Table 9.
Performance of machine learning algorithms in detecting multiple classes.
| Model | Attacks | Accuracy (%) | Precision (%) | Recall (%) | F1 score (%) |
|---|---|---|---|---|---|
| Linear SVM | DoS | 95.39 | 95 | 96 | 96 |
| Probe | 87 | 79 | 83 | ||
| R2L | 63 | 62 | 62 | ||
| U2R | 0.00 | 0.00 | 0.00 | ||
| Normal | 97 | 98 | 98 | ||
|
| |||||
| QSVM | DoS | 92.89 | 96 | 94 | 95 |
| Probe | 97 | 60 | 74 | ||
| R2L | 0.00 | 0.00 | 0.00 | ||
| U2R | 0.00 | 0.000 | 0.00 | ||
| Normal | 91 | 100 | 95 | ||
|
| |||||
| KNN | DoS | 98.28 | 99 | 98 | 99 |
| Probe | 96 | 97 | 96 | ||
| R2L | 91 | 80 | 85 | ||
| U2R | 57 | 27 | 36 | ||
| Normal | 98 | 99 | 99 | ||
|
| |||||
| Linear discriminant | DoS | 93.18 | 94 | 96 | 95 |
| Probe | 89 | 73 | 80 | ||
| R2L | 33 | 88 | 48 | ||
| U2R | 0.04 | 60 | 0.08 | ||
| Normal | 97 | 95 | 96 | ||
| DoS | 61.79 | 94 | 86 | 90 | |
| Probe | 84 | 28 | 42 | ||
| R2L | 0.03 | 100 | 0.06 | ||
| U2R | 0.00 | 0.00 | 0.00 | ||
| Normal | 75 | 51 | 61 | ||