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Abstract

Bumblebees (Bombus) are charismatic and important pollinators. They are one of the best 

studied insect groups, especially in terms of ecology, behavior, and social structure. As many 

species are declining, there is a clear need to understand more about them. Microbial symbionts, 

which can influence many dimensions of animal life, likely have an outsized role in bumblebee 

biology. Recent research has shown that a conserved set of beneficial gut bacterial symbionts 

is ubiquitous across bumblebees. These bacteria are related to gut symbionts of honeybees, but 

have not been studied as intensively. Here we synthesize studies of bumblebee gut microbiota, 

highlight major knowledge gaps, and suggest future directions. Several patterns emerge, such as 

symbiont-host specificity maintained by sociality, frequent symbiont loss from individual bees, 

symbiont-conferred protection from trypanosomatid parasites, and divergence between bumblebee 

and honeybee microbiota in several key traits. For many facets of bumblebee-microbe interactions, 

however, underlying mechanisms and ecological functions remain unclear. Such information is 

important if we are to understand how bumblebees shape, and are shaped by, their gut microbiota. 

Bumblebees may provide a useful system for microbiome scientists, providing insights into 

general principles of host-microbe interactions. We also note how microbiota could influence 

bumblebee traits and responses to stressors. Finally, we propose that tinkering with the microbiota 

could be one way to aid bumblebee resilience in the face of global change.
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Introduction

Bumblebees (Hymenoptera: Apidae: Bombus) are among the most widely appreciated 

and best-studied insect groups. They are important pollinators in agricultural and natural 

ecosystems [1,2], and have served as models in research on social evolution, plant-pollinator 
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interactions, thermal biology, chemical ecology, insect immunity, mimicry, and cognition 

(e.g., [3–9]). Because many of the >250 Bombus species are declining, with some 

approaching extinction [10,11], there is an urgent need to conserve bumblebees and the 

pollination services they provide.

Recently, it has become clear that bumblebees are home to characteristic and specialized 

gut microbial communities, known as the microbiota. Typically, only a few host-specific 

bacterial symbiont species dominate these communities, though nonspecific microbes—

commensals, transients, and opportunistic pathogens—are also present in the gut (Fig. 1, 

[12–16]). The gut microbiota has been shown to protect bumblebees from infection by the 

common trypanosomatid parasite Crithidia bombi [14,17], and may provide other benefits.

These studies have established that bumblebees, along with their social corbiculate cousins, 

the honeybees (Apis) and stingless bees (Meliponini), are distinctive in harboring host-

specific and beneficial gut bacteria [13,16,18,19]. Such communities are not universal 

among bees, much less insects in general. Unlike social bees, some insects—including 

certain solitary bees, ants, and butterflies—have gut microbiota that are low-density, not 

host-specific, and of as-yet unclear importance to their hosts [16,20–24]. In several respects, 

gut microbiota of social bees show closer parallels with those of mammals than those 

of many insects [19,25]. One common element between these two groups is sociality, 

which provides microbes with an intergenerational transmission route, thus facilitating host 

specialization.

What is known about social bee gut microbiota comes predominantly from research on Apis 
mellifera, the Western honeybee, and honeybee microbiota have been the focus of several 

literature reviews (e.g., [19,25,26]). But studies of bumblebee gut microbiota are increasing 

(Table S1), and we argue that findings from honeybees are useful, but not sufficient, for 

understanding bumblebees. Our review contrasts microbiota of these two groups, providing 

an example of how divergent life history and ecology of insects can affect symbiont diversity 

and function.

Our main goals are to highlight emerging patterns in the bumblebee microbiota literature, 

point out gaps in knowledge and recommend ways to address them, and suggest applications 

of bumblebee microbiota research in other fields and in conservation. We focus on the 

specialized bacterial communities of adult-stage bumblebee guts. Based on sampling to date, 

these communities appear to be a universal feature of Bombus. Other types of microbes 

that interact with bumblebees, such as parasites, pathogens, and flower microbes, have been 

reviewed previously [27–29] and are only briefly discussed here.

We suggest that research on other aspects of bumblebee biology could benefit from 

information about the gut microbiota. Microbes can influence a range of insect phenotypes 

[23,30,31], and they may prove useful for functional genetic studies in bumblebees [32]. 

Furthermore, researchers studying microbiota of other hosts might find elements relevant to 

their own systems, including dysbiosis, colonization resistance, and strain-level dynamics. 

Finally, given the importance of microbiota to parasite resistance and possibly other aspects 

of bee health, microbiota research has potential to benefit bumblebee conservation.
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The core bumblebee gut symbionts

Mature adult bumblebees have large numbers of gut-dwelling bacteria, as shown by 

quantitative PCR. Estimates of the number of bacterial 16S rRNA gene copies per 

bumblebee gut are consistently close to ~108 [16,33–39]. This number equates to ~30 

million cells per gut [33], or ~800 million per gram gut tissue. The density of gut bacteria 

in bumblebees is similar to or slightly less than that in honeybees; however, it exceeds levels 

in some species of stingless bees and solitary bees, as well as other insects, by orders of 

magnitude [16,22,40,41].

Studies based on culture-independent 16S rRNA gene sequencing have shown that 

the bumblebee gut microbiota is also distinctive in its composition, as compared 

with solitary bees and other insects. Just a handful of bacterial taxa dominate the 

community: Snodgrassella, Gilliamella, Schmidhempelia, Bifidobacteriaceae (particularly 

Bifidobacterium and Bombiscardovia), and two clusters within Lactobacilliaceae [42]: 

Bombilactobacillus, previously known as Lactobacillus Firm4, and Lactobacillus cluster 

near melliventris, previously known as Lactobacillus Firm5 (Fig. 1). These core symbionts 

are found across bumblebee individuals and species, including lab-reared bees as well as 

wild bees collected in Europe, Asia, and the Americas (Fig. 1). With the exception of 

Schmidhempelia, all of the core bacteria have been cultured [43–47].

It is likely that all of these core bacterial symbionts live, or at least replicate, exclusively 

within the bumblebee gut. Members of the genera Schmidhempelia and Bombiscardovia 
have been found only in bumblebees [16]; the other core bacterial genera (e.g., 

Snodgrassella and Gilliamella) occur in other social corbiculate bees too, but distinct host-

specific lineages are associated with each bee group. There are two lines of evidence for host 

specificity of the core bumblebee gut bacteria. First, they form clades that are exclusively 

composed of taxa sampled from bumblebees [16,18,48,49]. Second, laboratory trials have 

shown that bumblebee-derived symbiont strains have either no ability or a very limited 

ability to colonize A. mellifera [16,50,51]. (However, colonization has not been tested in 

other bees).

Although not shown in Fig. 1, each core bumblebee gut bacterial taxon contains multiple 

sublineages, or strains. Strains are generally lumped together by the standard approach 

to characterizing microbiota, which sequences only short regions of 16S rRNA genes. 

To resolve strain diversity, one can instead sequence full-length 16S rRNA genes, 

faster-evolving protein-coding genes, metagenomes, or genomes of cultured isolates (e.g., 

[18,49,50,52]). These methods have revealed details of strain-level evolution and functional 

potential. For example, strain phylogenies are significantly, though not perfectly, congruent 

with the Bombus phylogeny; this suggests that the core symbionts are not only restricted to 

bumblebees, but have also co-diversified with them [18,49,53,54]. Snodgrassella strains vary 

in how widely distributed they are across Bombus species, indicating variation in dispersal 

or colonization capabilities [49]. Strains of both Snodgrassella and Gilliamella vary in gene 

sets, reflecting horizontal gene transfer and gene loss [50,53]. Some of these differences 

may affect host ecology; for example, strains vary widely in the presence of genes for sugar 

metabolism [53,55] and interbacterial antagonism [54].
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Where and when symbionts inhabit bumblebees

The core symbionts appear to form large, stable populations only within guts of adult 

bumblebees. 16S rRNA gene sequencing of larvae has shown that they have very different 

bacterial communities from adults [12,56] with a high proportion of Enterobacteriaceae and 

a low proportion of core symbiont taxa [56]. However, this method does not distinguish 

between sparse and highly dense communities, nor does it determine whether bacteria are 

active, dormant or dead; hence, it cannot rule out the possibility that the detected taxa are 

only transiently present [20]. Imaging has shown that bacteria do not colonize the gut of 

honeybee larvae [57].

Even if present in larvae, most bacteria are eliminated by gut purging, sterilization, and 

reorganization during metamorphosis [58]. Indeed, if bumblebee pupae are aseptically 

removed from their cocoons and the resulting adults are kept in sterile conditions, they are 

typically devoid of culturable bacteria [50,59,60]. Molecular methods, including quantitative 

PCR, have also indicated that bacterial biomass in these adults is very low [14,17,37,61,62].

Symbionts are further confined in terms of where they grow within the gut. Bumblebees are 

probably similar to humans and some other insects in which the vast majority of microbes 

are contained in the distal gut [22]. In honeybees, imaging and quantitative PCR show that 

bacterial colonization of the crop and midgut is limited; 99% of gut bacteria are in the 

hindgut [57]. We lack comparable data on within-gut symbiont distribution in bumblebees, 

though there are some clues. Studies that include only the midgut and hindgut report similar 

bacterial communities to those that also include the crop, suggesting that the crop—the 

“social stomach”—contains relatively few bacteria. Furthermore, imaging has demonstrated 

hindgut colonization, at least in the proximal region, the ileum ([63], Fig. 2A,B). Symbionts 

are also spatially organized across the width of the gut. As in honeybees [19], Snodgrassella 
and Gilliamella form a biofilm coating the ileum wall (Fig. 2A).

Within-gut spatial distributions are likely governed by chemical, nutritional, and structural 

features of different gut compartments ([23], Fig. 2C). The bee midgut is lined by the 

peritrophic matrix, which is impermeable to bacteria and continually replenished [64], 

presumably hindering stable colonization. The midgut is also where insects digest and 

absorb most simple nutrients [65], leaving hindgut inhabitants with mainly undigested 

leftovers and nitrogenous waste entering from the Malpighian tubules (Fig. 2C). Based 

on data from honeybees, it is likely that gradients of oxygen and pH further regulate 

symbiont distribution within the bumblebee gut; conversely, such gradients are expected to 

be influenced by symbiont metabolism [66].

From the bumblebee’s perspective, the microbes’ localization to the hindgut affects what 

kinds of services they are capable of providing. For example, nutrients produced by 

symbionts in the hindgut will benefit bumblebees only if they can be absorbed. Short-chain 

fatty acids, typical byproducts of gut bacterial fermentation that can be used by animals as 

an energy source, can be absorbed in the hindguts of some insects (including honeybees) 

[66,67]. However, it is not clear whether the same is true for other nutrients [65]. Likewise, 

symbiont-mediated detoxification could be a useful function for herbivorous insects like 

bees [30], which have to contend with naturally occurring plant secondary metabolites [68] 
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as well as anthropogenic chemicals [37,69,70]. In bumblebees however, the core symbionts 

would only be able to perform this function if toxins are not absorbed or endogenously 

metabolized in the midgut (see [6]). Furthermore, even if they do reach the hindgut and its 

associated microbes, toxins may already have done most of their damage.

How symbionts are transmitted

The core gut symbionts of social bees are predominantly transmitted from parent colony to 

offspring colony. Colony-level transmission can therefore be considered as vertical, and it 

has resulted in symbiont specialization and co-diversification with bees over tens of millions 

of years [16,18]. But because symbionts do not infect eggs and are restricted to the adult 

stage, vertical transmission between colonies requires horizontal transmission among adults 

within colonies [19].

Exchange among nestmates plays out in different ways across the bumblebee life cycle (Fig. 

3). In new colonies, the foundress queen inoculates the first batch of workers with her gut 

microbes. Afterwards, newly emerging workers and reproductives are inoculated by older 

workers and/or the foundress queen (the relative importance of each source to transmission 

is not yet clear). The colony’s microbiota ultimately gets funnelled into the new queens, 

produced toward the end of the colony life cycle; these are the sole vectors of symbionts to 

the next year’s colonies. At higher latitudes, where most Bombus species live, diapausing 

queens carry symbionts through the winter (Fig. 3).

Within a social bee colony, symbionts disperse from a colonized adult to a newly emerged, 

microbe-free adult via a fecal-oral route, but we do not know the exact path they take. 

In bumblebees, physical contact seems to be important for transmission of core bacterial 

symbionts [71], as well as C. bombi parasites—which are also spread through feces [72]. 

However, it is not clear if an active behavior is involved, such as proctodeal (anal-oral) 

trophallaxis in termites. As neither proctodeal nor oral trophallaxis between bumblebee 

adults has been observed [29,72], occupying a shared nest is likely to be sufficient for 

passive transmission. For example, bumblebees may ingest microbes while grooming fecal 

residues off the body or consuming contaminated food sources [18].

While symbiont transmission between bumblebee colonies is mostly vertical, some 

horizontal transmission is evident. Closely related symbiont strains are often shared 

between different Bombus species and subgenera [18,49], and Snodgrassella strains can 

be experimentally transferred between Bombus species [50,59]. In nature, foraging likely 

provides a route for symbiont exchange between colonies and species (Fig. 3). Most 

bumblebees are generalists, and sympatric species often overlap in the flowers they visit 

[73]. Bumblebees frequently defecate on flowers, depositing parasites like Crithidia in the 

process [74]. Core gut symbionts must be deposited too, but it is unclear whether they can 

survive on flowers and then infect new bees as effectively as the parasites [74]. Queens 

regularly usurp each other’s nests [73], and workers often ‘drift’ into non-natal colonies 

[75]; these interactions might also facilitate horizontal transmission.
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Other microbes associated with bumblebees

In addition to the core symbionts, 16S rRNA gene sequencing (Fig. 1) and culturing (e.g. 

[46,76,77]) have shown that bumblebee guts normally harbor a low level of non-core 

bacteria. Some of them, such as Commensalibacter, Apibacter, Arsenophonus, and more 

generalist species in the Lactobacillus cluster such as Apilactobacillus kunkeei, also occur 

in the guts of solitary bees and adult butterflies [21,78]. Unlike the core symbionts, these 

do not appear to have diverged into clades restricted to social bees. Non-core bacteria are 

more prevalent in bees exposed to the environment as compared with bees contained in the 

laboratory (Fig. 1, [79,80]). This observation, together with the lack of host specialization, 

suggests that bumblebees repeatedly acquire non-core bacteria from flowers or other 

environmental sources, rather than through sustained vertical transmission (Fig. 3).

Although most of the non-core bacteria are probably transient or commensal members 

of the gut microbiota, there are also likely opportunistic pathogens, especially certain 

Enterobacteriaceae (Serratia, Hafnia and others) (Fig. 1). As discussed in the next section, 

Enterobacteriaceae and other taxa like Fructobacillus often become highly abundant in 

conjunction with diminished levels of core bacterial symbionts (e.g., [33]).

Bumblebee guts can also harbor fungi, especially nectar-derived yeasts [46,63,81–83]. It 

has been suggested that many nectar yeasts are bee-specialized, depending on bees for 

transmission between flowers and for overwintering [81–83]. However, this specificity 

and dependency may be one-sided. Bumblebees sometimes lack detectable levels of gut-

associated fungi [36,83]. In laboratory experiments, yeasts do not consistently colonize the 

gut and persist in overwintering queens [83], and they have inconsistent or negligible effects 

on bumblebee performance [84,85]. Some effects are similar between live and heat-killed 

yeasts [85], suggesting that gut colonization is not necessary to explain them. On the whole, 

gut-associated fungi appear to be either transients or opportunistic pathogens in bumblebees 

[27,36], as is the case in honeybees [81,86]. However, more work using imaging and 

quantitative molecular methods is needed to elucidate the role of fungi in bumblebee gut 

microbiota.

Besides bacteria and fungi, other microorganisms, as well as viruses, infect bumblebees. 

Eukaryotic parasites such as Crithidia, Nosema, and Apicystis often occur in the gut 

[27], and bacteriophages are probably abundant, as observed for honeybees [87,88]. The 

prevalence of these groups will become clearer once bumblebee gut metagenomes become 

available, as metagenomes are not limited to certain taxa (as are 16S rRNA gene profiles) 

nor to culturable microbes.

Microbes outside the gut may also influence bumblebees. For example, bacteria and yeasts 

often colonize nectar and can alter floral chemistry and attractiveness to bees [28]. Within 

the nest environment, microbes have long been recognized to cause spoilage of food 

stores [27,81]. More recently, microbial growth in food has also been hypothesized to be 

beneficial for bees [89]. When cultures are supplemented to the diet, some microbial species 

accelerate bumblebee colony development [90]—though this effect may or may not translate 

to increased lifetime fitness. Nectar and pollen collected by bumblebees harbor microbes 

[28,91,92]; however, it is not yet known whether these microbes are normally (i.e., excepting 
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cases of spoilage) abundant and metabolically active enough in food stores to substantially 

change nutritional content. As mentioned earlier, the standard method used to characterize 

microbial community composition—marker gene sequencing—does not provide information 

on total abundance, nor on activity. Other methods have shown that microbes are actually 

quite sparse in honeybee honey and pollen provisions, and they do not appear to pre-digest 

or otherwise upgrade the diet [93–95].

Symbiont loss and replacement

Although core symbionts usually dominate bumblebee gut microbiota (Fig. 1), they are 

frequently diminished, or lost altogether from some individuals. Given the ancient and 

specialized nature of the symbiosis, this is a remarkable phenomenon. It appears to be much 

more common in bumblebees than honeybees [19], though we do not yet know why.

Bumblebee queens seem to be particularly liable to losing core symbionts both as they enter 

and as they exit diapause [18,35,36,39]. For example, Bosmans et al. [36] found that some 

spring queens of B. terrestris had few or no core symbionts and instead had high levels of 

other bacteria and fungi. Pre-diapause changes in immunity and physiology [96,97], cold 

stress during overwintering, and resource limitation in the early spring may contribute to 

microbiota turnover in queens.

Workers also experience major shifts in their gut microbiota. Two microbial community 

states have been observed: the typical one in which core symbionts dominate, and 

another in which they are largely or entirely replaced by an erratic mix of non-core 

bacteria including Fructobacillus, Enterobacteriaceae, and others [15,33,55,80,98,99]. These 

alternative community states have been found in multiple Bombus species in Asia, Europe, 

and North America. We do not know what destabilizes worker bumblebee gut microbiota, 

but age [70,99,100] and exposure to stressors and pathogens in the environment [79,80,99] 

are potential drivers.

Losses of core symbionts and their replacement by non-core microbes may represent a 

form of “dysbiosis”—a perturbed microbiota state linked to disease or poor health outcomes 

in hosts [101]. At least some of the non-core microbes, like Serratia, belong to taxa that 

are common opportunistic pathogens of insects, including honeybees [102,103]. And as 

discussed below, the core symbionts are beneficial to bumblebees at least in terms of 

protection from C. bombi, so their loss is expected to be harmful. However, it has been 

suggested that the atypical enterotype could instead represent an adaptive form of plasticity, 

perhaps helping bumblebees cope with changing conditions [39,99]. Testing the fitness 

consequences of symbiont turnover, in both queens and workers, should be a priority for 

future work.

Life and death in the bumblebee gut

What substrates support bacterial growth in bumblebee guts? Although data are limited, we 

can make inferences based on gene repertoires of cultured bumblebee gut symbionts and 

on evidence from honeybees. As explained earlier, what the symbionts consume is different 

from what their hosts consume: insects digest and absorb much of the nutritional content 

of food in the midgut [65], leaving a limited range of metabolites for hindgut microbes 
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(Fig. 2C). Moreover, as discussed in more detail elsewhere [19,50,104], different symbiont 

species have distinct metabolic requirements and capabilities. For example, Gilliamella 
require carbohydrates, whereas Snodgrassella require carboxylates; these two groups live 

side by side (Fig. 2A) and likely engage in cross-feeding [50].

To survive in this resource-limited environment, most bumblebee-associated Gilliamella and 

Snodgrassella strains can synthesize all of the essential amino acids [104]; in honeybees, this 

capability was shown to be necessary for Snodgrassella to colonize the gut [105]. Amino 

acid biosynthesis is likely enabled by host-derived nitrogenous waste products (Fig. 2C, 

[50]). Complex polysaccharides from pollen walls, which are indigestible to hosts, may 

support Gilliamella and Bifidobacteriaceae to some degree. Interestingly, though, bumblebee 

strains seem to be less capable than honeybee strains of digesting pectin and hemicellulose 

and using the resulting sugars [46,51,53,104].

Gut microbes face additional threats beyond starvation. To live within the bee hindgut, a 

microbe must cope with the risk of being expelled (washout), temperature swings, ingested 

toxins, and attacks by other microbes, phage, and the host immune system. Combined with 

resource limitation, these challenges may contribute to the exclusive nature of the bumblebee 

gut microbiota. Collectively, the core symbionts of honeybees and bumblebees exhibit 

several traits that likely help them persist in guts, such as biofilm formation to prevent 

washout [105]; interbacterial toxin/antitoxin systems [54]; and resistance to heat stress 

[59], xenobiotic chemicals [37,69], C. bombi infection [106], and host immune defenses 

[100,107]. This robustness is presumably advantageous to bees; in some other insects, 

symbionts are fragile and constrain their host’s ability to handle stressors (e.g., [108]).

How do symbionts help bumblebees?

Clearly, symbiont capabilities evolve to support symbiont fitness. To what degree do 

symbiont activities also benefit bumblebees—and what are the mechanisms behind these 

benefits? These questions are key to understanding the adaptive significance of microbial 

symbiosis to bumblebees, and to predicting how perturbing symbionts will affect bumblebee 

health. In theory, the microbiota could have a variety of beneficial effects, from gut-centric 

functions like digestion, detoxification, and defense from pathogens, to more peripheral 

processes like behavior [22,23,30,31]. In bumblebees, however, most of these roles remain 

speculative.

In terms of general nutrition, gut symbionts do not appear to be obligate for bumblebees, 

unlike certain other insects [23]. Microbiota-free bumblebees do not have lower survival 

rates than microbiota-colonized bees, at least for B. terrestris and B. impatiens under 

conditions with plentiful food and no parasites [14,37,109]. This outcome would be 

expected if bumblebees fulfill basic nutritional needs themselves. In line with this 

possibility, there is a hint that bumblebee gut microbiota have reduced digestive capabilities 

as compared with the honeybee gut microbiota. Honeybee gut symbionts break down pollen 

polysaccharides and are thought to supply their host with metabolic end products, like 

short-chain fatty acids [26,50,66]; in contrast, bumblebee symbiont strains have a much 

more limited repertoire of polysaccharide-degrading enzymes [46,51,53,104]. However, 

additional experiments on bumblebees are needed, especially under natural conditions and 

Hammer et al. Page 8

Insectes Soc. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on other Bombus species—which may differ substantially in feeding and nutrition-related 

traits [110].

Resistance to C. bombi, a prevalent and well-studied trypanosomatid parasite of bumblebees 

[29], is the only bumblebee gut microbiota function that has been clearly and repeatedly 

demonstrated. Bumblebees colonized by the microbiota are more resistant to C. bombi 
than microbiota-free bees, and experimentally varying microbiota composition changes 

infection outcomes [14,17,34,106]. Indeed, protection from microbial enemies (colonization 

resistance) is one of the most widespread functions of gut microbiota [22], and it may have 

been the primary selective advantage driving the evolution of symbioses between social 

bees and gut microbes. One bee colony collectively visits huge numbers of flowers [73], 

increasing its exposure to foodborne parasites and pathogens. As a supplemental immune 

defense, gut microbes might thus be particularly useful for social bees—and especially so 

in bumblebees, which are usually monandrous [73,111] and therefore have low genetic 

diversity within colonies. It should be noted, however, that microbiota effects on other 

bumblebee parasites and pathogens [27,29] have not yet been tested.

Even in the well-studied case of microbiota–C. bombi interactions, we do not know how 

symbionts confer colonization resistance. There are several possible mechanisms. First, the 

symbionts may form a physical barrier to C. bombi colonization [106]. The hindgut wall is 

normally coated in a bacterial biofilm (Fig. 2A), and this is where C. bombi needs to attach 

in order to persist [6]. Second, C. bombi is sensitive to low pH, so acids produced from 

bacterial fermentation might play a role [112]. Third, symbionts may outcompete parasites 

for nutrients. A fourth and somewhat distinct potential mechanism is symbiont induction of 

bee immunity [107,113]. Put another way, regulation of immune defenses goes awry in the 

absence of signals or nutritional inputs from the gut microbiota. This outcome might result 

from evolutionary “addiction” [22], where endogenous host processes become dependent on 

the presence of microbiota for normal functioning.

Beyond nutrition and defense, the gut microbiota may interact with behavior, presenting 

a potential example of the “gut-brain axis” in insects [114]. Social bees could be a 

good model in this regard, given their sophisticated cognitive capabilities and the well-

established protocols available to study them (e.g., [3,115]). In bumblebees, behaviors such 

as social interactions, thermoregulation, and foraging [59,73,116] are likely to influence 

the acquisition and maintenance of gut microbes. But do gut microbes influence behavior? 

There is some precedent in honeybees, for which the gut microbiota can alter sucrose 

sensitivity (and hence motivation to feed) [66], as well as nestmate recognition involving 

cuticular hydrocarbon profiles [117]. In bumblebees, one study did not find a difference 

between microbiota-free and colonized individuals in performance on an associative learning 

assay [109], but more work is needed.

A number of features of the bumblebee microbiota make it possible to experimentally 

test what symbionts do and how they do it. A key advantage is the ability to create 

microbiota-free bees semi-naturally—without the need for antibiotics—and then inoculate 

them with cultured symbiont strains [50,59,60], feces, or gut homogenate (e.g. [14,34,37]). 

(Antibiotics rarely remove all microbes and may also be toxic to the bees themselves 
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[14,61,118]). Gnotobiotic bees, those colonized with defined mixtures of symbionts, will 

be particularly valuable in allowing us to test the specific microbial taxa underlying 

a given bumblebee phenotype. The aforementioned functional experiments manipulated 

whole microbial communities, but symbiont species and strains may differ in function. 

For example, in honeybees, Snodgrassella alone may increase susceptibility to Lotmaria, a 

trypanosomatid parasite related to Crithidia [119]. Genetic engineering of bumblebee gut 

symbionts [120] will also be an important tool, providing information about the molecular 

mechanisms underlying microbiota function.

Comparative evolution of bumblebee microbiota

To fill in knowledge gaps about bumblebee microbiota, it is useful to temporarily substitute 

findings from the better-studied microbiota of Western honeybees, as we have occasionally 

done here. After all, Bombus and Apis mellifera are both corbiculate bees with some 

shared ecological traits (e.g. generalist foraging, eusociality) [73] and core gut microbial 

taxa related by common descent [16]. But there is evidence that the two bee groups’ gut 

symbionts have diverged in several ways (Table 1). Most notably, as compared with A. 
mellifera, bumblebees have lower strain-level diversity within individuals [49] and their 

symbionts have a smaller enzymatic repertoire for degrading plant polysaccharides and 

metabolizing diverse sugars [51,53,55,104].

We suggest that differences in host biology (Table 1) explain why these microbiota 

differences evolved. For example, in the annual life cycle of most bumblebee species, the 

microbiota is funnelled through the bottleneck of a single queen (Fig. 3), constraining the 

size of gut symbiont populations that can be transmitted and thereby limiting symbiont 

strain diversity [49]. In contrast, honeybees are perennial and reproduce by swarming [121]. 

Thousands of workers collectively seed a new colony’s microbiota, thus permitting larger 

and more diverse symbiont populations to be transmitted. Honeybee queens play no part, as 

they lack the core gut symbionts of workers [122].

Other life history differences between honeybees and bumblebees may contribute to the 

observed differences in digestive capabilities of the gut microbiota (Table 1). One hypothesis 

pertains to foraging. Honeybees (unlike bumblebees) collect a large surplus of food [121], 

enabling storage for colony survival during winter or other periods of nutrient scarcity, but 

imposing high energetic demands. Honeybees may be more dependent on gut symbiont 

strains that can efficiently convert recalcitrant plant components into a supplemental 

energy source (e.g., short-chain fatty acids). A second hypothesis pertains to larval feeding 

strategies. Bumblebee larvae are primarily fed honey and pollen, but honeybee larvae are fed 

large amounts of nutrient-rich glandular secretions by nurse bees [121,123]. As compared 

with foragers, nurse honeybees harbor more polysaccharide-degrading and fermentative gut 

bacteria [124]. Digesting not only for one’s self, but also for one’s siblings, may require 

extra assistance from microbes.

Testing these and other hypotheses about the causes of cross-host taxon microbiota 

differences will benefit from including a broader diversity of bee species, from Bombus 
and other groups. To date, the literature on bumblebee microbiota is skewed towards B. 
terrestris and B. impatiens (Table S1). Cuckoos (brood parasites) and species in tropical, 

Hammer et al. Page 10

Insectes Soc. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arid, and polar biomes are particularly understudied (Table S1). Such species are distinct 

from typical temperate Bombus in terms of their ecology and life history [73,110,125,126]; 

characterizing their gut symbionts more thoroughly might reveal new associations between 

host and microbiota traits. Stingless bees, which are more closely related to bumblebees than 

are honeybees [127], are also understudied. Their microbiota appear to be quite variable, as 

compared with those of Apis and Bombus [16]; for example, some species have permanently 

lost Snodgrassella and Gilliamella [128]. Further exploration of bumblebees and stingless 

bees will help us better understand the origins of social bee microbiota and consequences for 

bee biology.

Applications for basic research and conservation

Gut symbionts could be employed as a tool for bumblebee genetics. Tests of gene function 

in social bees largely rely on RNA interference (RNAi), whereby double-stranded RNA 

(dsRNA), with a sequence matching the gene of interest, is fed or injected. However, feeding 

or injecting dsRNA can give erratic or ephemeral results. A new approach for bee RNAi, 

using genetically engineered Snodgrassella to synthesize dsRNA, has been validated in 

honeybees [32]. A transgenic Snodgrassella strain induced RNAi, knocking down expression 

of target genes throughout the honeybee body and also in varroa mites. Symbiont-mediated 

RNAi could be extended to bumblebees and perhaps even to their parasites.

The gut microbiota is also relevant to bumblebee conservation. It would be useful to 

know when symbionts do or do not mediate the effect of a given stressor on bees; if 

they do, microbiota-based interventions could be effective. For some stressors, such as 

heat, insecticides, and land-use change, the gut microbiota does not seem to be a major 

intermediary through which bumblebee populations are impacted [59,70,98]. However, 

parasites are another driver of bumblebee declines [129], and the gut microbiota has a 

well-established role in providing parasite resistance (at least against C. bombi). Given 

that some microbiota compositions provide more resistance than others [17,34,106], select 

symbiont strains could be used as probiotics to help defend at-risk bumblebee populations 

from parasitism. Microbes should also be considered in the planting of ‘medicinal’ flowers 

for bumblebee forage, as they might exert their beneficial effects through changes to the gut 

microbiota [130].

Bumblebees as a system for host-microbiota research

The gut microbiota of social bees have a number of convergent traits with other systems, 

including humans, some other mammals, and termites. These include social transmission, 

localization to the distal gut, degradation of plant polysaccharides with fermentation 

products absorbed by hosts, and, in some cases, colonization resistance against pathogens 

[19,25]. With bees, we can create gnotobiotic hosts (Fig. 2B) relatively easily and in 

large numbers, automatically track individual behavior [116], experimentally perturb the 

microbiota in vivo, and conduct other manipulations that would be impractical in many 

hosts.

Bumblebees have some advantages as a study system. In many countries, bumblebee 

colonies can be purchased and used for experiments year-round, while work with honeybees 
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is more seasonally limited. Bumblebee colonies can also be kept fully contained indoors; 

this is not only convenient but also allows diet to be controlled, and genetically engineered 

microbes to be introduced (with required containment measures are in place). Unlike 

honeybees, bumblebees are a diverse group (>250 species [73]), enabling large-scale 

comparative research. Bumblebees are also particularly well suited as a model for studies of 

mammalian microbiota phenomena such as dysbiosis and hibernation effects.

Outlook

We have an increasingly detailed picture of which microbial species inhabit bumblebee guts, 

but major gaps remain. The majority of gut microbiota research is on B. terrestris and B. 
impatiens (Table S1)—common, commercially reared, temperate-zone species. Species in 

different biomes and those with different feeding traits (e.g., oligolectic and pocket-making 

species [110]) need to be included. Declining Bombus species should be a particular priority, 

and could be studied using non-destructive fecal sampling. There is great interest in the 

factors that make these species vulnerable (e.g. [11,131]); the gut microbiota could be one 

such factor.

Even in B. terrestris and B. impatiens, we know very little about gut microbiota function 

beyond protection from the parasite C. bombi. This information would help explain why 

bumblebees acquired gut symbionts and retained them for tens of millions of years. It would 

also reveal whether the loss of core symbionts, as observed widely in members of many 

bumblebee species, is an indicator of stress or population decline. To support bumblebee 

health, we may be able to deploy probiotics derived from carefully selected and naturally 

occurring gut symbionts. Ultimately, these ancient denizens of the gut will help us better 

understand, and perhaps conserve, bumblebees.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Common bacteria in bumblebee gut microbiota. Dots represent the mean proportion of the 

microbiota (16S rRNA gene sequences) for each taxon across individuals. Numbers indicate 

datasets referenced in Table S1. Field samples refer to bees that were either wild-caught or 

reared with access to the field. Lab samples refer to indoor-restricted bees. Note that the 

Lactobacillus cluster contains both non-core species (e.g., Apilactobacillus kunkeei) as well 

as core lineages (Bombilactobacillus and Lactobacillus Firm5) [42]; these are not always 

distinguishable in sequencing datasets, but the latter usually predominate in bumblebee guts. 

See Supplementary Methods for details.
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Figure 2. 
Distribution of symbionts and metabolic processes across and along the bumblebee gut. 

A) Fluorescence in situ hybridization of a cross-section of the ileum from a conventional 

Bombus impatiens worker (see Supplementary Methods). Host nuclei are shown in blue. B) 

Same as A), but this image is from a gnotobiotic worker colonized with the core symbiont 

Snodgrassella. Round objects in the gut lumen are autofluorescing pollen. C) Digestion and 

nutrient transport in a simplified depiction of the bumblebee gut. Transport of short-chain 

fatty acids (SCFAs) across the hindgut wall is tentative in bumblebees. Note that the hindgut 

likely contains the large majority of bacterial cells in the bumblebee gut (see text).
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Figure 3. 
Transmission routes of core gut symbionts across the life cycle of a typical temperate-zone 

bumblebee species. (Tropical and arctic Bombus life cycles can differ in some respects 

[125]). Vertical transmission predominates, but horizontal transmission of core symbionts 

also occurs. Non-core microbes may also follow these routes but are not shown.
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Table 1.

Some features of bumblebees and their gut microbiota that differ from features of honeybees. We suggest that 

divergent host traits shape, and may be shaped by, microbiota differences.

Host traits of Bombus relative to Apis

 • collect more protein-rich pollen [132]

 • annual life cycle with solitary founding queens [73]

 • less genetic diversity within colonies [111]

 • less defined division of labor among workers [133]

 • limited production of surplus food reserves [5]

 • origin and highest diversity in cold areas [134]

Microbiota traits of Bombus relative to Apis

 • more prone to loss of core symbionts [19]

 • less prevalent type VI secretion systems [54]

 • less tolerant of high heat exposure [59]

 • fewer genes for monosaccharide utilization [53]

 • fewer genes for polysaccharide breakdown [51,104]

 • lower species-level diversity [16]

 • lower strain-level diversity [49]
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