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Abstract

Background and purpose: Flow diverters (FD) can cause rare but devastating delayed 

aneurysm ruptures due to a potential implication of matrix metalloproteinases (MMPs). 

Concomitant coiling or anti-inflammatory medications have been proposed to prevent the risk 

of delayed ruptures. The aims of this study were to evaluate concomitant coiling and cyclosporine 

to regulate the MMPs expression in FD treated aneurysms.

Materials and methods: Elastase-induced aneurysms were created in 20 rabbits. Aneurysms 

were treated with 1) FD alone, 2) FD with concomitant coiling 3) FD and cyclosporine or 4) left 

untreated as controls. At sacrifice, MMPs levels were analyzed via zymography. Kruskal-Wallis 

one-way non-parametric ANOVA was performed for each enzyme. If significant results were 

observed for the Kruskal-Wallis test, pairwise group comparisons were performed using Dunn’s 

test with Bonferroni multiple-testing correction.

Results: Significant differences were observed among groups for pro-MMP9 (p=.0337). Pairwise 

comparison demonstrated higher levels of pro-MMP9 with concomitant coiling compared to 

untreated aneurysms (p=.012), with higher though not significantly different levels of pro-MMP9 

in FD with concomitant coiling versus FD alone. While not statistically significant, trends were 

noted regarding differences in active-MMP9 across groups with lower level of active-MMP9 with 

concomitant coiling compared to the other FD groups. No significant differences were observed 

for pro- or active-MMP2 across groups, nor for FD with cyclosporine compared to FD alone.

Conclusions: FD implantation increases the level of pro-MMP9 expression in aneurysms. 

Provocative trends regarding modulation of active-MMP9 expression with concomitant coiling 

suggests the need for larger, confirmatory preclinical studies. Anti-inflammatory treatment with 

cyclosporine appears to have minimal biological effect.
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Introduction

Flow diverters (FD) are now largely accepted as standard of care in treatment of selected 

aneurysms due to their high rates of angiographic occlusion and good clinical outcomes1–3. 

However, these devices may have rare but severe complications such as post-operative or 

delayed aneurysm rupture4–8. Despite the fact that numerous case series and case reports 

have reported on this complication, there continues to be controversy surrounding its 

origin with poor evidence regarding the risk factors and mechanisms of these hemorrhagic 

complications4, 6, 8–12. Prior studies have suggested a potential role of intra-aneurysmal 

thrombus in the pathophysiologic mechanism of aneurysm rupture7.

As previously described in abdominal aortic aneurysms, leukocytes trapped in the intra 

luminal thrombus are a source of storage, release and activation of various proteases such 

as metalloproteinases (MMP2 and MMP9) and serine proteases. These have high proteolytic 

activity which could participate in the degradation of structural components of the arterial 

wall and lead to aneurysm rupture7, 13–20. MMPs are secreted as inactive proforms (pro-

MMP) and are activated by protein cleavage by other proteinases (active-MMP)20. The 

over expression of activated type IV collagenases MMP9 and MMP2 in cerebral ruptured 

aneurysms21 indicate that effective regulation of MMPs may result in improving clinical 

prognosis of cerebral aneurysms.

Some studies have already described the implication of MMPs in cerebral vascular diseases 

and aneurysms22–29. Previous studies have demonstrated a higher risk of rupture in 

giant aneurysms2, 6, 7, 12 and have recommended that giant aneurysms are treated with 

concomitant coiling and flow diverter treatment in order to protect the dome of the aneurysm 

in an attempt to prevent delayed ruptures4, 6, 11, 30, 31.

Cyclosporine A is an anti-inflammatory agent32 widely used to prevent organ transplant 

rejection or treat autoimmune disorders33. Cyclosporine has already been tested for its 

effect on MMPs levels in various models and disorders32–42. In a study about abdominal 

aortic aneurysms, cyclosporine decreased MMP9 and stabilized expanding aortic arteries38. 

However, cyclosporine has not been tested in intracranial aneurysms to regulate the MMPs 

expression.

The aims of our study were to evaluate the effect of associated coiling and cyclosporine to 

regulate the MMPs expression in flow diverter treated aneurysms in a rabbit model.

METHODS

Aneurysm Creation and Treatment

The Institutional Animal Care and Use Committee approved all procedures before the 

initiation of this study. Some of the rabbits used in this study were originally employed as 

part of other investigations, where we investigated the gene expression between aneurysms 

treated with microcoils and flow diverters43. Elastase induced saccular aneurysms were 

created in 20 New Zealand White rabbits as previously described44. Three weeks after the 

aneurysm creation, rabbits were treated either with FD alone (n=5), FD with concomitant 
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coiling (n=6), FD and cyclosporine (n=5) or left untreated (n=4)45, 46. The rabbits treated 

with FD and cyclosporine were given 10 mg Cyclosporine A/kg body weight by oral gavage 

once daily for 4 weeks.

Rabbits were sacrificed 4 weeks after the treatment procedure. At the time of sacrifice, 

animals were deeply anesthetized. The animals were then euthanized with a lethal injection 

of pentobarbital. Aneurysms were immediately harvested, and frozen in liquid nitrogen and 

kept at −70°C until used43.

MMPs Gelatin Zymography

Frozen samples were pulverized under liquid nitrogen and extracted in ice-cold lysis buffer 

(10 mmol/l sodium phosphate, pH 7.2, 150 mmol/l NaCl, 1% Triton X-100, 0.1% SDS, 

0.5% sodium deoxycholate, and 0.2% sodium azide). After centrifugation at 10,000 g 

for 20 min at 4°C, the protein concentration of the supernatant was determined (Pierce 

Biotechnology). Samples were resolved by nonreducing 10% SDS-PAGE through gels 

containing 0.1% gelatin (Bio-Rad). Gels were washed with 2.5% Triton X-100 for 1 h, 

then incubated for 24 h at 37°C in developing buffer (50 mmol/l Tris-HCl, pH 8.5, 5 

mmol/l CaCl2 and 0.5 mmol/l ZnCl2). MMPs-2 and -9 are collagenases, which act on the 

gelatin (a partial collagen digest) in the gel and produce gelatinolytic zones. Gelatinolytic 

zones, representing the activities of MMPs, were visualized after staining the gels with 

0.5% Coomassie blue R-250. The gelatinolytic zones of MMP-2 and MMP-9 were analyzed 

densitometrically using Image-J software and converted to quantifiable data in the number 

of pixels47, 48. The intensities of the gelatinolytic bands reflect the activity of corresponding 

MMP.

Statistics

Kruskal-Wallis one-way non-parametric ANOVA was performed for each enzyme (pro-

MMP2, active-MMP2, pro-MMP9, and active-MMP9) for each of the four treatment 

groups. Kruskal-Wallis p-values were not corrected for multiple testing. Post-hoc pairwise 

group comparisons were performed using Dunn’s test with Bonferroni multiple-testing 

correction49. Statistical analyses were performed in R (version 3.1.1; Vienna, Austria). 

Dunn’s test was performed using R package dunn.test (version 1.2.4). A value of α=0.05 

was selected as the significance threshold.

RESULTS

Summary statistics are reported in Table 1 as medians and interquartile range (IQR). Figure 

1 represents MMPs expression by aneurysm treatment with boxplots and individual data 

points.

In all treatment groups, levels of MMPs in treated aneurysms appeared higher than in the 

untreated group, with the exception of the FD with concomitant coiling group for active 

MMP-9; however, significant differences between groups were only found for pro-MMP9. 

MMP2 levels were similar throughout the three different FD treatment groups.
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Compared to the untreated aneurysms, aneurysms treated with FD alone had higher levels 

of pro-MMP9 (2575, IQR: 697–4917; versus 428, IQR: 90–1941), active-MMP9 (2666, 

IQR: 1066–5291; versus 483, IQR: 251–1897), pro-MMP2 (4644, IQR: 2403–7693; versus 

3250, IQR: 2950–6684) and active-MMP2 (3500, IQR: 2684–4476; versus 1294, IQR: 

1143–1666) but those differences did not reach significant levels (Table 2).

In the group treated with FD and concomitant coiling the level of active-MMP9 was similar 

to the untreated group (496, IQR: 420–1734; versus 483, IQR: 251–1897). The level of 

pro-MMP9 was significantly higher in the FD with concomitant coiling group than in 

the untreated aneurysms group (9774, IQR: 7657–13562; versus 428, IQR: 90–1941; p 

value=0.012) (Table 2).

We did not observe any statistically significant difference or trends in difference when 

comparing the MMPs levels in aneurysms treated with FD + cyclosporine and FD alone.

DISCUSSION

This study demonstrates that treatment with FD affects MMPs levels in intracranial 

aneurysms. Specifically, aneurysms treated with FD and concomitant coiling demonstrate 

significant increased levels of pro-MMP9. In our current, relatively small study, we noted 

a trend toward decreased active-MMP9 with concomitant coiling compared to the other FD 

groups. Anti-inflammatory medications with cyclosporine did not significantly impact levels 

of MMPs. These findings suggest the need for larger, preclinical studies focused on MMP9 

biology following treatment with FD.

By analogy to abdominal aneurysms, previous experimental and clinical studies have 

suggested that the intra-aneurysmal thrombus associated with FD could be a site of 

activation of MMPs and a potential cause of delayed ruptures7, 13–19. Furthermore, prior 

studies have suggested or demonstrated a higher risk of delayed ruptures after FD in giant 

aneurysms2, 6, 7, 12. Since giant aneurysms are generally more likely to have a larger 

intraluminal thrombus, it is probable that larger FD treated aneurysms have higher levels of 

MMPs expression. Based on our current findings, we believe that ongoing focus on MMP9 

may provide important insights into FD-related complications.

The trend toward decreased active-MMP9 with concomitant coiling compared to other 

FD groups is of very high importance. Indeed, despite previous recommendations for 

concomitant coiling in aneurysms larger than 15 mm4, 6, 11, 30, 31, no study described its 

effect on MMPs levels. Our study shows that the effect of concomitant coiling is not only 

related to a mechanical effect of the coils to protect the aneurysms dome but, at least in part, 

related to a biological effect on MMPs expression. It suggests that concomitant coiling may 

reduce the level of active-MMP9 expression in the FD treated aneurysms by blocking the 

activation of pro-MMP9 in its active form with accumulation of its inactive proform, which 

could be a potential solution to prevent delayed aneurysms ruptures after FD.

Anti-inflammatory and immunosuppressive drugs such as cyclosporine A have proved to 

be beneficial on MMPs levels in abdominal aneurysms38, 50, 51. However, in our study, the 

expression levels of MMP2 and MMP9 in the group treated with FD and cyclosporine were 
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comparable to aneurysms treated with FD alone with higher levels of active-MMP9. While 

it was hoped that cyclosporine could be used to control MMPs levels, it does not appear to 

have an effect on either MMP9 or MMP2. Further research could be done to explore the 

possibility of using other anti-inflammatory medications on MMPs expression. Additionally 

the role of pro-inflammatory mediators in aneurysm progression and rupture versus healing 

after treatment remains to be elucidated. Prior studies have demonstrated that MMPs and 

MCP-1 play key roles in formation and rupture with MCP-1 promoting MMP9, but post 

treatment expression also increases possibly due to aneurysm healing29, 52, 53.

Limitations

Our study has several limitations. We used the rabbit elastase model which has histological, 

morphological, biological, and hemodynamic similarities to humans and is stable in time 

with no spontaneous thrombosis54. However, this model is neither a model of spontaneous 

rupture nor a model of delayed aneurysm rupture after FD and some biological aspects may 

differ when considering rupture-prone aneurysms. To explore these mechanisms, it would be 

of interest to analyze levels of MMPs in new models for active aneurysms with inflamed 

aneurysms wall or bio-active thrombus55, 56. Also, the reported cases of delayed ruptures 

after FD occurred mostly in large or giant aneurysms but the aneurysms used in this study 

were less than 20 mm. Some of our results did not reach significant differences but our 

ability to detect differences between groups was limited by the size of the treatment groups. 

Further studies should be done with larger groups. For the effect of concomitant coiling, 

we did not do any analysis of the impact of the packing density. Perhaps a denser coils 

packing would increase the effect of MMPs regulation. Different anti-inflammatory drug 

would maybe have different results but we decided to use cyclosporine because rabbits are 

known to be extremely sensitive to steroids57–60. Further, we analyzed only one dose for 

cyclosporine administration and its effect may be different with higher doses. Only one 

time point was studied following treatment of the aneurysm and protein expression may 

change over time. Finally, only two MMPs were studied and other MMPs isoforms may play 

important roles in delayed aneurysm rupture61. Transformation growth factor (TGF)-β is a 

key factor for MMP down-regulation. However, we did not measure the level of TGF-β in 

this study38. It may be possible that other proteolytic enzymes such as cathepsin or other 

pathways lead to delayed aneurysm rupture.

Conclusion

FD implantation increases the level of pro-MMP9 expression in aneurysms. Provocative 

trends regarding modulation of active-MMP9 expression with concomitant coiling suggests 

the need for larger, confirmatory preclinical studies. Anti-inflammatory treatment with 

cyclosporine appears to have minimal biological effect.

Abbreviations:

MMPs Matrix Metalloproteinases

FD Flow Diverter
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Figure 1: 
Boxplot of MMPs expression by aneurysm treatment. The individual data points for each 

treatment are also shown. FD=flow diverter
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Table 1:

Descriptive statistics for pixel counts by enzyme. Kruskal-Wallis tests.

Untreated
Aneurysm

(N=4)

FD alone
(N=6)

FD+ Coils
(N=5)

FD+
Cyclosporine

(N=5)*
p value

Pro-MMP9 0.0337

Median 428 2575 9774 3159

IQR 90 – 1941 697 – 4917 7657 – 13562 1730 – 4150

Active-MMP9 0.126

Median 483 2666 496 2410

IQR 251 – 1897 1066 – 5291 420 – 1734 2099 – 3039

Pro-MMP2 0.779

Median 3250 4644 4553 4628

IQR 2950 – 6684 2403 – 7693 3962 – 5261 4066 – 8065

Active-MMP2 0.152

Median 1294 3500 3653 3822

IQR 1143 – 1666 2684 – 4476 2186 – 4360 2670 – 4068

*
Flow diverter + Cyclosporine Pro-MMP9 N=4
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Table 2:

Post-hoc pairwise group comparison p-values for Pro-MMP9 using Dunn’s method with Bonferroni 

correction.

FD + Coils FD alone FD + Cyclosporine

FD alone 0.141 --- ---

FD + Cyclosporine 0.414 1.00 ---

Untreated Aneurysm 0.012 0.783 0.561
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