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Abstract

Purpose of Review: Epigenetic modifications via DNA methylation have previously been 

linked to blood lipid levels, dyslipidemias, and atherosclerosis. The purpose of this review is 

to discuss current literature on the role of DNA methylation on lipid traits and their associated 

pathologies.

Recent Findings: Candidate gene and epigenome-wide approaches have identified differential 

methylation of genes associated with lipid traits (particularly CPT1A, ABCG1, SREBF1), and 

novel approaches are being implemented to further characterize these relationships. Moreover, 

studies on environmental factors have shown that methylation variations at lipid-related genes are 

associated with diet and pollution exposure.

Summary: Further investigation is needed to elucidate the directionality of the associations 

between the environment, lipid traits, and epigenome. Future studies should also seek to increase 

the diversity of cohorts, as European and Asian ancestry populations are the predominant study 

populations in the current literature.
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Introduction

Lipids are a class of biomolecules that include fats, sterols, phospholipids, and more. 

Their primary function in humans is to store energy and provide structural support to the 

cell membrane [1]. However, dysfunction of lipid metabolism, storage, or clearance may 

result in abnormal blood lipid levels, i.e., dyslipidemia [2]. An independent risk factor 

for cardiovascular disease, dyslipidemias arise through both monogenic mutations (e.g., 

low density lipoprotein receptor (LDLR) in familial hypercholesterolemia) and polygenic 

influences, such as single nucleotide polymorphisms (SNPs) [3]. This is supported by the 

high heritability of plasma lipids: estimates for high-density lipoprotein (HDL) cholesterol, 

low-density lipoprotein (LDL) cholesterol, triglycerides (TG), and total cholesterol (TC) 

range from 40% to 60% [4]. Yet, even with the incorporation of rare variants, known genetic 

variants account for 10% to 25% of the total variation in lipid levels [5, 6]. This suggests 

that complex interactions between the genome and environment remain unaccounted for 

in the pathogenesis of dyslipidemia. Other genomic modifications (e.g., epigenomics) have 

been theorized to contribute to the “missing heritability” of lipids.

DNA methylation is the most common form of epigenetic modification and involves the 

addition of methyl (-CH3) groups to cytosine-phosphate-guanine (CpG) sites of genes. 

Generally, increased methylation in gene promoters—regions of DNA that regulate gene 

expression via activation of transcription—is associated with decreased gene expression, 

and decreased methylation is associated with increased gene expression. The relationship 

between DNA methylation and lipids, as well as pathologies associated with abnormal 

lipid levels (dyslipidemia, atherosclerosis, etc.), has been extensively studied. Specifically, 

candidate gene and epigenome-wide association studies (EWAS) have identified differential 

methylation of genes in connection with lipid phenotypes. However, some questions remain, 

such as the directionality of the relationship between methylation and lipid levels, as well 

as whether the observed methylation variations in blood (the predominant tissue sample in 

these analyses) reflect gene regulation in target tissues. Furthermore, findings are mixed on 

the effect of environmental factors on lipids via DNA methylation. In this review, we will 

explore novel methodological approaches to explicate the relationship between lipids and 

methylation; evaluate the current literature on methylation variations at genes that have been 

widely replicated in association with plasma lipids; and highlight environmental exposures 

that have been linked to both methylation changes and lipid traits.

Methodological Approaches

EWAS

Early studies of DNA methylation and lipids predominantly applied candidate gene and 

EWAS approaches. Candidate gene studies test for associations between methylation and 

preselected genes of interest. In recent years, they have been used primarily in case-control 

studies and smaller cohorts (n<100), and, for the purpose of this review, we will not discuss 

those smaller studies. Moreover, many EWAS—which use a hypothesis-free approach to 

identify associations between methylation of individual CpG sites and the trait of interest

—since 2016 have included some form of validation (split sample approach or external 

validation). Meta-analyses are also becoming an increasingly useful tool to increase sample 
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size and statistical power to detect significant CpG sites across cohorts. To date, most EWAS 

of lipids have been cross-sectional in design and conducted predominantly in populations of 

European or Asian ancestry. These studies have not only evaluated methylation variations 

in association with lipid levels directly [7–10], but also lipidomic profiles [11], plasma 

lipoprotein A [12], and pathologies such as atherosclerotic stroke [13]. However, a limitation 

of this approach is that it considers the effects of individual CpG sites, whereas multiple 

CpGs may be present in a single promoter region. Studies that evaluate the combined effect 

of methylation variations of CpG sites, e.g., differentially methylated regions (DMRs), are 

lacking.

Multi-‘omics’ approaches

Methylation analyses have begun to integrate other ‘-omics’ data to evaluate the joint 

effects of both the genome and epigenome on gene expression. While these studies are 

not as abundant as EWAS, they have been increasing in frequency. For example, some 

investigators have begun to incorporate genome-wide association study (GWAS) data into 

their methylation analyses. In a cohort of ~700 older African American adults, Wright et 

al. evaluated the association between serum lipids and DNA methylation sites that were 

proximal to single nucleotide polymorphisms (SNPs) previously linked to lipid traits [14]. 

Using a methylation-quantitative trait loci (meQTL) approach, Bandesh et al. identified 

functional variants in a cohort of ~230 Indian adults that were associated with methylation 

changes in the same genes with those significant variants [15]. In a GWAS meta-analysis, 

Ghanbari et al. explored associations between long non-coding RNAs (lncRNAs) and 

cardiometabolic disorders, in which they found that the methylation level of cg17371580 

(located in the promoter of LOC157273) was associated with HDL [16]. The lncRNA gene, 

LOC157273, is an effector transcript located near PPP1R3B, which has also been linked to 

LDL and coronary artery disease [16–18].

In an expression-quantitative trait loci (eQTL) approach, Love-Gregory et al. identified 

lipid-associated SNPs located near the cluster of differentiation 36 (CD36) gene in the 

Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. The association 

between those SNPs, CpG sites in the CD36 promoter region, and CD36 expression in 

adipose tissue from the Multiple Tissue Human Expression Resource (MuTHER) was 

then evaluated [19]. The investigators determined that both SNPs and methylation changes 

independently influence CD36 expression. CD36 facilitates fatty acid uptake by the cell, and 

in previous studies, CD36 variants have been shown to influence fasting lipid levels and 

risk for metabolic syndrome [20, 21]. Furthermore, Tremblay et al. applied a weighted gene 

correlation network analysis in a cohort of 16 families (n=48) and identified several genes 

that were associated with HDL, LDL, and TC, as well as ApoB100 [22].

Tissue-specific methylation

While most human methylation studies have performed analyses from whole blood, a 

few have begun to explore tissue-specific methylation to further evaluate the relationship 

between DNA methylation and lipid-associated pathologies. In larger cohort studies, these 

tissues tend to be used for more targeted, functional analyses after identification of 

significant CpG sites from genome-wide analyses. For example, Pfeiffer et al. used skin 
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(n~400) & adipose (n~650) tissue samples from the MuTHER cohort to evaluate the 

relationship between CpG sites that were significant in an EWAS of whole blood and 

gene expression [23]. Similar to the results from blood, increased methylation at sterol 

regulatory element binding transcription factor 1 (SREBF1) was associated with elevated 

TG in both adipose and skin. Increased methylation at adenosine triphosphate (ATP) binding 

cassette subfamily G member 1 (ABCG1) was only associated with elevated TG in adipose. 

In another analysis, in subcutaneous fat from the TwinsUK registry (which has some 

overlap with MuTHER), cg20544516 methylation was negatively associated with SREBF1 
expression [24]. These findings are comparable to EWAS in whole blood, which have shown 

increased methylation of this CpG site in association with elevated lipid levels [7, 24]. 

Overall, the concordance between methylation analyses of lipid traits in whole blood and 

those in other tissues, particularly adipose, suggest that blood-based methylation studies are 

reflecting functionally important variations in DNA methylation at the tissue level.

While in larger cohort studies, tissue-specific methylation analyses tend to be applied 

for validation and/or secondary analyses, some smaller studies are using this approach 

for primary investigation. Adipose tissue samples collected from ~200 Canadian adults 

were analyzed by MethylC-capture sequencing (MCC-Seq) to fine-map EWAS signals 

[25]. Investigators identified and externally validated adipose tissue regulatory regions 

that were associated with HDL and TG. Moreover, Lacey et al. identified tissue-specific 

differentially methylated regions (DMRs) in atherosclerosis using smooth-muscle cells 

(SMCs) collected from patient aortas (n=3); they found that methylation changes in aorta 

SMCs may downregulate enhancers to facilitate a pro-atherosclerotic phenotype [26]. The 

same investigators also identified tissue-specific regulation of ANGTP in atherosclerosis, 

in addition to methylation changes in enhancers regions, thus contributing to ANGPT 
expression [27]. Furthermore, Wang et al. observed that decreased methylation at genes 

in atherosclerotic right coronary artery tissue (compared to the great saphenous vein) were 

associated with pro-inflammatory pathways (e.g., cytokine receptor interactions); genes with 

increased methylation were associated with fat digestion and absorption pathways [28]. 

Tristán-Flores et al. characterized a differential methylation motif in human atheromas that 

was associated with Alu methylation, which is a hallmark of atherosclerosis [29]. Most 

studies of methylation and lipids are still based on whole blood samples, but some are 

beginning to evaluate methylation variations in vascular and adipose tissues with respect to 

lipids.

Finally, other approaches to evaluating DNA methylation and lipids are broadening from 

discovery and validation of individual genes or CpG sites of interest. More recent studies 

have included pathway [30] and gene network analyses [22], indicating that researchers 

may be shifting from identifying methylation within individual genes to exploring how 

these modifications affect larger systems (e.g., regulatory pathways, gene networks, etc.) 

in disease. Methods are also being developed to employ epigenetic data as potential 

biomarkers. For example, Irvin et al. observed that epigenetic age acceleration (estimated 

from epigenetic clock algorithms) was positively associated with inflammatory markers 

and TG and negatively associated with HDL in the GOLDN study [31]. More studies, 

however, are needed before these tools are clinically translatable. Overall, the methods for 
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understanding DNA methylation in the context of lipids are vast, as the field is shifting from 

candidate gene and EWAS-based approaches to more integrated ‘omic’ analytical methods.

Widely Replicated Genes

CPT1A

Carnitine palmitoyltransferase 1A (CPT1A) codes for a key enzyme that initiates long-chain 

fatty acid beta-oxidation by the mitochondria, thus playing an important role in lipid 

metabolism. Multiple cross-sectional EWAS in whole blood have identified methylation 

variations of CpG sites annotated to CPT1A in association with blood lipid levels. In 

a population-based cohort study of ~1500 Dutch adults aged 45 years and older, Braun 

et al. identified differential methylation of two CpG sites (cg00574958 and cg17058475) 

in association with TG levels [7]. Methylation of these CpG sites were inversely 

associated with TG and very low-density lipoprotein (VLDL) cholesterol [32, 33]. GOLDN 

investigators also found that methylation of cg00574958, specifically, explained ~12% of 

the variation in TG [32]. Further study showed that decreased methylation of cg00574958 

was linked to elevated plasma adiponectin levels [8]. Adiponectin is a hormone primarily 

secreted from adipose tissue, and it plays multiple roles in fatty acid oxidation, insulin 

resistance, and atherosclerosis [34]. This relationship not only remained significant after 

accounting for body mass index (BMI) and cigarette smoking, but also was replicated in a 

cohort of Amish adults (n~500), as well as white, but not black, adults in the Bogalusa Heart 

Study (n~850).

Furthermore, CPT1A methylation (specifically cg00574958) has been linked to other 

cardiometabolic traits and pathologies: hypertriglyceridemic waist phenotype, a potential 

marker of type 2 diabetes (T2D) [35]; familial hypercholesterolemia [36]; BMI [37]; 

adiposity [38]; carbohydrate and fat intake [33]; and metabolic syndrome [39]. A 

longitudinal study in rats suggested that high fat diet may increase CPT1A expression in 

blood [40], but human studies are lacking. Considering these findings, some investigators 

have sought to elucidate the causal relationship between CPT1A methylation and lipid traits 

through Mendelian randomization analyses. While these studies are not yet abundant, the 

current findings suggest that the lipid levels are causal for methylation variations rather than 

methylation being causal for the lipid trait variation. Sayols-Baixeras et al. identified causal 

effects of fasting TG levels on the methylation of CpG sites annotated to CPT1A in a cohort 

of ~1000 adults [41]. Similarly, Dekkers et al. observed causal effects of TG on the same 

CpG site (cg00574958) in the BIOS Consortium (n~2000) [42]. Moreover, a metabolomics 

study (n~360) identified metabolite levels as causal on methylation of multiple CpG loci, 

including those annotated to CPT1A [43]. These findings suggest that CPT1A methylation 

plays an important role in cardiometabolic diseases but that the mechanisms are complicated 

and could be environmental.

ABCG1

ABCG1 codes for a protein involved in cholesterol transport in macrophages and lipid 

homeostasis. ABCG1 methylation has previously been linked to T2D and glycemic traits, 

including as a potential mediator between statin use and T2D risk [44, 45]. EWAS have 
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identified increased methylation at CpG sites annotated to ABCG1 in association with 

elevated TG and lower HDL levels: cg06500161 and cg27243685 [7, 23, 24]. Other 

studies have evaluated associations between these CpG sites and hypertriglyceridemic 

waist [35], metabolic syndrome [46], prior myocardial infarction [23], insulin resistance 

[47], and adiposity [48]. Additionally, an EWAS of ~650 German adults in a population-

based study (KORA F4) showed that methylation of cg06500161 was inversely associated 

with ABCG1 expression in whole blood; this association was marginally significant after 

correction for multiple comparisons [24]. These findings were supported by an earlier 

study in the KORA F4 cohort also reporting the inverse association between ABCG1 
methylation and corresponding mRNA transcripts as well as HDL levels; the investigators 

further identified a positive association between ABCG1 mRNA and HDL levels, suggesting 

that the relationship between ABCG1 methylation and HDL may be mediated by ABCG1 
expression [23]. Another study showed that methylation at cg07397296 partially mediated 

the relationship between in utero famine exposure and adult TG levels, and these 

methylation variations were associated with gene expression in an external dataset [49]. 

Overall, the directional relationship between ABCG1 methylation and lipids has been 

difficult to assess from cross-sectional research, although a Mendelian randomization 

analysis showed a causal effect of HDL on methylation of ABCG1 CpG sites [42]. 

Candidate gene and case-control studies have also linked increased methylation of ABCG1 
to atherosclerotic markers and elevated LDL [30, 50]. In sum, differential methylation of 

ABCG1 has been widely associated with lipids and related traits. Still, further analyses 

are needed to characterize the relationship between gene expression, environmental factors, 

methylation, and lipid levels.

SREBF1

SREBF1 binds a motif in the promoter region of the LDL receptor gene (LDLR) to 

activate its transcription for cholesterol metabolism. EWAS in whole blood have repeatedly 

found that increased methylation at cg11024682 and cg20544516 (located in the promoter 

region of SREBF1) is associated with a worsening lipid profile. Increased methylation of 

cg11024682, was also linked to elevated TG levels and postprandial lipemia in GOLDN 

[7, 33], as well as decreased HDL levels in the Registre Gironí del Cor (REGICOR), 

Framingham Offspring Study, and GOLDN cohorts (n~3300) [51]. Moreover, a meta-

analysis of European and Indian adults (n~5500) showed that cg11024682 and cg20544516 

methylation was positively associated with VLDL and TG levels [24]. In secondary analyses 

(n~1700), Gomez-Alonzo et al. also found that cg20544516 methylation was inversely 

related to expression of SREBF1 cis-transcripts in subcutaneous fat. These findings are 

consistent with previous analyses showing that differential methylation of cg11024682 and 

cg20544516 in relation to lipid traits persist in both whole blood and adipose tissue. In a 

cohort of ~1800 adults, not only did methylation of these CpG sites in blood each explain 

~3% of the variation in TG level, but they were differentially methylated in skin and 

adipose tissue samples from an external cohort [23]. Like CPT1A and ABCG1, Mendelian 

randomization has showed a causal effect of TG levels on methylation of this gene [42]. 

Moreover, increased methylation at SREBF1 has been associated with central adiposity 

[52]; BMI [47, 53–55]; childhood and adult obesity [30, 56]; and T2D [57, 58]. These 

findings have been replicated in diverse cohorts, increasing their generalizability. Given the 
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relationship between these CpG sites and several traits, SREBF1 methylation may serve as a 

potential “multipurpose” biomarker for cardiometabolic dysfunction, not exclusive to lipids.

Overall, candidate gene and EWAS analyses have identified and repeatedly validated that 

CPT1A, ABCG1, and SREBF1 are targets of DNA methylation in lipid metabolism and 

associated disease. Furthermore, Pfeiffer et al. have demonstrated how these genes are 

interrelated to regulate cholesterol homeostasis and fatty acid metabolism: MIR33a/b is co-

transcribed with SREBF1, and the intronic miRNA acts as a negative regulator of ABCG1 
and CPT1A [23]. While current findings suggest that the relationships between lipid traits 

and methylation of these genes in blood are concordant with those in adipose tissue, more 

studies are needed to evaluate how these methylation variations affect gene transcript levels 

in target tissue. Other genes (e.g., DHCR24, ABCA1) may also be of interest, but they have 

not been validated as extensively as those discussed above. More studies are needed to fully 

describe the directionality of the environment, methylation, and lipid traits.

Environmental Considerations

While Mendelian randomization studies of methylation and lipids are limited, current 

analyses suggest that methylation changes are the consequence of lipid traits rather than the 

cause, supporting an important role for exposures which induce methylation changes [42]. 

Prospective epigenetic studies of environmental factors also consistently show that external 

exposures may induce methylation changes relevant to lipids [59] (Figure 1). Importantly, 

environmental epigenetic study findings have shown overlap with putative metabolic and 

lipid-related pathways, but the findings are mostly independent of previous lipid EWAS 

discoveries discussed above. These analyses have primarily focused in the areas of pollution 

and diet.

Pollution

Air pollution is a risk factor for exposure to particulate matter: hazardous, microscopic 

particles that are suspended in the atmosphere [60]. An EWAS meta-analysis in the 

Women’s Health Initiative (WHI) and the Atherosclerosis Risk in Communities (ARIC) 

studies identified significant methylation changes in association with particulate matter 

exposure (PM2.5–10, PM10), including at a CpG site annotated to miR128–2 [61]. This 

miRNA has been posited as an inhibitor of ABCG1 [62], and its methylation could result 

in ABCG1 upregulation. However, as previously discussed, ABCG1 silencing (via increased 

methylation) has been associated with elevated lipid levels in EWAS studies. Studies are 

lacking on the association between miR128–2 and lipids, but these findings suggest that 

there may be complex and potentially multidirectional relationships between pollution, 

methylation, and lipids. Furthermore, in a randomized crossover study of healthy young 

adults in China (n=36), investigators observed increased methylation in the promoter regions 

of additional sex comb-like 2 (ASXL2) and lamin A/C (LMNA) following short-term, high 

exposure to particulate matter (PM2.5) [63]. ASXL2 encodes a transcriptional regulator that 

facilitates lipid homeostasis via the PPAR-γ pathway [64]. LMNA encodes lamins A and 

C, structural nuclear proteins that contribute to lipid metabolism and storage. Mutations in 

LMNA can cause laminopathies, of which hyperlipidemia and atherosclerosis are clinical 
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presentations [65]. More prospective studies in larger cohorts are needed, but preliminary 

analyses suggest that, at the very least, there is a connection between exposure to particulate 

matter and lipid-related genes via DNA methylation.

Other studies have explored the role of endocrine disrupting chemicals (EDCs), such as 

phthalates and parabens, in methylation changes. Among a cohort of Dutch adults, an EWAS 

identified differentially methylated CpG sites related to urinary concentration of EDCs. 

Multiple CpG sites were annotated to genes that are functionally related to TG and HDL 

levels [66]. Another EDC, di(2-ethylhexyl)phthalate (DEHP), is added to plastics to make 

them flexible, and chronic DEHP exposure may cause adverse cardiovascular effects [67, 

68]. In both animal models and epidemiologic studies, DEHP exposure was associated with 

global hypermethylation, elevated cholesterol levels, and carotid intima-media thickness 

(CIMT, a marker of subclinical atherosclerosis) [69, 70].

Heavy metal exposure, thought to affect cardiovascular tissues through oxidative stress 

pathways, has similarly been linked to both atherosclerosis and DNA methylation [71]. 

In a study of children and young adults (n~700), investigators observed that urinary 

concentrations of lead and cadmium were positively associated with both CIMT and global 

DNA methylation [72]. Similarly, in a pilot study of epigenetic changes in a cohort of 

middle-aged men (n=23), 46% of DMRs associated with exposure to metals overlapped with 

atherosclerosis-related DMRs [73]. Pathway analyses showed that these genes were involved 

in inflammatory and metabolic processes. In a human cell line, treatment with arsenic 

exposure upregulated the transcription of DNA (cytosine-5)-methyltransferase 1 (DNMT1) 

via reactive oxygen species. The DNMT1 enzyme in turn methylated the ABCA1 promoter, 

induced global hypomethylation, and inhibited cholesterol efflux in macrophages [74]. 

ABCA1 is a member of the superfamily of ATP-binding cassette transporters that includes 

ABCG1, and its encoded protein plays a role in cholesterol efflux and HDL formation [75]. 

While investigators of these studies have proposed that DNA methylation may mediate the 

relationship between pollutants and lipids, further studies, such as Mendelian randomization, 

are needed to establish causality.

Diet

The relationship between methylation, diet, and lipids have been extensively explored. In 

the GOLDN study (n~1000), CpG sites annotated to multiple genes, including CPT1A, 

were associated with postprandial lipemia—elevation of TG levels after eating a high-fat 

meal [33]. The association remained significant after adjusting for baseline TG levels for 

cg005794958 and cg1705847 (both annotated to CPT1A). Another EWAS in GOLDN found 

that increased methylation of the ABCA1 promoter was associated with lower circulating 

omega-3 fatty acid and HDL levels [10]. Furthermore, a cross-sectional analysis of Japanese 

adults showed inverse relationships between ABCA1 methylation and dietary vitamin 

intake. Investigators suggested that ABCA1 methylation may mediate the effect of vitamin 

intake on HDL [76].

In a randomized controlled diet intervention trial, researchers evaluated the effect of 

a Mediterranean diet on methylation over a five-year period [77]. Components of the 

Mediterranean diet induced methylation changes in genes associated with metabolism, 

Jones et al. Page 8

Curr Atheroscler Rep. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diabetes, inflammation, and signal transduction. Specifically, Arpón et al. identified a CpG 

site (cg01081346) annotated to CPT1B—a paralog of CPT1A that encodes the rate-limiting 

enzyme of fatty acid oxidation in skeletal muscle—that was associated with polyunsaturated 

fatty acid intake among study participants. In another randomized, placebo-controlled trial 

of a dietary intervention, Lima et al. found that hazelnut oil consumption was associated 

with decreased methylation at ADRB3 and an increase in HDL [78]. In a later EWAS, 

the research group found that ADRB3 methylation was associated with higher fat intake 

and LDL [79]. ADRB3 encodes the adrenoreceptor beta 3, which is involved in regulating 

lipolysis.

In both prospective and cross-sectional analyses across multiple populations, exposures to 

pollutants and endocrine disruptors (e.g., phthalates, heavy metals) have been linked to 

differential DNA methylation. Many of these genes are involved in lipid metabolism and 

homeostasis. Additionally, dietary factors, particularly the consumption of different types of 

fats, have also been associated with the methylation of these linked to lipids-related genes. 

Further investigation is needed to explain the complex relationship between environmental 

exposures, DNA methylation, and lipids.

Conclusion & Future Directions

In summary, studies suggest that DNA methylation, variation of plasma lipids, and 

pathogenesis of dyslipidemias are entwined. Associations have been validated across 

multiple cohorts (particularly for CPT1A, ABCG1, and SREBF1). Candidate gene and 

EWAS approaches are still broadly applied, but investigators are expanding their analyses 

to multi-omics approaches that include genomic, transcriptomic, and metabolomic data. 

Intervention trials that explore the effects of environmental factors, such as diet, have 

shown methylation variations in association with lipids. Still, large epigenomic studies are 

predominantly cross-sectional in design.

Future analyses should continue to increase the diversity of study populations, as European 

ancestry populations are disproportionately overrepresented in the current literature. 

Additionally, explanations of the causal effects of methylation on lipids (or vice versa) 

are lacking. More studies that apply approaches such as Mendelian randomization or that 

capture prospective data are needed to clarify the relationship between the environment, 

DNA methylation, and lipids. Studies should also continue to assess how these relationships 

alter gene expression across relevant tissues. Other considerations include the evaluation 

of methylation variation over the lifespan, or in the context of medication responses 

(i.e., pharmacoepigenetics). Overall, while there has been significant progress in our 

understanding of DNA methylation and lipids. However, considerable research is still 

needed to translate this information into clinically applicable tools.
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Figure 1. 
The interrelation of the environment, epigenome, and lipids are not fully understood. 

Environmental factors may induce methylation changes at genes that are associated with 

lipid traits. Conversely, Mendelian randomization studies suggest that lipid traits are 

causal for methylation. Further studies (via a diverse set of analytical methods) are 

needed clarify the directionality of these relationships. Abbreviations: microRNA (miRNA); 

long non-coding RNA (lncRNA); low-density lipoprotein cholesterol (LDL); triglycerides 

(TG); total cholesterol (TC); high-density lipoprotein cholesterol (HDL); coronary artery 

disease (CAD); myocardial infarction (MI); epigenome-wide association study (EWAS); 

methylation quantitative trait loci (meQTL); expression quantitative trait loci (eQTL).
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