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Abstract

Manual device interaction requires precise coordination which may be difficult for users with 

motor impairments. Muscle interfaces provide alternative interaction methods that may enhance 

performance, but have not yet been evaluated for simple (eg. mouse tracking) and complex (eg. 

driving) continuous tasks. Control theory enables us to probe continuous task performance by 

separating user input into intent and error correction to quantify how motor impairments impact 

device interaction. We compared the effectiveness of a manual versus a muscle interface for 

eleven users without and three users with motor impairments performing continuous tasks. Both 

user groups preferred and performed better with the muscle versus the manual interface for the 

complex continuous task. These results suggest muscle interfaces and algorithms that can detect 

and augment user intent may be especially useful for future design of interfaces for continuous 

tasks.
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INTRODUCTION

Users predominantly interact with devices using manual interfaces such as mice, 

touchscreens, steering wheels, and joysticks. However, many of these interfaces may be 

difficult or impossible to use for individuals with upper-extremity motor impairments after 

neurologic injury. Such users may have difficulty precisely coordinating arm and hand 

function to control manual interfaces due to weakness of the arm muscles, spasticity 
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provoking unintended movement, and muscle tightness limiting mobility [18]. The lack 

of accessibility of manual interfaces for users with motor impairments is well-documented 

[13, 17, 25, 28]. People with neurologic injuries that impact one side of the body like stroke 

or cerebral palsy tend to solely use their unaffected side for device interaction [39]. This 

leads to slower and more error-prone technology use and increases fatigue [36]. Alternatives 

that can be personalized and require less strength and coordination could encourage greater 

use and utility of the affected side. Muscle interfaces are one potential alternative to manual 

interfaces that may enable users with and without motor impairments to interact effectively 

and unobtrusively with their device [32]. The placement of the muscle sensors can be 

personalized so that users can adapt the interface to their own ability level [40]. Such 

interfaces may decrease errors, increase use of the affected side, and enhance long-term 

function.

In this paper, we investigate the performance of a muscle versus a manual interface for 

continuous trajectory tracking tasks in users with and without motor impairments using 

modeling techniques from control theory. While other performance metrics for modeling 

continuous task performance exist [1, 24], we demonstrate that control theory techniques 

provide powerful insights not available with other techniques. To the best of our knowledge, 

there are no methods in human-computer interaction (HCI) that separate and quantify 

user intent (feedforward control) from error correction (feedback control). This could be 

particularly useful for users with motor impairments. Users with motor impairments after 

neurologic injury often retain the ability to determine the input needed to control a device 

to follow a desired trajectory in the absence of errors. However, they may have difficulty 

correcting for errors that arise from unexpected disturbances like arm tremor [18] (Fig. 1). 

We apply techniques from control theory to decode user intent, providing a foundation for 

future development of HCI algorithms that assist users as they perform continuous tasks like 

mouse tracking and driving.

We used frequency-domain analysis to separate and quantify feedforward and feedback 

control for simple (velocity-based) and complex (acceleration-based) continuous tasks using 

a muscle and manual interface in eleven users without motor impairments. We also studied 

muscle and manual interface performance for the complex task for three participants with 

motor impairments. We computed two performance metrics: (i) time-domain error between 

a desired trajectory and actual cursor position and (ii) frequency-domain error between the 

user’s feedforward controller and the controller required to perfectly follow a reference in 

the absence of errors.

The contributions of this paper are threefold:

C1 extend control theory-based quantitative modeling techniques that separate user 

intent (feedforward control) and error correction (feedback control) to muscle 

interfaces;

C2 experimentally compare muscle versus manual interface performance for simple 

(velocity-based) and complex (acceleration-based) continuous trajectory tracking 

tasks;
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C3 conduct preliminary evaluations of muscle versus manual interface performance 

for a complex continuous task for users with motor impairments.

We report two key experimental findings:

F1 users without motor impairments were 49% better at tracking continuous 

trajectories using the muscle than the manual interface for the complex continuous 

task;

F2 users without motor impairments were 61% better at tracking high-frequencies 

above 0.35 Hz with the muscle versus the manual interface.

Our paper proposes and extends an experimental and analytical method to guide future 

development of accessible interfaces like muscle interfaces using control theory. The results 

demonstrate the feasibility of using methods from control theory to inform future interface 

design and develop assistive algorithms to aid users with motor impairments in achieving 

desired tasks.

RELATED WORK

Accessible Interfaces for Users With Motor Impairments

Despite technological advancements in personal computing, device accessibility for users 

with motor impairments and alternate abilities remains a challenge [40]. Researchers 

have demonstrated how ability-based assumptions underlying traditional interfaces such as 

touchscreens [13, 17, 37] and mice [13] are inappropriate for users with motor impairments, 

and how these assumptions can be modified to encompass users of all abilities. Other 

researchers have worked on using artificial intelligence to adapt current interfaces such as 

touchscreens [28, 46] and screen layouts for use with a mouse [15] such that they take into 

account each user’s ability level. Researchers have also worked on modeling stroke gestures 

on touchscreens for users with motor impairments [38]

We are interested in whether alternative interfaces could provide performance advantages 

for continuous tasks. Although it is crucial to understand how traditional interfaces can 

be adapted for users with motor impairments, novel interfaces like smart watches [25] 

and headsets [26] are quickly being developed for commercial use. Understanding whether 

muscle interfaces provide performance benefits for users of all abilities is important for 

encouraging development of muscle interfaces.

Electromyography as Non-Invasive Muscle Sensors

Although muscle interfaces have gained popularity in research as a hands-free interaction 

method, muscle electrical signals are most often used in clinical research to quantitatively 

assess impairments level, track progress, and evaluate clinical interventions for various 

clinical populations [5, 8, 35]. Electromyography (EMG) sensors are commonly used in 

these settings to noninvasively measure muscle electrical activity from the skin surface. Dry 

or wet electrodes passively measure these electrical signals, which can then be relayed to 

a computing unit for analysis. EMG technology is still limited to short-term use due to 

low battery life, bulky form factor, high cost, and lack of comfort [4, 11, 29]. Researchers 
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are currently addressing these limitations by developing novel electrodes and hardware for 

long-term EMG use [30, 42, 43].

Electromyography in Human-Computer Interaction

Muscle interfaces for HCI have mainly focused on gesture classification tasks for hands-free 

device use for users without motor impairments. Such interfaces have been demonstrated to 

have high gesture classification accuracy even when: hands are occupied with other objects 

[32, 33], EMG signals are weak [22], consumer-level EMG sensors are used [19], and a 

large number of gestures are attempted [2]. These studies demonstrate that users without 

motor impairments can successfully use muscle interfaces to reliably perform discrete tasks 

like tapping and swiping.

Work on enabling discrete interactions with EMG data is crucial for the adoption of muscle 

interfaces into everyday life, but little work has studied the use of muscle interfaces for 

continuous tasks or for users with upper-extremity motor impairments. In addition, prior 

research on gesture classification with EMG data demonstrates the strength of muscle 

interfaces in scenarios where manual interfaces would be difficult to use, but have not 

directly compared performance of muscle and manual interfaces.

Continuous Control Using Muscle Interfaces

Prior work on continuous muscle interfaces focused on measuring EMG signals from 

residual muscles of amputees for prosthetic control. EMG control is desirable for prosthesis 

users because it requires minimal effort, allows for intuitive device manipulation, and is 

noninvasive [10, 34]. In this application, EMG signals are measured from the user and 

fed into a proportionality controller to manipulate position, speed, or acceleration of the 

prosthesis [14].

Preliminary research on continuous muscle interfaces for prosthetic control is limited and 

compares manual and muscle interfaces for simple tasks that map the user input to the 

position or velocity of a cursor on a screen. Researchers [7, 23] performed investigations 

where they compared force-based, EMG-based, and position-based interfaces for controlling 

position and velocity of a cursor. They demonstrated that users tracked a desired reference 

more accurately with force-based and position-based interfaces. However, they also found 

that users could track higher frequency signals with the muscle interface than with the 

manual interfaces.

Our study builds on this work by using metrics from control theory to compare simple and 

complex task performance for users with and without motor impairments. Understanding 

tradeoffs between muscle and manual interface performance for simple and complex tasks 

may lead to greater incorporation of muscle interfaces that are more accurate, easier to use, 

and encourage muscle use in users with motor impairments.

Feedforward Controller Formulation for Manual Interfaces

An emerging technique for modeling continuous human and device interactions is using 

control theory to separate user input into a feedforward component that expresses the 
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intended output and a feedback component that corrects for errors [9, 27, 31, 41, 44, 

45]. The feedforward component can be considered a performance metric to determine 

whether the user has learned how their user input maps to the device output in the absence 

of errors (Fig. 1). Control theory provides established frequency-domain techniques for 

separating and quantifying feedforward and feedback controllers for users without motor 

impairments. In the 1960’s, McRuer et al. [27] used trajectory tracking data collected from 

pilots to demonstrate feasibility of estimating a user’s feedforward and feedback controllers 

from data. More recent work focuses on quantifying user performance using the estimated 

feedforward controller. Researchers demonstrated that users without motor impairments 

using a manual interface develop good feedforward controllers for predictable [9, 31, 45] 

and unpredictable [41, 44] trajectories. In addition, researchers also demonstrated that users’ 

feedforward controllers improve as users gain experience performing a trajectory tracking 

task [45].

Our study extends the control theory-based experimental methods and analyses previously 

used to study how users without motor impairments use manual interfaces. Our paper 

focuses on how users with and without motor impairments use muscle interfaces. 

Understanding how feedforward and feedback controllers are affected by alternative 

interfaces and motor impairments is crucial for improving device interaction for all users.

BACKGROUND

What is a Continuous Task?

Continuous tasks can range from simple to more complex. We define simple tasks as 

being position-based (eg. mouse tracking, where the position of the mouse determines the 

cursor position) or velocity-based (eg. wheelchair navigation, where the joystick position 

determines the velocity of the wheelchair). We define complex tasks as being acceleration-

based (eg. automobile or robot control, where the user input determines the acceleration 

of the mechanical system). Mathematically, the increase in task complexity arises from 

the increased number of derivatives that relate the user input to the device output. These 

complex tasks require more abstraction (derivatives) for the user to determine the input they 

should apply to produce the desired device output.

In continuous tasks, the user input is theorized to be a combination of i) user intent 
(feedforward control; the input that yields the desired device output in the absence of any 

errors) and (ii) error correction (feedback control; the input that corrects for errors that can 

arise from unexpected perturbations, inappropriate inputs (eg. due to motor impairments), or 

unexpected changes in the task) [16]. In this paper, controller or control refer to the process 

by which the user determines their input in response to device output. Mathematically, 

a controller is a function that transforms time- and/or frequency-domain signals. Taking 

the example of mouse tracking as a continuous task, user intent could express the user’s 

desire to move the cursor along a specific path, while error correction could compensate for 

deviations from the intended path caused by unintentional tremors of the user’s arm (Fig. 1).

Neurologic injuries like stroke or cerebral palsy that result in motor impairments usually 

do not affect the cerebellum, where user intent (feedforward control) is formed [6]. Instead, 
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the injury usually occurs in the motor cortex that coordinates and transmits signals to arm 

muscles [18]. The injury to the motor cortex can cause errors between the user’s intended 

motion and the implementation of the desired motion (eg. causing unintentional arm tremor), 

making it difficult to perform error correction (feedback control). Thus, we hypothesize that 

neurologic injury may impair feedback but not feedforward elements of user input. To test 

this hypothesis, we separately quantify user intent and error correction in continuous tasks 

for users with and without motor impairments using frequency-domain techniques from 

control theory. These techniques have previously been applied to participants without motor 

impairments using manual interfaces [27, 41, 44, 45].

This study extends the applicability of these tools to include simple and complex tasks using 

muscle interfaces and users with motor impairments after neurologic injury (post-stroke).

Decoding User Intent with Control Theory

Control theory is an engineering discipline that provides techniques for modeling and 

manipulating the dynamics of systems like humans and devices working together to achieve 

a task that changes over time [3]. In the context of the present study, we argue that control 

theory provides powerful estimation techniques that enable us to separate and quantify user 

intent and error correction during continuous interactions between users and devices.

Decoding user intent is challenging for continuous tasks since both components of the user 

input (intent and error correction) are intertwined in time-domain measurements. Control 

theory techniques based on frequency-domain analysis enable us to separate user intent and 

error correction for continuous tasks.

Previous studies have demonstrated that data collected from users performing continuous 

trajectory tracking tasks can be modeled as a function of prescribed (reference trajectory R, 

disturbance signal D, task dynamics M), computed (user’s feedforward F and feedback B 
controllers), and measured (device output Y, user input U) signals and controllers (Fig. 2i) 

[27, 41, 44, 45]. In the context of a real-world example such as a user navigating a cursor 

from one corner of a computer screen to another using a mouse as in Fig.1, the reference 

signal R is the path that the user wants to follow (such as clicking and dragging the cursor 

along a specific path to draw a curve), the disturbance signal D are unpredictable changes 

due to perturbations, inappropriate inputs (eg. due to motor impairments), or unexpected 

changes in the task that deviates the device output from the intended path (such as a cat 

bumping the user’s hand controlling the mouse), and the device dynamics M is the mapping 

that transforms the (possibly disturbed) position of the mouse U + D into the position of the 

cursor on the screen Y. To follow a reference path R, users can employ their feedforward 

controller F to predict the mouse input necessary to produce the desired cursor path Y. 

However, unintended disturbance signals D will need to be corrected by the user’s feedback 

controller B, which aims to minimize the error between where the cursor currently is, and 

where the user wants to be along the reference path.

In control theory, the block diagram in Fig. 2i is a precise specification of mathematical 

transformations that relate time-domain or frequency-domain signals (represented by 

arrows). For the problem formulation specified in Fig. 2i, the user input U is determined by 
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feedforward F and feedback B controllers as well as prescribed disturbance D and reference 

R signals and task dynamics M as:

U = F + B
1 + BM R − BM

1 + BM D . (1)

Control theory provides a mathematical framework for analyzing time-varying signals. 

Continuous signals have both time-domain and frequency-domain representations. In the 

time-domain, signals like the position of a mouse are represented as a function of time. In 

the frequency-domain, the same position signals are represented by a linear combination 

of sinusoidal functions at different frequencies (Fig. 2ii). Take for example the sound of a 

100 Hz tuning fork. In the time-domain, it is a sinusoidal wave of the sound represented 

over time, with magnitude A and frequency 100 Hz. In the frequency-domain, it is one 

single element with magnitude A represented at one frequency (100 Hz). Frequency-domain 

analysis is useful for continuous HCI tasks like mouse or vehicle navigation because the 

user’s response to stimuli can be analyzed independently at each frequency [41]. Frequency-

domain analysis is also useful in cleverly designed experiments, because it enables distinct 

signal separation that is difficult in the time-domain.

In this research, we leverage the latter advantage to design experiments to separately 

quantify feedforward and feedback control [41, 44]. For example, in Eq. 1, we can see 

that if we isolate the effects of the reference and disturbance stimuli on the user input, we 

can compute the feedforward and feedback controllers. This is difficult in the time-domain 

as the reference and disturbance signals are shown concurrently to the user. However, by 

designing our experiments to expose the user to solely reference or disturbance signals at 

different frequencies, we can isolate the effects of the two signals on the user input in the 

frequency-domain (Fig. 2). Then, we can use Eq. 1 to algebraically compute the feedforward 

(F) and feedback (B) contributions to the user input (U) at each frequency of interest. 

Applying these principles to our task, eq. (1) can be manipulated algebraically to estimate 

the user’s feedback (B) and feedforward (F) controllers:

B = U /D
M(1 − U /D) F = U /R + M−1U /D

1 + U /D . (2)

Frequency-domain analysis enables us to monitor, model, and predict a user’s feedforward 

and feedback controllers. This is particularly powerful in the context of decoding user 

intent for users with motor impairments. Separating feedforward and feedback contributions 

to the user input allows us to predict how a user will respond to a given reference or 

disturbance. Given an estimate of the user’s feedforward controller F, we can predict the 

user’s intended input in the absence of disturbances for a given reference trajectory R by 

applying transformation F to signal R. From there, algorithms can monitor and correct for 

errors arising from motor impairments between the planned input and the actual input to the 

device.
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METHODS

Experimental Design

We manipulated the following conditions – interface (muscle versus manual); task (simple 

versus complex); and population (with versus without motor impairments). We conducted 

two types of experiments. First, we ran a 2 × 2 factorial design study with eleven 

participants without motor impairments (interface (muscle versus manual); task (simple 

versus complex)). Second, we conducted a case series study with three participants with 

motor impairments after stroke, and compared muscle versus manual interface performance 

for the complex task. We compared the results from this experiment against the participants 

without motor impairments. To shorten the study and avoid fatigue, we only collected data 

for the complex tasks for participants with motor impairments. The order of presentation for 

the conditions was randomized for each participant.

Participants

We recruited eleven participants without motor impairments for this study from the broader 

community (4 female, 7 male; 1 left-handed, 10 right handed; age: 25±3.7 years, height: 

171±11.3 cm; weight: 68±10.5 kg). All were daily computer users and played video games 

monthly or yearly. Six participants were familiar with the concept of EMG signals, and one 

participant regularly worked with EMG signals.

We also recruited three participants who had a stroke that affected one side of their body 

from clinics and local stroke survivor support groups (Table 1). P1 and P2 predominantly 

used their unaffected arm for activities of daily living, including using a computer or phone. 

As shown by the self-reported impairments, P3 had fairly good control over her affected 

arm, and used her affected side for mouse navigation and writing. However, she only uses 

her affected side to use the mouse, and types solely with her non-affected side. Potential 

participants were asked if they could touch their shoulder and move their arm back as a 

measure of bicep and tricep control.

Task

Participants used their muscles or a slider to control a cursor on a screen to track a yellow 

trajectory (Fig. 3). Since one goal of this work is to encourage bilateral device interaction, 

participants without motor impairments used their non-dominant arm and participants with 

motor impairments used their affected arm to complete the tasks. When using their muscles, 

participants were strapped into a padded rigid device with their palms facing up (Fig. 3 

bottom). Participants moved the cursor up by pulling up against the rigid device to activate 

the biceps, and moved the cursor down by pushing down into the rigid device to activate the 

triceps. We previously found during a pilot study on participants without motor impairments 

that participants moved the slider in many different ways from flicking the slider to using 

their whole arm to move the slider. To standardize how participants moved the slider, 

participants were asked to lay their elbow on a hard surface and move the slider with their 

biceps and triceps (Fig. 3 top).
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The user input was mapped to the output of the device as either the velocity (simple task) 

or the acceleration (complex task) of the cursor. Participants without motor impairments 

performed 30 trials per condition, each 45 seconds long. At the end of each trial the 

error between the reference trajectory and the cursor position was displayed as a scaled 

number between 0 and 100%. Participants were asked to make this number as small as 

possible. Participants with and without motor impairments were highly encouraged to take 

breaks between trials and between conditions and were reminded that they were free to 

stop the experiment at any time. Reset screens where participants could take breaks were 

shown between each 45 second trial. Participants with motor impairments performed at least 

20 trials per condition, depending on fatigue. Direct observation of continued clonus or 

spasticity (more than once per 45-second trial) was also used to indicate muscle fatigue as a 

break or stop point during the experiment.

After each condition, participants filled out the NASA Task Load Index (TLX) [20] to 

subjectively quantify the difficulty of completing the trajectory tracking task across six 

different categories – mental demand, physical demand, temporal demand, performance, 

effort, and frustration. The NASA TLX rates the workload of a task from 0 (low workload) 

to 100 (high workload). At the end of the experiment, we asked participants whether they 

preferred the muscle or slider interface.

Game Development

The experiment was described to participants as a trajectory tracking game (Fig. 3). 

Participants were asked to control a purple diamond cursor on the screen using a slider 

or their muscles. The cursor was restricted to motion in one-dimension (up or down). 

Participants controlled the cursor by either manipulating a manual interface (slider) towards 

or away from the body, or activating the muscle interface by pulling up or pushing down 

against a rigid device.

The trajectory tracking task was visualized using pygame 1.9.4 in Python3.5. We used a 

randomly phase-shifted sum-of-sines at eight fixed frequencies between 0.1–0.95 Hz and 

amplitude to generate pseudorandom references and disturbances (Fig. 2ii). Researchers 

previously found that frequencies much higher than 1 Hz are difficult to track in the context 

of this experiment [27, 41, 44]. The position of the cursor on the screen was updated by the 

user input at 60 Hz, the same update frequency as a standard computer screen. This game 

was adapted from work by [27] and more recently by [41, 44].

Muscle Interface Development

We used the Delsys Trigno EMG System (Delsys Inc. Massachusetts, USA) to collect EMG 

activity from the biceps and triceps of our participants. The Delsys sensor is a wireless 

dry electrode commonly used in clinical settings, and collects EMG data at 1926 Hz. The 

electrodes were placed on the biceps and triceps according to Surface Electromyography for 

the Non-Invasive Assessment of Muscle (SENIAM) [21] guidelines. The Delsys software 

development kit was used to import raw EMG signals from the Delsys unit to Python for 

further processing.
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EMG values were normalized by calibrating the EMG activity against participants’ 

maximum voluntary contraction. At the beginning of the trial, we asked each participant 

to flex their biceps or triceps as hard as they could three times, each for two seconds, while 

secured by the rigid device or by a researcher. The 95th percentile of the EMG data collected 

was saved for each 2-second trial, and the average of the three trials was saved as the 

maximum contraction.

Raw EMG signals were processed similarly to [7, 23]. EMG signals were filtered by 

processing 100 ms of EMG data at a time. Each 100 ms window was further split up into 

two, 50 ms windows and delinearized before taking the average of the two windows. We 

then scaled the filtered EMG activity by the value of the maximum contraction for each 

muscle. If scaled user input for both the biceps and triceps were below a specified threshold 

(defined as 2.5% of the maximum contraction for participants without motor impairments), 

the user input was set to zero. This ensured that participants could reach zero despite minor 

fluctuations in EMG signal from measurement noise. Otherwise, the muscle with the larger 

scaled value was returned as the user input. If the biceps had a larger scaled value than 

the triceps, the cursor would move up, and if the triceps had a larger scaled value than the 

biceps, the cursor would move down.

All three participants who had a stroke could not sufficiently relax their muscles to obtain a 

zero user input with the 2.5% threshold due to weaker maximum contractions. The threshold 

for zero user input for the muscle interface was adapted to a maximum of 12% of the 

maximum contraction, depending on the level of EMG activity we observed during rest.

Slider Interface Development

Participants manipulated a custom slider connected to a 10 kΩ potentiometer. An Arduino 

Due (Arduino.cc) was used to measure and import the potentiometer values into Python for 

further processing. The slider was 35 mm wide × 12 mm tall × 22 mm deep and printed with 

a 3D printer using ABS filament. Pushing the slider required very little strength, similar to 

pushing a pen across a table.

Data Analysis

User input from either the muscle or manual interface, reference and disturbance trajectories, 

and position of the cursor on the screen was collected at 60 Hz. Collected data was analyzed 

in Python3.5. To quantify user performance taking into account both user intent and error 

correction, we compute the mean-square error (MSE) between the prescribed reference R 
and the measured position of the cursor Y over time t:

MSEtime = ∑
t

( R − Y )2 . (3)

To quantify user performance solely taking intent into account and ignoring difficulties with 

error correction arising from motor impairments, we compute the MSE between the inverse 

of the device dynamics M−1 and the estimated feedforward controller F over frequencies w:
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MSEfreq = ∑
w

M−1 − F 2 . (4)

The performance for the last five trials was averaged as a measure of error after learning for 

both performance metrics.

For the 2 × 2 factorial design with participants without motor impairments, we looked for 

potential differences between conditions (interface; task) for the two performance metrics 

defined in eq. (3, 4) using the two-way analysis of variance (ANOVA) test. We tested the 

normality distribution assumption of our data using the Shapiro-Wilks test and allowed for 

minor violations in normality because of the robustness of the ANOVA. We hypothesized 

that participants will perform worse when performing the complex task compared to the 

simple task due to the added abstraction (derivative). Additionally, we hypothesized that 

muscle interfaces will perform worse than manual interfaces because participants will be 

more acquainted with manual interfaces than the muscle interface. Paired t-tests with α = 

0.05 were used as a post-hoc test.

Similarly to previous studies [7, 23], we also hypothesized that we will see performance 

differences between muscle and manual interfaces at higher frequencies. Although 

researchers previously only compared muscle and manual interfaces for the simple task, 

we hypothesized that their finding will extend to the complex task as well. We tested for 

differences in frequency-domain performance at each frequency between the muscle and 

manual interface with the paired t-test for the complex task with α = 0.05.

As we only had three participants with motor impairments, comparisons between users with 

and without motor impairments are descriptive. This experiment was mainly to assess the 

viability of a muscle interface for users without motor impairments. We hypothesized that 

users with motor impairments will perform worse than users without motor impairments 

with the time-domain performance metric, but perform similarly for the frequency-domain 

performance metric. This is because motor impairments after neurologic injury usually 

affect the error correction (feedback), not user intent (feeforward) contributions to user input 

[18].

RESULTS

Study 1: Muscle versus Manual Interfaces for Simple and Complex Tasks

To determine when muscle interfaces may provide performance advantages over manual 

interfaces, this study compared performance for users without motor impairments using 

muscle and manual interfaces for simple and complex continuous tasks.

Muscle Interface Improves Performance for Complex Task—The time-domain 

performance metric (MSEtime) quantifies the performance of continuous trajectory tracking 

tasks when taking into account both user intent and error correction. The two-way ANOVA 

only found a main effect for the task difficulty (Table 2). Contrary to our hypothesis 

that participants will perform better with the manual interface, participants without motor 
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impairments performed equally well with either interface for both the simple and complex 

tasks (simple: t=1.88, p = 0.09; complex: t=−0.15, p = 0.88) (Fig. 4). However, participants 

performed significantly worse for the complex task compared to the simple task using the 

manual interface (t=−5.76, p < 0.001) (Fig. 4). This suggests that participants did find the 

increased abstraction (derivative) more difficult, but only when using the manual interface.

The frequency-domain performance metric (MSE freq ) quantifies the performance of 

continuous trajectory tracking tasks when only taking into account the user intent. This 

metric ignores how well or poorly participants perform error correction. We found a 

significant main (interface; task) and interaction (interface × task) effect for the frequency-

domain performance (Table 2). As expected, users developed a better feedforward controller 

for the simple task compared to the complex task when using the manual interface (t=−7.81, 

p < 0.001) (Fig. 4). This suggests that participants found it easier to determine the input 

required to track the desired trajectory for the simple task compared to the complex 

task when using the manual interface. Participants performed equally well for simple and 

complex tasks when using the muscle interface (t=−2.09, p = 0.063). Surprisingly, users 

had 49% more accurate feedforward controllers when performing the complex task with 

the muscle interface than the manual interface (t=−4.66, p < 0.001). This means that in the 

absence of errors users could track reference trajectories more accurately with the muscle 

interface than the manual interface, but only for the complex acceleration-based task. This 

suggests that interface performance is task-dependent and feedforward controller accuracy is 

dependent on the type of interface used.

Comparing the performance of muscle and manual interfaces by solely quantifying user 

intent (MSE freq ) enabled us to detect differences between the two interfaces that were not 

readily apparent when also taking into account error correction (MSEtime ). While the two 

interfaces performed similarly in the time-domain performance metric, the muscle interface 

performed significantly better than the manual interface in the frequency-domain metric. 

Having an accurate prediction of what the user intends to do is critical for developing 

algorithms that assist the user in performing tasks.

Muscle Interface Accurately Tracks High-Frequency Signals—To more deeply 

understand why the muscle interface performed better than the manual interface for the 

complex task in the frequency-domain, we compared the frequency-domain performance at 

each stimulus frequency. For the complex task, participants performed significantly better 

at frequencies above 0.35 Hz with the muscle interface than the manual interface (Fig. 

5). Overall, participants performed 61% better at high frequencies above 0.35 Hz with the 

muscle than the manual interface. Without accounting for error corrections, users’ inputs 

more accurately tracked faster moving components of the reference trajectory with the 

muscle than the manual interface. This suggests that if a task requires users to track rapidly 

changing trajectories, like navigating a drone in a forest at a high speed, they may find it 

easier to do so with the muscle than the manual interface.
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Study 2: Comparing Interface Performance for Users With Motor Impairments

We learned from the first study that users without motor impairments performed better using 

the muscle compared to the manual interface while conducting the complex task in the 

absence of errors. In this study, we conducted a preliminary study comparing performance 

for users with and without motor impairments during a complex task with muscle or manual 

interfaces. This study was a proof-of-concept case study with three participants (P1, P2, 

P3) who had a stroke to investigate whether muscle interfaces were a viable alternative to 

manual interfaces for users with motor impairments.

Muscle Interface Improves Performance—Participants with motor impairments 

successfully completed the complex trajectory tracking task with both muscle and manual 

interfaces. P1 learned to use the muscle interface quickly and preferred it over the manual 

interface. P2 and P3 had more difficulties learning to use the muscle interface and isolating 

bicep and tricep activation. They expressed that they would have performed better if they 

had more time to practice. Despite the limited practice time, the three users with motor 

impairments performed 24% and 44% better using the muscle than the manual interface with 

the time-domain and frequency-domain performance metrics respectively (Fig. 6).

As we only had three participants, the performance of each participant with motor 

impairments is shown as a dot.

The preliminary results support our hypothesis that users with motor impairments have 

worse time-domain performance (MSEtime ) than users without motor impairments (Fig. 

6). However, frequency-domain performance (MSE freq ) for users with motor impairments 

were within the range observed for users without motor impairments. Since frequency-

domain performance excludes contributions from error correction while time-domain 

performance accounts for both user intent and error correction, we can conclude that users 

with motor impairments had more difficulty with error correction, but not with forming user 

intent compared to users without motor impairments.

NASA Task Load Index (TLX)—Users with and without motor impairments perceived 

no differences in task load across tasks and interfaces (Fig. 7). We found no significant main 

(interface (muscle versus manual); task (simple versus complex)) or interaction (interface × 

task) effects from the results of the NASA TLX for participants without motor impairments. 

NASA TLX for users with motor impairments ranged from 45 to 80, well within the 

range of users without motor impairments. This suggests that users found all interfaces 

equally easy to manipulate, despite the muscle interface being a novel interface for many 

participants.

DISCUSSION

We demonstrate for the first time that users without motor impairments perform 49% 

better when using a muscle interface compared to a manual interface for a complex 

(acceleration-based) continuous task. We additionally found that users without motor 

impairments improved performance by 61% at frequencies above 0.35 Hz. However, this 

was solely the case for the frequency-domain performance metric that quantifies accuracy of 
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intent, and there was no significant difference between the two interfaces when quantifying 

performance for both intent and error correction. This suggests that while users form better 

intent with the muscle interface, users conversely perform error correction better with the 

manual interface.

It may be that muscle interfaces are particularly intuitive for acceleration-based tasks. 

The electrical activity that we measure as the user input for the muscle interface is a 

result of electrical signals sent from the brain to the muscle fibers, which then produce 

force that generates movement [8]. Since force (F) is correlated to acceleration (a) and the 

mass of the system (m) by F = ma, EMG activity can be mapped to acceleration without 

abstraction. This is one possible explanation for why the muscle interface was preferred and 

performed better for the complex acceleration-based task. Future experiments should further 

investigate this relationship by comparing the muscle interface against a force-based manual 

interface instead of a position-based manual interface that we used for this study. If direct 

mapping between the user input and device output is important for performance, then muscle 

interfaces and force-based interfaces should perform similarly for the complex task.

Muscle interfaces performing better for complex acceleration-based high-frequency tasks 

have implications for interface design for users with and without motor impairments. Muscle 

interfaces may be beneficial for tasks where the user controls the acceleration of the 

device that require quick maneuvers like flying a drone through a dense forest or remotely 

controlling a running robot through rocky terrain. Continuing research on comparing how 

various interfaces perform with frequency-domain analysis from control theory is useful for 

informing intuitive interface design for device control.

Our preliminary findings from three participants suggest that control theory may be useful 

in deriving intent for users with motor impairments. We found that the three users with 

motor impairments also preferred and performed better with the muscle than the manual 

interface for both time-domain and frequency-domain performance metrics. Previous studies 

solely compared performance between manual and muscle interfaces from users without 

motor impairments [7, 23]. Muscle interfaces provide an attractive alternative interaction 

method to manual interfaces that could also encourage bilateral interaction for users with 

motor impairments after neurologic injury. The fine coordination of multiple arm and 

finger muscles required to use manual interfaces are simplified to activating one or two 

user-chosen muscles with muscle interfaces. For users with difficulties performing error 

correction like users with motor impairments, quantifying the intent from the user input 

while ignoring error correction is an important metric for quantifying interface performance. 

In the frequency-domain, we demonstrated preliminary success in deriving user intent for 

users with motor impairments, and showed that the quantified feedforward controllers were 

within range of users without motor impairments. This is consistent with what is known 

about motor impairments after stroke, where the brain injury generally affects the motor and 

sensory cortices of the brain that control muscle recruitment and sensory feedback, but not 

the planning of the movement [18]. To the best of our knowledge, we proposed the first 

performance metric for users with and without motor impairments that quantifies user intent, 

that is, the user input needed to control a device to follow a desired trajectory in the absence 

of errors.
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These promising results suggest that muscle interfaces may be a viable alternative to manual 

interfaces to enable bilateral and unobstrusive device interaction for users with and without 

motor impairments. It is especially exciting that users with motor impairments appear to 

perform better using the muscle than the manual interface even when the performance 

metric takes into account error correction. However, we expect that users with motor 

impairments will perform even better when their intent is used by artificial intelligence 

to assist with error correction. In future work, we envision building a system that 1) quickly 

characterizes how well a specific user implements intent or error correction, 2) suggests 

alternative interfaces that may improve performance, and 3) employs adaptive algorithms to 

enhance performance. We can leverage frequency-domain methods to develop user-specific 

algorithms that augment user input to compensate for error correction. As an example, 

consider the design of interfaces for games that require quick accurate movements. We can 

recommend an interface that performs well in rapid high-frequency tasks and implement 

an algorithm that augments the user’s ability to implement intent and correct for errors. 

Frequency-domain analysis is a powerful tool to help model and enhance user interaction.

Limitations

We only compared the muscle interface against a custom-built slider, one type of manual 

interface that is not as commonly used in daily life and was not designed for user comfort or 

performance. Additionally, users were not able to customize how the physical displacement 

of the slider mapped to the movement on the screen. In the future, comparing the muscle 

interface against commercially-available manual interfaces like touchscreens, joysticks, and 

mice and allowing for customization of interface sensitivity would inform when muscle 

interfaces are a desirable alternative to manual interfaces for complex high-frequency 

continuous tasks.

There were also a number of restrictions placed on the participants during this study that 

would not be in place during everyday use that may have affected the results of the study. To 

standardize how participants interacted with the manual interface, we asked participants to 

place their elbow on a hard surface and solely use their biceps and triceps, rather than using 

their wrists or fingers to manipulate the slider. We also do not know the effect of handedness 

on muscle or manual interface performance. Participants may have performed better with the 

manual than the muscle interface if they had used their dominant hand since users generally 

have better coordination with their dominant hand.

Lastly, with such a small population of participants with motor impairments (three), it 

is not possible to draw statistically significant conclusions. In addition, motor control 

ability in users who have had a stroke is diverse, and even in our case study we saw 

large heterogeneity in user capabilities, making it challenging to draw general conclusions 

about users with motor impairments. However, our preliminary results suggest that muscle 

interfaces are a promising alternative to manual interfaces and modeling methods from 

control theory can be used to quantify user intent separate from error correction for users 

with motor impairments.
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CONCLUSION

This is the first paper to report on the performance of a muscle versus a manual interface 

for simple (velocity-based) and complex (acceleration-based) continuous tasks for users 

without motor impairments. We introduced techniques from control theory to quantify the 

performance of user intent in the absence of errors (like unintended tremor from motor 

impairments). Users without motor impairments performed 49% better with the muscle than 

the manual interface for tasks that required rapid changes to user inputs. Preliminary results 

suggest that users with motor impairments retained similar abilities to create feedforward 

models of a system as users without motor impariments, and also demonstrated more 

accurate intent with the muscle than the manual interface. Muscle interfaces may provide 

performance advantages in developing intent for complex tasks for users with and without 

motor impairments. These results suggest that control theory modeling can provide a 

platform to successfully quantify device performance in the absence of errors arising from 

motor impairments. Such alternate interfaces should continue being developed to support 

users of all abilities.
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Figure 1. 
Successfully completing continuous tasks with manual or muscle interfaces is crucial for 

many tasks including cursor navigation. While a user may intend to follow a desired 

reference path (dotted red line) with user intent (dotted red arrows), unexpected disturbances 

(sudden change in cursor position between the two blue circles) introduce errors that must 

be corrected with error correction (solid blue arrows). The user input (mouse position) 

combines user intent and error correction and maps to the cursor position on the screen (blue 

solid line).
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Figure 2. 
(i) Block diagram representation of user interacting with device adapted from [27]. The user, 

contained within the purple dotted square, transforms external reference R and tracking error 

R − Y through feedforward (user intent, F in red) and feedback (error correction, B in blue) 

controllers to produce user input U. The device transforms the sum of user input U and 

external disturbance D to device output Y via mapping M. (ii) Signals in the time-domain 

(left top graph) can be considered as a sum of many sine waves at different frequencies 

(left bottom graph). These sinusoidal waves can be difficult to separate in the time-domain 

(left), but easy to separate in the frequency domain (right). The Fourier transform is used 

to convert time-domain signals to frequency-domain signals. It is a linear operator that 

represents time-domain signals using a linear combination of sinuisoids [3].
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Figure 3. 
Participants controlled a purple cursor on a computer screen using either a manual slider 

(top) or muscle EMG (bottom) interface.
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Figure 4. 
Time-domain (left) and frequency-domain (right) measures of error for both simple and 

complex tasks (box plot: median, 25/75 percentile, bars from minimum to maximum value, 

* outliers). Lower values indicate better performance. Statistically significant differences are 

marked with their respective p values.
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Figure 5. 
Frequency-based performance across different frequencies for complex acceleration-based 

task. Participants performed significantly better with the muscle (yellow) than the manual 

(purple) interface at higher frequencies.
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Figure 6. 
Time-domain (left) and frequency-domain (right) measures of error for complex task for 

users with and without motor impairments. Lower values equals better performance. The 

time-domain error for users with motor impairments is much higher than users without 

motor impairments for both the muscle and manual interface. Users with motor impairments 

perform comparably to users without motor impairments in forming feedforward models in 

the frequency-domain.
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Figure 7. 
Results from NASA TLX demonstrates similar subjective workload across all tasks for users 

with and without motor impairments.
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Table 2.

Two way ANOVA (interface × task) results for time-domain (MSEtime ) and frequency-domain (MSE freq ) 

measures of performance.

Factor F 1,40 p Partial η2

MSE time 

Interface 1.19 0.28 0.025

Task 6.55 0.014 0.14

Interface × task 0.74 0.39 0.15

MSE freq

Interface 4.83 0.034 0.047

Task 43.5 <0.001 0.43

Interface × task 13.5 <0.001 0.13
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