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One of a very significant computer vision task in many real-world applications is traffic sign recognition. With the development of
deep neural networks, state-of-art performance traffic sign recognition has been provided in recent five years. Getting very high
accuracy in object classification is not a dream any more. However, one of the key challenges is becoming making the deep neural
network suitable for an embedded system. As a result, a small neural network with as less parameters as possible and high accuracy
needs to be explored. In this paper, the MicronNet which is a small but powerful convolutional neural network is improved by
batch normalization and factorization, and the proposed MicronNet-BN-Factorization (MicronNet-BF) takes advantages about
reducing parameters and improving accuracy. ,e effect of image brightness is reduced for feature recognition by the elimination
of mean and variance of each input layer inMicronNet via BN. A lower number of parameters are realized with the replacement of
convolutional layers in MicronNet, which is the inspiration of factorization. In addition, data augmentation is also been changed
to get higher accuracy. Most important, the experiment shows that the accuracy of MicronNet-BF is 99.383% on German traffic
sign recognition benchmark (GTSRB) which is much higher than the original MicronNet (98.9%), and the most influence factor is
batch normalization after the confirmation of orthogonal experimental. Furthermore, the handsome training efficiency and
generality of MicronNet-BF indicate the wide application in embedded scenarios.

1. Introduction

Traffic signs, usually erected at the side of roads, use texts or
symbols to provide road information for vehicle divers and
pedestrians (see Figure 1). Traffic sign recognition is es-
sential in advanced driver assistance systems (ADASs) and
autonomous vehicles [1]. In the real cases, camera installed
on the vehicle takes photos of roads. ,e information
processing system processes the image and detect and
classify the traffic sign according to its characters. ,e
classification result provides road information for drivers or
adjusts the motion state of an autonomous vehicle. Because
the captured images are affected by brightness and weather
conditions, traffic sign classification has high requirement in
accuracy and robustness.

For the sufficient research of traffic sign recognition,
researchers established amultitraffic sign recognition dataset
such as German Traffic Sign Recognition Benchmark

(GTSRB) [2], Belgium Traffic Sign Classification Benchmark
(BelgiumTSC) [3], and Tsinghua-Tencent 100K dataset [4].
GTSRB dataset provides 51,840 colorful images of German
road signs in 43 classes. ,is dataset also provides cropped
images for accurate classification. Most of images are clear,
but part of them is blurred and darkness used to test the
algorithm’s robustness. It not only allows researchers to test
the accuracy of their algorithm and to compare it with
human performance but also to be transformed by the
histogram of the oriented gradient algorithm to prevent
projection distortion [5] or denoised to promise the quality
of dataset [6].

In recent years, convolution neural networks (CNNs)
show high performance in the GTSRB dataset [7–9]. CNNs,
inspired from human’s visual perception mechanism, are
applied broadly in computer vision [10]. As a deep learning
network, it has many layers to simulate neurons to learn the
characters of images. It has showed high performance in
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many datasets such as CIFAR [11] and ImageNet [12], so
people consider applying the enhanced CNN (e.g., LeNet-5
[13], Caps Net [5], PFANet [14], differential evolution
evolved RBFNN [15], etc.) in traffic classification. However,
application in vehicles has its restriction. ,e network re-
quires high response speed under the limited storage space.
,e hardware installed on the vehicle does not have enough
computation ability, which causes the scale of the network
limited [16]. As such, some famous mature deep networks
such as GoogLeNet [17] and VGG [18] are too deep or huge
to be applied in vehicles directly. However, small networks
are feasible. Zhang et al. [1] proposed two light weight CNN
simple student network and deep teacher network and
assisted the training of the student model to achieve high
accuracy in traffic sign classification. Arman et al. [19]
proposed a novel thin yet deep convolutional neural network
for a light weight architecture. Cao et al. [20] used HSV color
space preprocess images and applied improved LeNet-5
CNN model with a small number of parameters in traffic
sign classification. Although the research studies above have
slimmed the networks to adapt the embedded system, the
recognition of brightness and blur pictures of traffic sign is
still an arduous challenge. Wong et al. [21] proposed
MicronNet and trained it with the augmented (e.g., HSV
augmentation, Gaussian blur, motion blur, etc.) traffic sign
photos. However, the augmented dataset in [21] have no
emphasis, causing information redundancy. ,ere are still a
number of optimizations in the structure of MicronNet and
the augmentation of traffic sign dataset, and it is essential to
find a proper balance between the processing of a traffic sign

dataset and the light weight structure of the convolutional
neural network.

Inspired from the above network, we proposed a CNN
based on MicronNet, a small network and overcomes
drawbacks of the original network. In this study, we mainly
focus on MicronNet-BN-Factorization (MicronNet-BF)
which fused the superiority of MicronNet, batch normali-
zation, and factorization. In addition, the appropriate
augmentation methods of insufficient illumination traffic
signs are selected for a better training performance.

,e main contributions of this paper can be summarized
as follows:

,e complicated data augmentation methods (in-
cluding shift, flip, mirror, HSV, blur, and rotation) are
simplified into shift, scale, and the V channel of HSV,
avoiding that too much data augmentation may in-
troduce some useless or even false characters of traffic
sign and reduce the accuracy of the neural network.
Two channels are additionally supplemented to the first
layer, 1-by-1 convolution, to enhance the learning of
image features from the dataset. 5-by-5 convolutional
layer is replaced by two sequential 3-by-3 convolutional
layers, reducing parameters and extracting more me-
ticulous characteristics to increase the accuracy.
Batch normalization can learn and fix the input means
and variances of each layer. For the traffic sign rec-
ognition, the adverse effect of brightness is effectively
reduced, improving the classification accuracy of in-
sufficient lighting images.

Figure 1: Various categories of traffic signs under different weather and brightness in GTSRB.
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2. Related Work

MicronNet [21], a small deep convolutional neural network,
is proposed to achieve real-time embedded traffic sign
classification. ,e network structure is optimized from a
large network by repeating omitting parameters and testing
network to maintain high accuracy with the least number of
useful parameters. ,e final optimized network reaches
98.9% accuracy only containing 0.51M parameters and
which is competitively with the deep inception-based CNN
[22] with 10.5M or single CNN with 3 STNs [23] with 14M,
etc. Furthermore, a few logical operations are required for
MicronNet to perform inferences and short computation
time meanwhile. However, the network cannot deal with
dark and blurred images well (see Figure 2). Based on the
MicronNet, we adjust data augmentation and modify parts
of the network to make it suitable to both common images
and dark images.

Ioffe and Szegedy [24] proposed batch normalization
(BN) to improve classification accuracy and training rate.
Because of internal covariate shift, the changed parameters
of the previous layers causing each layer inputs changed after
every training epoque, and traditional network training
chooses a low learning rate. Batch normalization normalize
every layer’s input for each training minibatch. We intro-
duce batch normalization to MicronNet to improve its
learning rate and accuracy.

Szegedy et al. [25] based on GoogLeNet [17] presented
the inception V2 network. In this paper, Szegedy presented a
theory that two sequential small convolutional filters can
replace a large convolutional filter to improve the learning
rate and reduce parameter number and achieve similar
accuracy because the receptive field of two methods are the
same.,e factorizing mentality is fused inMicronNet either.

3. Proposed Methods

3.1. Data Augmentation. ,e uneven distribution of data
will be decreasing the accuracy of classification. Researchers
use a various of data augmentation techniques to balance the
number of samples [21, 26]. However, on the one hand, the
data that can be augmented based on one sample is limited
and cannot be increased indefinitely due to the distortion of
the characteristics of sample in the process of augmentation.
On the other hand, the ministructure of the neural network
cannot effectively learn too much characteristics. As a result,
the proposed data augmentation is simplified to three ways:
(i) shifting, (ii) brightness, and (iii) scale. ,e properties of
choosing these three ways can be described as follows: (1)
Shifting can help to deal with the partially covered traffic
signs. (2) Brightness can help to learn the traffic signs under
different light conditions. (3) Scale can help to handle
various sizes of traffic signs. ,e examples can be seen in
Figure 3.

3.2. MicronNet-BF. MicronNet is a compact deep neural
network proposed for traffic sign classification on embedded
devices [21]. It has struck a relative balance between the

augmentation of a traffic sign dataset and the simplifying of
the network architecture, but the main problem in the ex-
ample of misclassified traffic images is either heavily motion
blurred (left), partially occluded (middle), or exhibit poor
illumination (right). Based on the MicronNet and inspired
from the network architecture of inception V2 [21, 25], an
improved network architecture MicronNet-BN-factoriza-
tion (MicronNet-BF) is proposed in this paper. MicronNet-
BF is taken to (1) improve the total accuracy on traffic sign
recognition problems, (2) keep the same model size or
achieve a smaller model size for embedded devices, (3)
achieve better performance on classification accuracy of a
special class (low brightness images).

Figure 4 shows the overall network architecture of
MicronNet-BF, and Table 1 prints the details of parameters.
In this architecture, it mainly has 5 convolutional layers, 2
fully-connected layers, and a SoftMax layer. All the acti-
vation functions in this network are chosen to be rectified
linear unit (ReLU) for the reducing of computational
complexity. In this network, the 1-by-1 convolutional layer
in the original MicronNet is extended to have 3 output
channels, and the 5-by-5 convolutional is replaced by two of
the 3-by-3 layers. Furthermore, batch normalization layers
are added into the proposed network to deal with the
brightness difference in the input images and improve
training speed.

,e batch normalization layer in a network learns the
mean and variance of dataset, and fixes the input means and
variances of each layer. In the application of traffic sign
classification, the brightness of each input image is closely
related to the mean and variance value of the image. By
normalization of the mean and variance of each image, the
batch normalization layer turns all the images in the dataset
to have a similar brightness, which improves the classifi-
cation accuracy of the low brightness traffic sign images.

On the one hand, inspired by the idea of “factorization”
into smaller convolutions in inception V2 [25], the 5-by-5
convolutional layer is replaced by two of the 3-by-3 con-
volutional layers, as shown in Table 1. ,e 3-by-3 con-
volutional layer used in this replacement enables the
network to learn some smaller scaled feature from the input
images and share the features among the following up 3-by-3
convolutional layer. Furthermore, the spatial coverage of the
original 5-by-5 layer is maintained by the overlap of two
3-by-3 convolutional layers. In this way, this improvement
results in a slight deeper network with the ability of learning
smaller scaled details from the traffic signs, which signifi-
cantly improved the overall classification accuracy.

On the other hand, traffic signs are normally designed
with colors of high contrast, including black, white, red,
yellow, and blue. In order to use the color information in the
traffic sign classification, the 1-by-1 convolutional layer is
extended to have 3 output channels. In the traditional
network, the 1-by-1 convolutional layer combines the RGB
color of the input image to 1 value on each pixel location,
which can be considered as a RGB to gray conversion. After
extending the output channel to 3, the 1-by-1 convolutional
layer becomes a color extraction layer, which provides 3
different color combinations for the following up layers.
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4. Experimental Evaluation

4.1. Implementation Details. For a fair comparison, both
methods and algorithm architectures take similar learning
hyperparameters. A learning rate of 0.007 is used for
MicronNet and MicronNet-BF in most scenes. ,e hyper-
parameters of comparison methods are taken as the default

of the corresponding cite paper. Meanwhile, the same ex-
periment platform is used in all experiment and is a Linux
Ubuntu20.4 operating system with PyTorch. ,e GPU is
GTX1080ti of NVIDIA. As an evaluation index, the accuracy
rate refers to the percentage of the number of correctly
recognized in the test dataset to the whole number of test
dataset, and time refers to the sum of training time of 100

Figure 2: Examples of traffic images in GTSRB unrecognized by original MicronNet since blur or darkness.

Figure 3: Data augmentation of traffic signs in GTSRB. ,e data augmentation ways about shifting, brightness and scale can be seen from
images.
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samples in each epoch. Additionally, some abbreviations for
networks have been adopted for briefly expression, as shown
in Table 2.

For the comparing of the recognition of networks on
dark images, the insufficient brightness images of traffic sign
are extracted from the testing dataset to combine a new
challenging dataset. After ordering the brightness of the
whole testing dataset, the first 20.57% samples (the number
of 2599) were used as the new insufficient illuminated traffic
sign dataset; that is, the average brightness of each sample in
the new dataset was lower than 40. ,e quantity distribution
of the testing dataset is shown in Figure 5. ,e samples with
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Figure 4: Brief structure diagram of MicronNet-BF. ,e sizes of convolution filters and convolution layer’s inputs are expressed on the
upper diagram, and the brief description of MicronNet-BF’s complete layer structure on the below.

Table 1: ,e structure of proposed MicronNet-BF.

Type/stride/pad Filter shape Input size
Conv/s1/p0 1× 1× 3 48× 48
BN Batch normalization 48× 48
Conv/s1/p0 3× 3× 29 48× 48
BN Batch normalization 46× 46
Conv/s1/p0 3× 3× 40 46× 46
BN Batch normalization 44× 44
Pool/s2/p0 3× 3 Maxpool
Conv/s1/p0 3× 3× 59 22× 22
BN Batch normalization 22× 22
Pool/s2/p0 3× 3 Maxpool
Conv/s1/p0 3× 3× 74 10×10
BN Batch normalization 10×10
Pool/s2/p0 3× 3 Maxpool
FC/s1 1× 300 1× 1184
BN Batch normalization 1× 300
FC/s1 1× 300 1× 300
Softmax/s1 Classifier 1× 43
,e bold numbers mean one of the innovations in applying inception V2 to
MicronNet.

Table 2: Abbreviations of networks.

Abbreviation Network
MicN MicronNet (self-trained)
MicN-B MicronNet + BN
MicN-O MicronNet + 1-by-1× 3 outputs
MicN-3 MicronNet + 2× 3-by-3
MicN-L MicronNet + insufficient lighting

MicN-BF MicronNet-BN-factorization
(the fusion of all above)
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Figure 5: Testing set brightness distribution. ,e samples with
brightness lower than 40 are constituted to the brightness insuf-
ficient dataset.
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red are constructed to a harder dataset, and the rest samples
are used for testing.

4.2. MicronNet-BF Evaluation with GTSRB. For the com-
paring with MicronNet [21], the proposed MicronNet-BF is
evaluated on German traffic sign recognition benchmark
(GTSRB) [27] firstly. ,e GTSRB dataset contains color
traffic sign images from 43 classes and intends for recog-
nition. On the one hand, the evaluation with the overall
accuracy on GTSRB is taken normally. For further chal-
lenges, the recognition of lower brightness images from the
GTSRB testing set is processed meanwhile. On the other
hand, during the training of the network, rotation, shifting,
and scaling are used as data argumentation strategies to
improve the generality of the resulting network, especially
for the testing images with partly visible sign.

Figure 6 shows the testing accuracy and training time of
the proposed network MicronNet and the comparison
networks based on GTSRB dataset. Comparing with the
MicronNet, the batch normalization layer added into it
improves the classification accuracy from 97.686% to
98.74%. Furthermore, the extending of output channels on
1-by-1 layer improves the accuracy to 97.561%, and the
replacement of two 3-by-3 layers improves the overall ac-
curacy to 98.777%. ,us, the overall accuracy with 99.383%
of the MicronNet-BF is improved by the three strategies
proposed in this project, respectively. What is more, the
comparison of MicN-BF× L with 99.448% and MicN-L with
98.147% indicates the great recognition performance of
MicronNet-BF under insufficient brightness.

4.3. Validation of MicronNet-BF Influence Factors. In the
front section experiment, it was proved that batch nor-
malization, extending of output channels on 1-by-1 layer,
and factorization were successfully integrated into Micro-
nNet, but the effect and influence processes of each factor
need further experimental verification. ,e Taguchi or-
thogonal array experimental method can greatly reduce the
number of experiments than grid searching experiment and
inference of the optimal parameter combination by the
orthogonal method [28, 29]. ,e Taguchi orthogonal array
experimental method is used to obtain the optimal values
and evaluate the influence of factors [30, 31].

,ere are three factors in MicronNet-BF that need to be
focused on. In addition, the interaction between factors
should also be considered, including dataset with insufficient
illumination. For a summary, there are seven factors (in-
cluding MicN-B, MicN-O, MicN-3, MicN-L, MicN-B×O,
MicN-B× 3, and MicN-O× 3) and two levels (including N
(NULL) and A (APPLY)) in the experiment. With respect to
selected factors, L8(27) orthogonal array was designed for
the validation experiments, and the experimental design and
the results are shown in Table 3.

For an immediate point of view, the best accuracy with
99.448% is taken with the network of MicronNet-BF under
the insufficient brightness testing dataset; it is consistent
with the conclusion of the previous subsection. In Table 3,
IA1 denotes the summary of accuracy under the first level of

the factors, and IA2 for the second level, RA represents the
absolute value of the difference of IA1 and IA2. ,e meaning
of IT1, IT2, and RT is similar with the third before but for
time. From the row of RA, the biggest difference is the factor
of MicN-B and the smallest is MicN-O, and it indicates that
the factor MicN-B has the most influence of the recognition
accuracy of traffic signs, and the factor MicN-O has the
lowest influence. ,e result in the row of RT shows that the
factor MicN-B has the most influence of the training time
too, but the factor MicN-B X O has the lowest. According to
the difference value of interaction factor, there is only a tiny
effect about accuracy and time. ,erefore, the ranking of
effects can be sorted as MicN-B>MicN-3>MicN-
L>MicN-B× 3>MicN-O× 3>MicN-B X O>MicN-O.

For the insufficient brightness traffic sign dataset, the
recognition accuracy is shown in Figure 7. ,e best accuracy
with 99.448% is taken by MicronNet-BF, and the accuracies
of MicN-B× L with 98.936% and MicN-3× L with 99.079%
are better than MicronNet significantly. ,e recognition
ability of batch normalization and factorization for traffic
signs with insufficient brightness is proved. Although the
accuracy of MicN-O× L with 97.96% is no better than
others, this tendency can be seen in Table 4 with the RA of
MicN-O. On the one hand, it is indicated that extending the
output of the 1 by 1 layer to three channels cannot enhance
the recognition performance of traffic signs with insufficient
brightness, but MicN-O can improve the classification
performance of traffic signs with normal illumination and
rich colors to a certain extent, and hardly increase the extra
training time meanwhile. ,erefore, the MicN-O is also
effective.

On the other hand, the fluctuation of loss value and
accuracy rate in the process of iteration can also reflect the
role of various factors. As Figure 8 shows, networks present
various fluctuation trends in the training process. MicN
fluctuated widely in the first 10 iterations and remained
fairly flat thereafter. ,e loss value of MicN-B dropped
quickly, but the subsequent fluctuations lasted for a long
time. ,e loss value of MicN-O dropped faster than MicN
and have a bit fluctuation later. MicN-3 get the best per-
formance in the process of iteration, dropped fastest, and
more flatted. Finally, under the balance of various factors,
MicN-BF loss value decreases rapidly with few fluctuations
so as to achieve the best classification performance quickly
and maintain stability.

4.4. Comparison Evaluation. With the discussion in the
previous subsections, the test of MicronNet-BF on GTSRB
dataset is quite complete. In order to further verify the
recognition performance of MicronNet-BF on addition
traffic sign dataset and different types of datasets, some
representative datasets were selected. ,e properties of
several dataset and the evaluation performance are listed in
Table 4.

,e Belgium Traffic Signs Classification dataset has 62
categories, 4,591 samples for training and 2498 for testing.
,e results show that the recognition performance of
MicronNet-BF with 82.122% is better than MicronNet with
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Figure 6: Accuracies and time of networks based on GTSRB. ,e best accuracy with 99.448% is taken with MicronNet-BF under the
insufficient brightness dataset.

Table 3: Orthogonal experimental design and the results.

Ex. No. MicN-B MicN-O MicN-B×O MicN-3 MicN-B× 3 MicN-O× 3 MicN-L Acc (%) Time (s)
1 N N N N N N N 97.686 7.863
2 N N N A A A A 99.079 9.564
3 N A A N N A A 97.96 8.371
4 N A A A A N N 98.534 8.858
5 A N A N A N A 98.936 9.708
6 A N A A N A N 99.28 11.707
7 A A N N A A N 98.824 9.509
8 A A N A N N A 99.448 11.448
IA1 393.259 394.981 395.037 393.406 394.374 394.604 394.324
IA2 396.488 394.766 394.71 396.341 395.373 395.143 395.423
RA 3.229 0.215 0.327 2.935 0.999 0.539 1.099
IT1 34.656 38.842 38.384 35.451 39.389 37.877 37.937
IT2 42.372 38.186 38.644 41.577 37.639 39.151 39.091
RT 7.716 0.656 0.26 6.126 1.75 1.274 1.154
,e bold numbers represent the best performance of the corresponding item.
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Figure 7: Accuracies of networks based on insufficient brightness data. ,e best accuracy with 99.448% is taken by MicronNet-BF.
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80.388%. It indicated that with the training of a small
number of traffic signs, the classification performance of
MicronNet-BF decreased, but it was still higher than
MicronNet. On the one hand, the generalization of
MicronNet-BF and MicronNet has been verified with the
accuracies of 99.58% and 99.49% on the dataset of MNIST.
In the more challenging number classification dataset of
SVHN, MicronNet-BF maintained a slight advantage, in-
dicating that the structural superiority is not limited to the
recognition of traffic signs. In the case of more complex
dataset Cifar10 and Cifar100, MicronNet-BF is unable to
learn deeper features as to its lightweight structure, and the

recognition accuracy is only 78.67% and 49.93%, respec-
tively, but it still far exceeds MicronNet with 34.83% and
10.33%.

On the other hand, the MicronNet-BF is mainly used in
embedded devices. By comparing the difference of structure
between MicronNet-BF and MicronNet, replacing a 5-by-5
convolution filter with two 3-by-3 convolution filters has the
greatest impact on the number of variables, and the number
of variables is reduced to 0.44M. As listed in Table 5,
compared with the state-of-art networks, with the minimum
number of variables of 0.44M, MicronNet-BF has achieved
excellent results with a difference of no more than 0.4%
compared with the larger networks.

5. Conclusions

In order to improve the recognition performance of traffic
signs further, the MicronNet-BF which is fused by Micro-
nNet, batch normalization, and factorization is proposed.
,e addition of batch normalization enhances the recog-
nition performance to 98.74%, which is 1.05% higher than
the performance of MicronNet. ,e application of factor-
ization improves the accuracy to 98.77%.,eMicronNet-BF
which is combined by multifactors listed above has a rec-
ognition performance with 99.383% which has a great im-
provement than MicronNet. On the one hand, the batch

Table 4: ,e testing accuracy and training time.

Dataset GTSRB BTSC [3] MNIST SVHN [32] Cifar10 Cifar100

Property
Categories 43 62 10 10 10 100

Training samples 39209 4591 60000 73257 50000 50000
Testing samples 12630 2498 10000 26032 10000 10000

MicronNet Testing accuracy 97.686% 80.388% 99.49% 92.16% 34.829% 10.333%
Training time 1 s 1.01 s 0.55 s 0.38 s 0.85 s 0.85 s

MicronNet-BF Testing accuracy 99.383% 82.122% 99.58% 93.35% 78.67% 49.93%
Training time 1.41 s 1.48 s 0.60 s 0.65 s 1.29 s 1.27 s

,e bold numbers represent the one with the better test accuracy in MicronNet-BF and MicronNet.
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Figure 8: ,e accuracies and losses of networks. Obviously, the loss value of MicN-B is more volatile.

Table 5: Classification accuracies of GTSRB and parameter
number of algorithms.

Network Parameter (M) Accuracy (%)
Deep inception-based CNN [24] 10.5 99.81
Single CNN with 3 STNs [30] 14 99.71
HLSGD [33] 23.2 99.65
Student network [1] 0.73 99.61
MCDNN [16] 38.5 99.46
MicronNet-BF 0.44 99.38
MicronNet [21] 0.55 98.9
DNN [16] 1.54 98.52
,e bold characters and numbers represent the proposed algorithm and its
parameters, respectively.
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normalization and factorization do enhance the ability of
recognizing the traffic signs with insufficient brightness after
the experiment evaluation. On the other hand, the most
influence factor is batch normalization after the confirma-
tion of orthogonal experimental. In the end, the perfor-
mance of MicronNet-BF used in BTSC, Cifar10, and
Cifar100 is better than MicronNet.

Although the algorithm is applied in the embedded
system, the less parameters are not better, and striking a
balance between the number of parameters and the size of
storage space needs further study.
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