Table 6.
The results of ablation study: performance of the proposed model using different final stage ML classifiers. Best values are shown in bold.
ML Model | Accuracy (%) | FPR (%) | FNR (%) | AUC (%) | MCC (%) | Kappa (%) |
---|---|---|---|---|---|---|
Nearest Neighbors | 78.9 | 39.86 | 11.02 | 74.56 | 51.48 | 50.8 |
Linear SVM | 64.66 | 100 | 0 | 50 | 0 | 0 |
RBF SVM | 71.44 | 79.06 | 1.72 | 59.62 | 26.34 | 21.66 |
Decision Tree | 94.64 | 9.36 | 3.2 | 93.72 | 88.24 | 87.94 |
Random Forest | 90.74 | 22.38 | 2.2 | 87.72 | 79.54 | 78.64 |
Neural Net | 65.02 | 99.04 | 0 | 50.48 | 3.48 | 1.18 |
AdaBoost | 99.28 | 2.24 | 0 | 98.88 | 98.36 | 98.32 |
ExtraTrees | 99.28 | 0 | 1.04 | 99.48 | 98.4 | 98.4 |
Naive Bayes | 72.14 | 54.14 | 13.78 | 66.06 | 35.48 | 34.26 |
LDA | 70.34 | 67.62 | 8.86 | 61.8 | 30.08 | 26.44 |
QDA | 91.44 | 18.4 | 3.3 | 89.14 | 81.26 | 80.46 |
Logistic | 65.02 | 99.04 | 0 | 50.48 | 3.48 | 1.18 |
Passive | 59.64 | 60 | 29.48 | 55.26 | 11.48 | 9.74 |
Ridge | 67.18 | 92.2 | 0.52 | 53.62 | 17.24 | 8.82 |
SGDC | 58.96 | 52.38 | 34.88 | 56.36 | 13.12 | 15.1 |