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Abstract
Cardiac structure contouring is a time consuming and tedious manual activity used for radiotherapeutic dose toxicity plan-
ning. We developed an automatic cardiac structure segmentation pipeline for use in low-dose non-contrast planning CT based 
on deep learning algorithms for small datasets. Fifty CT scans were retrospectively selected and the whole heart, ventricles 
and atria were contoured. A two stage deep learning pipeline was trained on 41 non contrast planning CTs, tuned with 3 
CT scans and validated on 6 CT scans. In the first stage, An InceptionResNetV2 network was used to identify the slices 
that contained cardiac structures. The second stage consisted of three deep learning models trained on the images contain-
ing cardiac structures to segment the structures. The three deep learning models predicted the segmentations/contours on 
axial, coronal and sagittal images and are combined to create the final prediction. The final accuracy of the pipeline was 
quantified on 6 volumes by calculating the Dice similarity coefficient (DC), 95% Hausdorff distance (95% HD) and volume 
ratios between predicted and ground truth volumes. Median DC and 95% HD of 0.96, 0.88, 0.92, 0.80 and 0.82, and 1.86, 
2.98, 2.02, 6.16 and 6.46 were achieved for the whole heart, right and left ventricle, and right and left atria respectively. The 
median differences in volume were -4, -1, + 5, -16 and -20% for the whole heart, right and left ventricle, and right and left 
atria respectively. The automatic contouring pipeline achieves good results for whole heart and ventricles. Robust automatic 
contouring with deep learning methods seems viable for local centers with small datasets.
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Introduction

Cardiac image contouring is an important first step in many 
diagnostic and radiotherapy planning processes. Quantitative 
metrics can be extracted by delineating the structures of the 
heart, i.e., the myocardium, left and right ventricle (LV & 
RV) and the left and right atrium (LA & RA) (Fig. 1). These 
contours and measurements can give insight in the status 
of the heart [1], can be used to plan radiation therapy with 
minimal radiation toxicity [2], and can be an intermediate 
step in other image processing pipelines, such as automatic 
coronary artery calcium scoring [3]. Contouring is manu-
ally time consuming work and, therefore, finding methods to 
automate this process are often investigated [4, 5].

Most automated segmentation methods are based on the 
use of atlases. Atlas-based segmentation requires long reg-
istration times to be accurate [4]. Current advances in deep 
learning methods may allow for quicker and more accurate 
contouring and for contouring of cardiac substructures on 
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low-dose non-contrast CT scans, such as the planning CT, 
instead of a contrast-enhanced CT.

However, deep learning also comes with its own dis-
advantages, such as the requirement for large datasets and 
extensive external validation. The European Commission 
has stated in their proposal for laying down harmonized 
rules on AI that AI systems should be evaluated on data-
sets that have appropriate statistical properties regarding 
the cohorts they are intended to be used on [6]. However, 
international high quality datasets are difficult to acquire 
due to privacy laws described in the same proposal. Train-
ing and evaluating deep learning methods in local centers 
might currently be the way forward for implementation of AI 
algorithms. Local centers could train robust architectures on 
their own data, circumventing privacy issues, and ensuring 
automatic validation is done on their own cohort.

The aim of this project was to develop an automated car-
diac contouring pipeline for use in low-dose non-contrast 
CT scans in local centers with a small dataset with deep 
learning methods.

Materials and Methods

Our work is part of the development process of an auto-
mated coronary artery calcium scoring algorithm [3]. Cre-
ating contours of the whole heart and the ventricles and 

atria may reduce the number of false positive calcium spots 
situated in the lungs and help identify valvular calcium. 
A two-stage approach with 2D neural networks was used 
to deal with the data imbalance problem of the heart only 
occupying little space in a CT volume. The first stage iden-
tified slices containing the heart so that the second stage 
only needs to be trained on slices with heart. The second 
stage segmented the whole heart, the LV and RV, and the 
LA and RA.

Dataset

Fifty planning CT scans of patients with breast cancer were 
selected for this study. These scans contained no clinically 
relevant abnormalities; the scans were part of radiotherapeu-
tic treatment at the University Medical Center Groningen [7].

The CT examinations were performed with a Somatom 
Sensation Open CT system (Siemens Healthineers, Erlan-
gen, Germany), without iodine contrast agent. Field of view 
was set at 500 mm and 512 × 512 pixels with a thickness 
of 3 (N = 29) or 5 (N = 21) mm. No interpolation was used 
to reconstruct the volumes. The CT images were converted 
to NUMPY format, the contrast was adjusted to the medi-
astinum window setting (W:350 HU, L:50 HU). No further 
pre-processing was done on the images.

An experienced cardiac radiologist and physician assis-
tant specialized in breast cancer created manual contours 
of the whole heart, LV and RV, and LA and RA, based on 
the atlas of Feng et al. [8] by general consensus. This work 
was performed in Mirada RTx (v1.6 Mirada Medical Ltd., 
Oxford, UK).

The dataset was split in 44 training volumes, 3 tuning 
volumes and 3 internal validation volumes. All 2D slices 
were extracted from these volumes for the first stage. For 
the second stage, only the images that contained relevant 
heart contours were used. We also added 3 slices of liver 
without heart contours to improve the networks’ recogni-
tion of liver areas. The dataset was resplit into 41 training 
volumes, 3 tuning volumes and 6 internal validation vol-
umes for the second stage by moving 3 3-mm slice thick-
ness patient volumes from the training dataset to the internal 
validation dataset. The splitting of the dataset was done to 
get a 50–50 division in the validation volumes between 3 and 
5 mm slice thickness scans. An overview of the datasplit is 
shown in Fig. 2.

Network Architectures

The contouring pipeline consisted of two stages. The 
first stage was a classifier that classifies axial slices into 
slices that contain the heart and slices without heart. The 
architecture was InceptionResNetV2 and is, as the name 
implies, a hybrid architecture combining the strengths of 

Fig. 1   CT image with contours of the investigated structures as made 
by the experienced cardiac radiologist and physician assistant special-
ized in breast cancer: whole heart(WH) (green), left ventricle (LV) 
(blue), right ventricle (RV) (red), left atrium (LA) (yellow), right 
atrium (RA) (purple)
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the Inception and Resnet architectures. This network is 
164 layers deep and still trainable thanks to the addition 
of residual layers in the Inception blocks[9]. The network 
was pretrained on the ImageNet Large Scale Visual Rec-
ognition Challenge containing around 1.2 million images 
with 1000 categories of day-to-day objects[9]. This chal-
lenge evaluated models for object detection and image 
classification. The model was, therefore, already famil-
iar with standard shapes and this makes training of the 
model easier. The batches consisted of 15 CT slices, the 
maximum amount of epochs was set to 50 with early stop-
ping based on the F1 metric of the tuning set to prevent 
false negatives. Early stopping based on the F1 metric was 
achieved after 89 epochs. The loss function was binary 

cross entropy and the learning rate was set to 10e−4 with 
Adamax as optimizer.

The second stage consisted of three Unet3 + neural net-
works[10]. These neural networks worked parallel to each 
other. One segmented the five structures on axial slices 
whereas the other two only segment the whole heart on 
coronal and sagittal slices to improve the segmentations of 
the lower and upper boundaries of the heart. The output of 
these three neural networks was combined into a volume by 
multiplication of the binary masks for the final result. The 
batch size was set to 5 slices, with Adamax with a learning 
rate of 10e−3, beta_1 of 0.9, beta_2 of 0.999 and an epsi-
lon of 1e−7 as an optimizer. The loss function used was a 
hybrid loss of the sum of the dice coefficient loss function 

Fig. 2   Summary of the datasplit of the first and second stage training, tuning and validation
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and the focal loss function (Eq. 1). The focal loss function 
was weighted twice to help improve accuracy on slices that 
were difficult to contour.

The architectures of both stages were implemented in 
Python 3.6 with Keras[11] with TensorFlow backend.

Metrics

Cohen’s kappa was used as a metric for the accuracy of 
the first stage classifier. The Dice similarity coefficient[12] 
(DC) and 95% Hausdorff distance[13] (95% HD) are used 
as metrics to quantify the overlap with and distance of the 
contours when compared to the ground truth contours[14]. 
The ratio between the manual and predicted volumes of each 
structure is used as a metric for clinical implications of using 
the proposed method.

Results

The first classifier for selection of slices containing the 
heart was very accurate with an accuracy of 99% and 
an agreement with Cohen’s kappa of 0.98 between the 
ground truth and the classifier. Table 1 shows the confu-
sion matrix.

The second stage 2.5D neural networks achieved a 
median DC of 0.96, 0.88, 0.92, 0.82 and 0.80 for the whole 
heart, RV, LV, LA and RA contours. 95% HDs were 1.86, 
2.98, 2.02, 6.46 and 6.16 mm for the whole heart, RV, LV, 
LA and RA contours. Volume ratios between the ground 
truth volumes and the predicted volumes were 0.96, 0.99, 
1.05, 0.80 and 0.84 for the whole heart, RV, LV, LA and RA 
respectively (Table 2). An average example of the contours 
can be seen in Fig. 3. More detailed results of each vali-
dation dataset can be found in supplementary table 1. The 
entire contouring pipeline takes under 30 s to process an 
entire volume even though the process is currently unopti-
mized. We speculate that the entire process could take well 
under 10 seconds if optimized.

(1)Lhybrid = 2 ∗ Lfocal + Ldice

Discussion

We show that our proposed deep learning method enables 
automatic contouring of heart chambers in low-dose non-
contrast radiotherapy planning CTs with only a small data-
set, so can be used in local centers. The use of a local small 
dataset would ensure that the algorithms work on the local 
population, circumventing both privacy issues for acquiring 
large datasets and biases associated with such large datasets.

Manual contouring of CT scans is tedious and time con-
suming, and our method could provide the first contours that 
medical technicians or radiologists then only need to adjust. 
This method can be used for radiation therapy planning, 
calculating cardiac volumes, or improving existing cardiac 
image processing pipelines used for automatically detect-
ing coronary calcifications. The pipeline creates contours 
in under 30 s. This means that the software could easily be 
implemented right after the scans have been made and before 
the contours are adjusted by technicians.

High accuracy can be reached by reducing the class 
imbalance between the slices with cardiac structures and 
without. The contours of the whole heart and ventricles 
show small changes in volumes between the ground truth 
and predictions with median volume ratios of 0.96, 0.99 and 
1.05 and median DCs of 0.96, 0.88 and 0.92 and 95% HDs 
around 3 mm.

Similar work on cardiac contouring has been done both 
on non-contrast and contrast CT with both atlas and deep 
learning based methods (Table 3). Choi et al. developed a 
deep learning method to create contours of cardiac struc-
tures according to the ESTRO guidelines [15]. They com-
pare their method to two atlas based commercial software 
methods. We achieved slightly better results on the whole 
heart and ventricles with higher DCs and, more importantly, 
lower 95% HDs. The correlation between 95% HD and time 
needed to adjust contours might be better than the correla-
tion between the DC and time needed to adjust. The DC is 
sensitive to the size of a segmentation, which is why distance 

Table 1   Confusion matrix of the internal validation dataset of the 
classifier for axial slices containing the heart

Prediction (Slices)

Without heart With heart

Ground Truth 
(Slices)

Without heart 268 1

With heart 2 90

Table 2   Median results of the 2.5D neural networks for cardiac struc-
ture segmentation. The first and third quartiles are given in parenthe-
ses

WH whole heart, RV right ventricle, LV left ventricle, LA left atrium, 
RA right atrium

Volume ratio Dice Coefficient 95% Hausdorff 
Distance (mm)

WH 0.96 (0.95 – 0.97) 0.96 (0.94 – 0.96) 1.86 (1.40 – 3.01)
RV 0.99 (0.98 – 1.02) 0.88 (0.87 – 0.90) 2.98 (2.46 – 3.33)
LV 1.05 (1.00 – 1.07) 0.92 (0.90 – 0.93) 2.02 (1.98 – 3.72)
LA 0.80 (0.73 – 0.84) 0.82 (0.80 – 0.84) 6.46 (3.81 – 8.93)
RA 0.84 (0.79 – 0.91) 0.80 (0.77 – 0.83) 6.16 (3.42 – 7.17)
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based metrics might be clinically more relevant. 95% HD is 
more sensitive to the accuracy of the contours itself. Choi 
et al. achieve lower DCs on the atria compared to the ven-
tricles, which we also see in our work. It is also shown that 
their results with the deep learning based method achieve 
more robust and more consistent results than the commercial 
atlas based methods. Hopefully, this might also translate to 
our results, since our method has similar accuracies.

Harms et al. created a processing pipeline with 5 cas-
caded neural networks trained and validated on both contrast 
and non-contrast scans [16]. Their results show slightly bet-
ter accuracy for the whole heart and ventricles, and signifi-
cantly better accuracy for the atria. This is probably due to 
the increased complexity and depth of their method and the 
use of contrast scans, which are easier to annotate, therefore 
creating more accurate contours, and easier to contour for 
deep learning based methods due to increased contrast and 
ECG-triggering, and, therefore, clearer boundaries between 
structures.

Jung et al. and Luo et al. used atlas based contouring 
methods for creating cardiac contours on non-contrast CT 
scans [17, 18]. Luo et al. used non contrast 4D CT scans, 
averaged between respiratory cycles, to achieve similar 
results to our work. Interestingly, they show that very lit-
tle modifications were necessary for the predicted contours 
and the differences in dosimetry were not significant. It will 
be interesting to investigate if the proposed method also 
has similar dose predictions compared to the ground truth. 
Therefore, future work will be done in the form of qualitative 
evaluations of our work.

Limitations

This work has a number of limitations. The deep learning 
pipeline struggles with slices that it has trained on very lit-
tle, i.e. the caudal and cranial parts of the heart (Fig. 4). 
Most of the errors occur in the caudal and cranial 5% of the 

slices. The networks also have difficulty near the apex of the 
heart, where the contrast between the liver and the heart is 
minimal. Oversegmentation is prevented by the use of the 
first stage classifier, however, localization of the heart can 
be difficult in the few slices that still have liver and where 
the shape of the heart is barely recognizable.

The contouring pipeline underperforms for the atria when 
compared to the ventricles and whole heart contours. This 
is also seen in the recent works from other authors as seen 
in Table 3. This results in significant volume differences 
between ground truth and predicted volumes. This might be 
due to the atria having a significantly smaller volume than 
the ventricles and, therefore, have a higher class imbalance 
within the image problem. This problem must first be solved 
before implementation into clinical practice.

The contours were created on non-contrast scans with 
relatively thick slices and cardiac motion due to no ECG 
triggering, which can make it difficult to find borders 
between structures with the human eye. This might lead 
to mismatches in contouring. If this is the case, it might 
be harder to achieve higher accuracy, since the pipeline is 
quite consistent in its contouring, whereas humans might 
be less consistent. Therefore, the ground truth might have 
differences in contouring methods when compared to the 
predicted contours, leading to lower validation accuracy. 
The ideal solution for this would be to have contoured and 
registered contrast and non-contrast scans and train the deep 
learning methods on the contrast scans. Harms et al. showed 
even higher accuracy on neural networks trained on both 
contrast and non-contrast scans in different patients, so that 
might also be a possibility.

Implications

This work shows that acceptable accuracy can be achieved 
for automated contouring software based on deep learning 
with only a limited amount of datasets. This implies that 

Fig. 3   Example of annotated 
contours (left) and predicted 
contours (right). Whole 
heart(WH) (green), left ventri-
cle (LV) (blue), right ventricle 
(RV) (red), left atrium (LA) 
(yellow), right atrium (RA) 
(purple)
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hospitals could use their own data to create deep learning 
tools for their own patient cohort with their specific CT 
scan protocol. This would circumvent the need for very 
generalized neural networks and ensures that validation of 
such software is done on a hospital’s own patient/scan pro-
tocol composition. In this case, most radiotherapy depart-
ments would have contouring data available, so could easily 
train this method on their own data if hardware to do so is 
available.

The whole heart contours are shown to be very accurate. 
Therefore, the method described in this paper could be used 
as an intermediate step, such as automatic coronary artery 
calcium scoring. Any false positive calcium spots in the 
lungs or other areas surrounding the heart could be removed 
with the use of the whole heart segmentation. These spots Ta
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Fig. 4   Example of poor segmentations in the cranial (A & B) and 
caudal (C - F) part of the heart with on the left the ground truth and 
on the right the predicted contours by the deep learning pipeline. 
Whole heart(WH) (green), left ventricle (LV) (blue), right ventricle 
(RV) (red), left atrium (LA) (yellow), right atrium (RA) (purple). 
Note the largely missed right atrium (B & D) and the overestimation 
of the left atrium (B). Image F shows the most caudal slice being mis-
classified as containing no cardiac structures
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are usually more than a centimeter removed from the heart. 
Therefore, the 95% HD of under 2 mm should be adequate.
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