to
as “AAV9_control” throughout the text, Pdyn::cas9-EGFP mice (n = 6) were injected with
ready-to-use AAV9 particles containing the humanized channelrhodopsin H134R mutant
which was fused to mCherry, driven by the EF1a promoter (Supplementary Table S1).
According to the manufacturer, the titer was ≥1 × 1013 VG/mL. The animals underwent
the same surgical procedures (see above) and received the control virus in the same titer
as the AAV9_mutH3.1 (3 × 109 VG/mL). In the second control group, wild-type C57/B6
mice were treated with the AAV9_mutH3.1 (n = 4), while the third control group comprised
sham-operated Pdyn::cas9-EGFP mice (n = 4). Animals in the sham-operated control group
underwent the same surgical intervention as described above. The only difference was that
the osmotic minipump had not been attached to the catheter. Anaesthesia, skin incision,
insertion of the catheter, and even the reoperation on the third day to simulate removal of
the catheter were the same.
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4.5. Verification of the Position of the Intrathecal Catheter by 3D Microcomputed Tomography
(Micro-CT)

The SkyScan 1272 compact desktop micro-CT system was used to determine the loca-
tion of the intrathecal catheter in deeply anesthetized mice (Figure 2D), using the following
scanning parameters: image pixel size, 26 µm; matrix size, 672 × 1008 (rows × columns);
source voltage = 60 kV; source current = 166 µA; rotation step (deg) = 0.300, filter = Al
0.25 mm. Flat-field correction and geometrical correction were applied to the images. Scan
duration: 0 h:28 min:19 s. Reconstruction of the cross-sectional images from tomography
projection images was performed with the SkyScan NRecon software (version 2.0.4.2).
Postalignment, beam-hardening correction, ring artifact correction, and smoothing were
completed during postprocessing of the image data. The output formats were DICOM and
BPM images. The 3D Volume rendering tool provided by RadiAnt DICOM Viewer (Medix-
ant, Poznań, Poland) was utilized to visualize 3D micro-CT images (Figure 2D). Micro-CT
validation of catheter position was performed in the case of the first 5 interventions. Since
ionizing radiation was hinted to influence the experimental outcome [47], in the case of
the remaining mice, the verification of catheter position was performed with conventional
X-ray imaging to reduce the dose load. The average estimated dose load was 125 mGy
(lethal dose in mice ranges are from 5.0 to 7.6 Gy, depending on the strain and age [48,49].

4.6. Thermal Sensitivity Assessments

Response latency to noxious heat (50 ◦C) was evaluated using a hot-plate test. Before
testing, mice were preconditioned for the hot plate every day for a week before and on
every second day after the surgical implantation of the osmotic pump. During precondi-
tioning, animals were placed onto the hot plate, which was set to an innoxious surface
temperature (37 ◦C), for approximately 10 min. Thermal response latency was determined
by an independent observer who was blind to the treatment. When the animal exhibited
discomfort upon constant high temperature (i.e., sudden lifting/withdrawal, licking, or
shaking the affected hindlimb), the heating of the surface was immediately terminated, and
the response latency (s) was noted. The maximum cutoff latency was set to 50 s to prevent
burn injury of the paw. Response latencies to noxious heat were assessed in a three-day
window before (BTM; baseline threshold measurement; Figure 4A) and on days 7, 14, and
21 after the osmotic pump implantation (Figure 4A,B). Since a distinct disadvantage of
the hot-plate test is its sensitivity to repeated measurements, likely via learning [50–52],
we only took a single measurement in the case of each animal at a given time point. The
averaged response latencies of the animals on each measurement day were normalized to
baseline latencies (the value shown for day 0) and displayed as percentages.

4.7. Mechanical Sensitivity Assessments

Tactile sensitivity was measured as paw withdrawal latency (PWL) to dynamic von
Frey stimulation [53] at the same timepoints as the hot-plate tests. The maximum force used
was 5 g (increasing between 0.8 and 5 g) with 10 s intervals between trials, performed by
two independent observers who were blind to the treatment. The withdrawal latencies on
each measurement day (day 7, 14, and 21 after the osmotic pump implantation; Figure 4A,C)
were normalized to baseline withdrawal latencies (day 0) and displayed as percentages.

4.8. Formalin-Induced Acute Somatic Nocifensive Behavior

Following the 3-week postimplantation period, rapid inflammation-induced pain was
evoked by injecting formalin (5% of Formaldehydum solution 37%; Ph.Hg. VII.; in a volume
of 25 µL; i.pl.) into the right hind paw of sham-operated or Pdyn::cas9-EGFP hybrid mice
which had been injected with one of the viruses (AAV9_mutH3.1or AAV9_control). Animals
were then immediately placed into a 17 × 17 cm plexiglass observation chamber equipped
with a mirror in the back, and formalin-induced nocifensive behavior was recorded with
the camera, continuously for one hour.
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Nocifensive behavior was assessed as the length of time spent lifting, licking, or
shaking the treated hind paw in 5 min periods across 60 min. Evaluation of the experiments
was carried out with an experimenter blinded to the treatment. The contralateral leg
was omitted from the observation. Formalin-induced somatic chemonocifensive response
appears in two phases [26,27]. Due to transient and rapid activation of sensory nerve
endings, the early phase lasts only 5–15 min, while the late phase (15–60 min) is generated
by the release of acute inflammatory mediators [27]. The duration of nocifensive behavior
was measured in both periods [26].

4.9. Tissue Preparation for Microscopic Analysis

Sampling and tissue processing were performed as described previously [6]. After
inducing nonrecoverable anesthesia with sodium pentobarbital (50 mg/kg intraperitoneal),
animals were transcardially perfused with 4% paraformaldehyde (PFA). The brain and
the lumbar spinal cord were removed and sectioned with a vibratome (Leica CLS 100X;
Wetzlar, Germany) at 150 and 100 µm thickness, respectively.

4.10. Immunoperoxidase Staining

For mapping the supraspinal distribution of Pdyn neurons in Pdyn::cas9-EGFP mice,
the whole brain was removed and sectioned. After quenching endogenous peroxidase
activity with Dent’s bleach (methanol:DMSO:H2O2 in a ratio of 8:1:1), an antibody raised
against GFP (Supplementary Table S1) was added to the samples (1:4000; 2 days). Two-
hour-long incubation with the secondary antibody (1:500; room temperature) was followed
by adding extravidin (1:500) to the specimen. All reactions were carried out overnight at
4 ◦C unless otherwise stated. Finally, the DAB peroxidase substrate kit was used for the
visualization of the GFP-positive signal. Sections were counterstained with Toluidine blue
and mounted in Eukitt mounting medium. Reagents are summarized in Supplementary
Table S1. The location of the Pdyn neuronal somata containing DAB precipitate was noted
with the Neurolucida software (v11.07) in randomly selected slices (n = 8), using 10×
objective lens (Olympus, Tokyo, Japan).

4.11. Visualization of mCherry Expression in the Lumbar Spinal Cord by Immunofluorescent
Staining for Confocal Imaging

Cells infected with the AAV9_mutH3.1 were identified based on their mCherry ex-
pression. Confocal microscopic analyses were performed on transverse lumbar spinal cord
sections as detailed in our previous study [6] with slight modifications. Briefly, a primary
antibody mixture was applied on sections (overnight; 4 ◦C), which contained chicken anti-
GFP (1:2000) and rat anti-RFP (1:1000; see details in Supplementary Table S1) to enhance the
native fluorescent signals. Cell-nuclei-specific DAPI and species-specific secondary antibod-
ies raised in donkey conjugated to Alexa Fluor-488 or 555 (see in Supplementary Table S1)
were added to the sections for 2 h at room temperature at the end of the immunofluores-
cence staining protocol. All antibodies were diluted in phosphate-buffered saline (PBS)
supplemented with a 0.3% Triton-X 100. Sections were mounted in a Hydromount medium,
and confocal images were scanned with Olympus FV3000 confocal systems.

Confocal images were acquired with the same settings (PMT voltage, laser transmis-
sivity, Z dimension parameters, etc.) using 10× lens (UPlanSApo, Olympus, N.A. 0.4).
Confocal image stacks consisted of 4 optical images at 3.6 µm z-separation. In some cases,
for higher magnification with 40× objective lens (UPlanFLN, Olympus, N.A. 1.3), 16 optical
sections of 0.5 µm thickness were acquired unless otherwise indicated. Postprocessing of
the images was carried out with the FV31S-DT software (Ver. No.: 2.3.1.163).

4.12. Detection of mCherry mRNA and the Mutant Variant of Histone H3.1 Transcripts in the
Spinal Cord

Five weeks after IT injection of rAAV9_mutH3.1 into a wild-type mouse, total RNA
was extracted from the harvested lumbar segment of the spinal cord and from the hip-
pocampus using TRIzol reagent (see in Supplementary Table S1). Total RNA was reverse-



Int. J. Mol. Sci. 2022, 23, 3178 15 of 18

transcribed, and specific fragments (mCherry and GAPDH) from cDNA were amplified
with DreamTaq DNA Polymerase (Thermo Fisher Scientific; Waltham, MA, USA) according
to manufacturers’ recommendations. The primer sets were designed by using Primer3Plus
and are shown in Supplementary Table S2.

4.13. Dissociation of Spinal Cord Tissue to Single Cells for Fluorescence-Activated Cell
Sorting (FACS)

Pdyn::cas9-EGFP and C57Bl6 mice were euthanized via Na-pentobarbital. The lumbar
spinal cord was extracted, finely minced with a scalpel, and placed into Neurobasal medium
supplemented with Glutamax and Na-bicarbonate (see Supplementary Table S1). Samples
from C57Bl6 mice served as controls for FACS gating. Chopped tissues were incubated in
the presence of 100 U papain and 0.25 mg hyaluronidase type I (see Supplementary Table S1)
for 2.5 h at 230 rpm at room temperature (RT) in a total volume of 2 mL of Neurobasal
medium. Trypsin-EDTA was added in a final concentration of 0.125% to the homogenates
for 30 min. To stop digestion, 20% FBS was added to the supernatant of the cell suspen-
sions. The resulting single-cell suspension was centrifuged at 300× g for 5 min at RT. Cell
pellets were dissolved in cold phosphate-buffered saline (PBS; pH = 7.4) and placed on
ice. Single-cell suspensions were then further homogenized by filtration through a 41 µm
mesh filter.

4.14. Flow Cytometric (FACS) Analysis

Papain-based single-cell isolation from the lumbar spinal cord of Pdyn::cas9-EGFP
mice was followed by flow cytometry (FACS Aria III) using FACSDiva 6.1.3 software
to determine the percentage of double-labeled (EGFP+ and mCherry+) Pdyn neurons.
Osmotic pump filled with AAV9_mutH3 was implanted into Pdyn::cas9-EGFP mice for
76 h prior to FACS analyses (n = 2). Parameters were set to sort precision mode “Purity” to
ensure a stringent sorting of double-positive neurons (EGFP+ and mCherry+).

4.15. Evaluation of p-S10H3 Immunoreactivity after Burn Injury

In order to quantify to what extent the level of histone H3.1 phosphorylation decreases
upon transduction with AAV9_mutH3.1, Pdyn::cas9-EGFP mice (n = 3) were injected in-
trathecally with AAV9_mutH3.1, and five days later burn injury protocol was applied
as detailed in our earlier report [6]. Burn injury was followed by transcardial perfusion
with 4% PFA, and then spinal cord sections from the exposed animals (n = 3) were double-
immunolabeled against GFP and p-S10H3 [6] to determine the influence of AAV9_mutH3.1
on the level of burn-injury-induced S10H3 phosphorylation. Wild-type control mice were
also subjected to burn injury, and their samples served as controls (n = 2). Images for analy-
sis of immunopositive signals were captured by Olympus FV3000 confocal system using
a 40× oil immersion objective (UPLFLN40XO, NA 1.3) to adjust the detectors for obtaining
nonsaturated images (12 bits/px for each channel). The acquisition parameters were the
same for capturing images. From each image, 20 consecutive confocal stacks (lateral resolu-
tion 0.31 µm/px, axial resolution 0.37 µm/px) were transformed to 2D images by using
maximum intensity projection of the Olympus FV31S-SW software (Ver. No.: 2.3.1.163). The
p-S10H3-immunopositive nuclei were then marked manually (ROI), and the fluorescence
intensity profiles were measured with Fiji [54], and the average gray level values were
compared between the transduced (AAV9_mutH3.1) and nontransduced animals.

4.16. Statistical Analysis

Detailed statistical analyses for the data presented in Figure 4 can be found in
Supplementary Table S4. The PWL values and values for body weight were normalized to
the baseline level (BTM; baseline threshold measurements; considered to be the same on
day 0) and expressed as percentages. All normalized data were averaged and are presented
in the relevant figures as mean ± standard error of mean (SEM) of n = 3–7 mice per group
(see Supplementary Table S4).
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The Kruskal–Wallis nonparametric ANOVA test with Origin Pro9 software (64-bit,
Ver. No.: 9.0.0) was applied to determine the overall significance of the treatment on paw
withdraw latency in response to noxious heat/mechanical force or on body weight (raw
values were applied for analysis).

With the aid of Origin Pro9, the Mann–Whitney U test was used to compare the
three experimental groups (AAV9_mutH3.1; AAV9_control; sham group) at each mea-
surement point (normalized values were applied for comparison). Additionally, the
Mann–Whitney U test was used for comparing the average gray level intensity values of
p-S10H3-immunoreactive nuclei on confocal images from transduced (AAV9_mutH3.1)
and nontransduced animals (see Supplementary Figure S2).

In the case of the formalin test, the overall influence of each treatment on the 1st
and 2nd phases of formalin response was evaluated by the Kruskal–Wallis nonparametric
ANOVA test.

In all cases, p < 0.05 or p < 0.01 were accepted as statistically significant as indicated in
the relevant figures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23063178/s1.
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