Skip to main content
. 2022 Mar 25;10(1):3. doi: 10.1007/s13755-022-00170-2

Table 3.

NC classification results of machine learning methods and deep learning methods on AS-OCT image dataset (The best results are marked in bold)

Method ACC PR Sen F1
SVM [16] 82.19 83.64 85.05 84.29
NB 80.62 81.28 84.17 82.22
LR 81.80 85.36 82.65 83.84
DT 80.62 83.03 83.01 82.98
RF [16] 82.60 84.49 84.64 84.52
Adaboost 75.55 83.53 79.52 76.84
XGboost 82.18 84.45 84.18 84.31
GraNet [15] 85.05 85.66 87.25 86.37
VGG19 84.38 86.41 85.70 85.94
ResNet34 83.78 85.57 86.02 85.71
ResNeXt29 84.76 87.6 85.92 86.63
GoogleNet 82.48 86.28 84.21 84.03
EfficientNet 84.42 86.12 86.30 86.11
SKNet 85.68 88.22 86.78 87.32
SENet34 85.47 87.44 87.18 86.83
BAM 83.19 86.66 84.79 85.07
GCA-Net-18 [17] 83.66 85.97 84.68 85.26
ECANet-18 85.09 86.45 86.32 86.38
SPANet-18 85.22 88.13 86.37 86.92
CBAM-ResNet18 84.54 87.20 85.88 86.39
MPANet-18-C 86.40 89.02 88.78 88.02
MPANet-34-C 86.61 88.07 89.02 88.31
MPANet-18 86.70 88.26 89.06 88.59
MPANet-34 86.99 88.42 89.09 88.70