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Abstract

To derive meaning from sound, the brain must integrate information across many timescales. What 

computations underlie multiscale integration in human auditory cortex? Evidence suggests that 

auditory cortex analyzes sound using both generic acoustic representations (e.g. spectrotemporal 

modulation) and category-specific computations, but the timescales these putatively distinct 

computations integrate over remain unclear. To answer this question, we developed a general 

method to estimate sensory integration windows – the time window when stimuli alter the neural 

response – and applied our method to intracranial recordings from neurosurgical patients. We 

show that human auditory cortex integrates hierarchically across diverse timescales spanning 
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~50 to 400 milliseconds. Moreover, we find that neural populations with short and long 

integration windows exhibit distinct functional properties: short-integration electrodes (<200 

milliseconds) show prominent spectrotemporal modulation selectivity, while long-integration 

electrodes (>200 milliseconds) show prominent category selectivity. These findings reveal how 

multiscale integration organizes auditory computation in the human brain.

Keywords

temporal integration; receptive field; hierarchical organization; auditory cortex; timescale; iEEG; 
ECoG; electrocorticography; natural sounds; speech; music; epilepsy

Time is the fundamental dimension of sound and temporal integration is thus fundamental to 

audition. To recognize a complex structure like a word, the brain must integrate information 

across a wide range of timescales from tens to hundreds of milliseconds (Extended Data 

Fig 1 plots a histogram of phoneme, syllable and word durations)1–3. At present, the neural 

computations that underly multiscale integration remain unclear. Prior evidence suggests 

that the human brain analyzes sound using both generic acoustic computations, such as 

spectrotemporal modulation filtering4–7, as well as category-specific computations that are 

nonlinearly tuned for important categories like speech and music8–15. Both modulation 

filtering and category-specific computations could in principle integrate information across a 

wide range of timescales, since natural sounds like speech contain temporal modulations 

and category-specific structure at many temporal scales1,2,16–18(Extended Data Fig 1). 

Anatomically, there is evidence that modulation tuning and category selectivity are localized 

to primary and non-primary regions, respectively8,19. But the time window that primary and 

non-primary regions integrate over is unknown, and thus it remains unclear whether generic 

and category-specific computations integrate over similar or distinct timescales.

To answer this question, we need to measure the time window over which human cortical 

regions integrate information. Integration windows are often defined as the time window 

when stimuli alter the neural response20–22. Although this definition is simple and general, 

there is no simple and general method to estimate integration windows. Many methods exist 

for inferring linear integration windows with respect to a spectrogram5,22–24, but human 

cortical responses exhibit prominent nonlinearities, particularly in non-primary regions19. 

Flexible, nonlinear models are challenging to fit given limited neural data25,26, and even if 

one succeeds, it is not obvious how to measure the model’s integration window. Methods 

for assessing temporal modulation tuning6,7,27–31 are insufficient, since a neuron could 

respond to fast modulations over either a short or long integration window or respond to a 

complex structure like a word that is poorly described by its modulation content. Finally, 

temporal scrambling can reveal selectivity for naturalistic temporal structure11,21,32,33, but 

many regions in auditory cortex show no difference between intact and scrambled sounds11, 

presumably because they respond to features that do not differ between intact and scrambled 

stimuli (e.g. the frequency spectrum).

To overcome these limitations, we developed a method that directly estimates the time 

window when stimuli alter a neural response (the temporal context invariance or TCI 

paradigm; Fig 1). We present sequences of natural stimuli in two different random orders 
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such that the same segment occurs in two different contexts. While context has many 

meanings34, here we simply define context as the stimuli which surround a segment. If the 

integration window is shorter than the segment duration, there will be a moment when it is 

fully contained within each segment. As a consequence, the response at that moment will 

be unaffected by surrounding segments. We can therefore estimate the extent of temporal 

integration by determining the minimum segment duration needed to achieve a context 

invariant response.

TCI does not make any assumptions about the type of response being measured. As a 

consequence, the method is applicable to sensory responses from any modality, stimulus 

set, or recording method. We applied TCI to intracranial EEG (iEEG) recordings, collected 

from patients undergoing surgery for intractable epilepsy. Such recordings provide a rare 

opportunity to measure human brain responses with spatiotemporal precision, which is 

essential to studying temporal integration. We used a combination of depth and surface 

electrodes to record from both primary regions in the lateral sulcus as well as non-primary 

regions in the superior temporal gyrus (STG), unlike many iEEG studies that have focused 

on just the lateral sulcus35 or STG5,36. The precision and coverage of our recordings 

were both essential to revealing how the human auditory cortex integrates across multiple 

timescales.

Results

Overview of experiment and TCI paradigm.

We recorded intracranial EEG responses to sequences of natural sound segments that 

varied in duration from 31 milliseconds to 2 seconds (in octave steps). For each segment 

duration, we created two 20-second sequences, each with a different random ordering of 

the same segments (concatenated using cross-fading to avoid boundary artifacts). Segments 

were excerpted from 10 natural sounds, selected to be diverse so they differentially drive 

responses throughout auditory cortex. The same natural sounds were used for all segment 

durations, which limited the number of sounds we could test given the limited time 

with each patient; but our key results were robust across the sounds tested (the results 

of all robustness analyses are described in the section Human auditory cortex integrates 
hierarchically across diverse timescales). Because our goal was to characterize integration 

windows during natural listening, we did not give subjects a formal task. To encourage 

subjects to listen to the sounds, we asked them to occasionally rate how scrambled the last 

stimulus sequence was (shorter segment durations sound more scrambled; if patients were in 

pain or confused we simply asked them to listen).

All of our analyses were performed on the broadband gamma power response timecourse 

of each electrode (70–140 Hz; results were robust to the frequency range). We focus on 

broadband gamma because it provides a robust measure of local electrocortical activity37,38 

and can be extracted using filters with relatively narrow integration windows, which we 

verified in simulations had a negligible effect on the estimated neural integration windows 

(see Simulations in Methods). By contrast, we found that low-frequency, phase-locked 

activity was substantially biased by the long-integration filters required to extract low-

frequency activity and thus was not the focus of our analyses.
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Our method has two key components. First, we estimate the degree to which the neural 

response is context invariant at each moment in time using an analysis we refer to as 

the “cross-context correlation”. Second, we use a computational model to estimate the 

integration window from these moment-by-moment estimates.

Cross-context correlation.

The cross-context correlation is measured separately for each electrode and segment 

duration. First, we organize the response timecourse to all segments of a given duration 

in a matrix, which we refer to as the segment-aligned response (SAR) matrix (Fig 2a). Each 

row of the SAR matrix contains the response timecourse surrounding a single segment, 

aligned to segment onset. Different rows thus correspond to different segments and different 

columns correspond to different lags relative to segment onset. We compute two versions of 

the SAR matrix using the two different contexts for each segment, extracted from the two 

different sequences. The central segment is the same between contexts, but the surrounding 

segments differ.

Our goal is to determine if there is a lag when the response is the same across contexts. 

We instantiate this idea by correlating corresponding columns across SAR matrices from 

different contexts (schematized by the linked columnar boxes in Fig 2a). At segment onset 

(first box pair in Fig 2a), the cross-context correlation should be near zero, since the 

integration window must overlap the preceding segments, which are random across contexts. 

As time progresses, the integration window will start to overlap the shared segment, and the 

cross-context correlation should increase. Critically, if the integration window is less than 

the segment duration, there will be a lag where the integration window is fully contained 

within the shared segment, and the response should thus be the same across contexts, 

yielding a correlation of 1 modulo noise (second box pair in Fig 2a). To correct for noise, 

we measure the test-retest correlation when the context is the same, which provides a noise 

ceiling for the cross-context correlation (not depicted in Fig 2a).

The shorter segments tested in our study were created by subdividing the longer segments. 

As a consequence, we could also consider cases where a segment was a subset of a longer 

segment and thus surrounded by its natural context, in addition to the case described so far 

when a segment is surrounded by random other segments. Since our analysis requires that 

the two contexts differ, one context has to be random, but the other can be random or natural. 

In practice, we found similar results using random-random and random-natural contexts, and 

thus pooled across both types of context for maximal statistical power (results comparing 

random and natural contexts are described in the section Human auditory cortex integrates 
hierarchically across diverse timescales).

We plot the cross-context correlation and noise ceiling for segments of increasing duration 

for two example electrodes from the same subject: an electrode in left posteromedial 

Heschl’s gyrus (HG) and one in the left superior temporal gyrus (STG) (Fig 2b). The 

periodic variation evident in the noise ceiling is an inevitable consequence of correlating 

across a fixed set of segments (see Cross-context correlation in the Methods for an 

explanation). For the HG electrode, the cross-context correlation started at zero and quickly 

rose. Critically, for segment durations greater than approximately 63 milliseconds, there was 

Norman-Haignere et al. Page 4

Nat Hum Behav. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a lag where the cross-context correlation equaled the noise ceiling (or in the case of 63 

milliseconds came very close), indicating a context-invariant response. For longer segment 

durations (e.g. 250 or 500 ms), the cross-context correlation remained yoked to the noise 

ceiling for an extended duration indicating that the integration window remained within the 

shared segment for an extended time window. This pattern is what one would expect for 

an integration window that is ~63 milliseconds, since stimuli falling outside of this window 

have little effect on the response.

By comparison, the results for the STG electrode suggest a much longer integration window. 

Only for segment durations of ~250–500 milliseconds did the cross-context correlation 

approach the noise ceiling, and its build-up and fall-off with lag was considerably slower. 

This pattern is what one would expect for a longer integration window, since it takes more 

time for the integration window to fully enter and exit the shared segment. Virtually all 

electrodes with a reliable response to sound exhibited a similar pattern, but the segment 

duration and lag needed to achieve an invariant response varied substantially (Extended Data 

Fig 2 shows 20 representative electrodes). This observation indicates that auditory cortical 

responses have a meaningful integration window, outside of which responses are largely 

invariant, but the extent of this window varies substantially across auditory cortex.

Model-estimated integration windows.

In theory, one could estimate the extent of the integration window as the shortest segment 

duration for which the peak of the cross-context correlation exceeds some fraction of the 

noise ceiling. This approach, however, would be noise-prone since a single noisy data 

point at one lag and segment duration could alter the estimate. To overcome this issue, 

we developed a model that allowed us to pool noisy correlation values across all lags and 

segment durations to arrive at a single estimate of the integration window.

We modeled integration windows using a Gamma distribution, which is a standard, 

unimodal distribution commonly used to model temporal windows (Fig 3a)39,40. We varied 

the width and center of the model window, excluding combinations of widths and centers 

that resulted in a non-causal window since this would imply the response depends upon 

the future. The width of the integration window is the key parameter we would like to 

estimate, and was defined as the smallest interval that contained 75% of the window’s mass. 

The center of the integration window was defined as the window’s median and reflects the 

overall latency between the integration window and the response. We also varied the window 

shape from more exponential to more bell-shaped, but found the shape had little influence 

on the results.

The cross-context correlation depends on the degree to which the integration window 

overlaps the shared segment vs. the surrounding context segments. We therefore predicted 

the cross-context correlation by measuring the overlap between the model window and 

each segment, separately for all lags and segment durations (Fig 3b). The equation used to 

predict the cross-context correlation from these overlap measures is shown in Figure 3b and 

described in the legend. A formal derivation is given in the Methods.
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Figure 3c illustrates how changing the width and center of the model window alters the 

predicted correlation. Increasing the width lowers the peak of the cross-context correlation, 

since a smaller fraction of the window overlaps the shared segment at the moment of 

maximum overlap. The build-up and fall-off with lag is also more gradual for wider 

windows since it takes longer for the window to enter and exit the shared segment. 

Increasing the center simply shifts the cross-context correlation to later lags. We varied these 

model parameters and selected the window that best-predicted the measured cross-context 

correlation.

We tested the ability of our complete analysis pipeline to recover ground truth integration 

windows from a variety models: (1) a model that integrated waveform magnitudes 

within a known temporal window (2) a model that integrated energy within a cochlear 

frequency band (3) a standard spectrotemporal model that integrates energy across time 

and frequency19,40 (4) a simple, deep neural network with a known integration window 

(see Simulations in Methods for details). Our simulations revealed two upward biases: one 

present at very low SNRs when using the mean-squared error loss and one present for 

just the spectrotemporal model due to the presence of strong responses at the boundary 

between segments. We corrected these two biases by modifying the loss and including an 

explicit boundary model (see Model-estimated integration windows and Modeling boundary 

effects in the Methods). With these modifications, we found that we could accurately infer 

integration widths and centers from all four models using noisy responses with comparable 

signal-to-noise ratios as those from our electrodes (Extended Data Fig 3).

Figure 3d,e shows the results of applying our model to the example electrodes from Figure 

2b. For the example HG electrode, the cross-context correlation was best-predicted by a 

window with a narrow width (68 ms) and early center (64 ms) compared with the STG 

electrode, which was best-predicted by a wider, more delayed window (375 ms width, 

273 ms center). These results validate our qualitative observations and provide us with 

a quantitative estimate of each electrode’s integration window. We used these estimates 

to understand how temporal integration organizes cortical computation in human auditory 

cortex.

Anatomical organization.

We first examined how different regions of human auditory cortex collectively integrate 

across multiple timescales. We identified 190 electrodes with a reliable response to sound 

across 18 patients (test-retest correlation: r > 0.1; p < 10−5 via a permutation test across 

sound sequences; 128 left hemisphere; 62 right hemisphere). From these electrodes, we 

created a map of integration widths and centers, discarding a small fraction of electrodes 

(8 electrodes; 2 right hemisphere; 6 left hemisphere) where the model predictions were not 

highly significant (p < 10−5 via a phase-scrambling analysis) (Fig 4a). This map was created 

by localizing each electrode on the cortical surface, and aligning each subject’s brain to a 

common anatomical template. By necessity, we focus on group analyses due to the sparse, 

clinically-driven coverage in any given patient. Most electrodes were located in and around 

the lateral sulcus and STG, as expected9.
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We observed a diverse range of integration windows with widths varying from 

approximately 50 to 400 milliseconds. Moreover, integration windows exhibited a clear 

anatomical gradient: integration widths and centers increased substantially from primary 

regions near posteromedial HG to non-primary regions near STG. We quantified this trend 

by binning electrodes into anatomical regions-of-interest (ROIs) based on their distance 

to primary auditory cortex (PAC), defined as posteromedial HG (TE1.1) (Fig 4b)19 (this 

analysis included 154 electrodes across all 18 subjects that were within a 30 mm radius of 

posteromedial HG; 53 right hemisphere; 101 left hemisphere). Significance was evaluated 

using a linear mixed effects model trained to predict the electrode integration windows from 

un-binned distances and hemisphere labels (with random intercepts and slopes for subjects). 

We controlled for electrode type (depth, grid, strip) by including it as a covariate in the 

model, although we did not observe any evidence for a difference in integration windows 

between electrode types (Extended Data Fig 4a).

Our analysis revealed a three- to four-fold increase in integration widths and centers 

from primary to non-primary regions (median integration width: 74, 136, 274 ms; median 

integration center: 68, 115, 197 ms). As a consequence, there was a highly significant 

effect of distance to PAC on the measured integration windows (width: F1,20.85 = 20.56, p 
< 0.001, βdistance = 0.064 octaves/mm, CI = [0.036, 0.091]; center: F1,20.38 = 24.80, p < 

0.001, βdistance = 0.052 octaves/mm, CI = [0.032, 0.073]; N=154 electrodes). There was no 

significant difference in integration widths or centers between the two hemispheres (width: 

F1,7.38 = 0.84, p = 0.39, βhemi = 0.16 octaves (left - right), CI = [−0.19, 0.52]; center: 

F1,10.17 = 1.81, p = 0.21, βhemi = 0.17 octaves (left - right), CI = [−0.08, 0.43]; N=154 

electrodes), although we note that intracranial recordings are under-powered for detecting 

hemispheric differences due to the limited coverage, which is often strongly biased towards 

one hemisphere in any given patient (the hemisphere where the epileptic focus is thought to 

arise from). These findings were robust across the specific sounds tested (Extended Data Fig 

5a), the type of context used to assess invariance (random vs. natural; Extended Data Fig 

5b), the shape of the model window (Extended Data Fig 5c), and the frequency range used to 

measure broadband gamma (Extended Data Fig 5d).

Across all electrodes, we found that integration centers were an approximately affine 

function (linear plus constant) of the integration width (Fig 4c; orange line shows the best-fit 

affine function; note that affine functions unlike linear functions appear curved on a log-log 

plot like that used in Figure 4c). This dependency is not an artifact of our model since we 

found that we could independently estimate integration centers and widths in simulations 

(Extended Data Fig 3a), as expected given that integration widths and centers have distinct 

effects on the cross-context correlation (Fig 3c). In part as a consequence of this observation, 

we found that integration centers were relatively close to the minimum possible value for 

a causal window (blue line, Fig 4c) even when not explicitly constrained to be causal 

(Extended Data Fig 6). Since the integration center can be thought of as the overall latency 

between the stimulus and the response, this finding suggests that auditory cortex analyzes 

sounds about as quickly as possible given the integration time. The fact that our data were 

well-fit by an affine function (linear plus a constant) rather than a purely linear function 

suggests that there might be a minimum latency (the constant, which we estimated to be 21 
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milliseconds) that is independent of the integration width, perhaps reflecting fixed synaptic 

delays required for information to reach auditory cortex.

Functional organization.

What is the functional consequence of hierarchical temporal integration for the analysis 

of natural sounds? A priori it seemed possible that spectrotemporal modulation tuning 

and category-specific computations could both be used to analyze a wide range of 

timescales. Speech for instance has a wide range of temporal modulations16,17,41, as 

well as unique phonemic, syllabic, and word-level structure spanning tens to hundreds of 

milliseconds1,2,42,43 (Extended Data Fig 1). But the anatomical hierarchy revealed by our 

integration window maps combined with prior evidence that modulation tuning and category 

selectivity are localized to primary and non-primary regions8,19 suggested an alternative 

hypothesis: that spectrotemporal modulation and category-specific computations integrate 

over distinct timescales. We sought to directly test this hypothesis, and if true, determine the 

specific timescales that modulation and category-specific computations integrate information 

over.

We measured responses in a subset of 104 electrodes from 11 patients to a larger set of 

119 natural sounds (4-seconds in duration), drawn from 11 categories (listed in Fig 5b). 

We subdivided the electrodes from these patients into three equally sized groups based on 

the width of their integration window (Fig 5a), and examined the functional selectivity of 

the electrodes in each group (Fig 5b–c). We pooled across both hemispheres because we 

had fewer electrodes and because integration windows (Fig 4) and functional selectivity for 

natural sounds are coarsely similar across hemispheres8,9,11.

To visualize any potential selectivity for sound categories, we projected the time-averaged 

response of each electrode to each 4-second sound onto the top two principal components 

from each group (Fig 5b). This analysis revealed a substantial increase in category 

separation for electrodes with long integration windows. The weak/absent category 

separation for short integration electrodes is not an artifact of just analyzing the first 

two principal components, since similar results were obtained when we explicitly selected 

components with maximum category separation (Extended Data Fig 7).

To quantify selectivity for categories vs. standard acoustic features, we attempted to predict 

the response timecourse of each electrode (without any averaging) using cochleagrams 

and category labels (Fig 5c). Cochleagrams are similar to spectrograms but are computed 

using filters designed to mimic the pseudo-logarithmic frequency resolution of cochlear 

filtering39. This analysis thus provides an estimate of the fraction of the response that can 

be predicted using a linear spectrotemporal receptive field5,23. The category labels indicated 

the membership of each sound in each category for all timepoints with sound energy above 

a minimum threshold. As is standard, we predicted the response of each electrode using a 

regression model with temporally delayed copies of each regressor. The delays were selected 

to span the integration window of each electrode. Prediction accuracies were noise-corrected 

using the test-retest reliability of the electrode responses, which provides an upper bound on 

the fraction of the response explainable by any model10,23,44.
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For the short-integration electrodes, prediction accuracies were more than twice as high for 

cochleagrams compared with category labels (cochleagram: median r2 = 0.45, CI = [0.37, 

0.53], category labels: median r2 = 0.22, CI = [0.15, 0.31] (Fig 5c). Moreover, the variance 

explained by both cochleagrams and category labels (median r2 = 0.45, CI = [0.36, 0.50] was 

very similar to the variance explained by cochleagrams alone, indicating that the category 

labels added little unique variance. By contrast, category labels explained nearly twice as 

much response variance in electrodes with long integration windows (cochleagram: median 

r2 = 0.31, CI = [0.27, 0.43]; category labels: median r2 = 0.60, CI = [0.50, 0.73], and 

cochleagrams added little unique variance (both cochleagram and category labels: r2 = 0.62, 

CI = [0.49, 0.74]). As a consequence, there was a highly significant interaction between 

the integration window of the electrode and the prediction accuracy of the cochleagram 

vs. category model (F1,12.35 = 104.71, p < 0.001, N=104 electrodes; statistics reflect a 

linear mixed effects model, where integration widths were used to predict the difference in 

prediction accuracies between cochleagrams vs. category labels). Figure 5d plots the unique 

variance explained by cochleagrams and category labels for all individual electrodes as a 

function of the integration window. This analysis revealed a transition point at ~200 ms, 

below which cochleagrams explain substantially more variance and above which category 

labels explain substantially more variance.

We note the absolute prediction accuracies were modest for both the cochleagram and 

category labels, never exceeding more than 45% and 60% of the explainable response 

variance, respectively. This fact illustrates the utility of having a model-independent way of 

estimating integration widths, since even our best-performing models fail to explain a large 

fraction of the response, and the best-performing model can vary across electrodes.

To ensure that our findings were not an inevitable consequence of increasing temporal 

integration, we repeated our analyses using integration-matched responses, accomplished 

by integrating the responses of the short- and intermediate-integration electrodes within 

a carefully selected window such that their integration windows matched those of the 

long-integration electrodes (see Integration matching in Methods for details). Results were 

very similar using integration-matched responses (Extended Data Fig 8), indicating that it is 

not the integration window itself that drives differences in functional selectivity, but rather 

the particular features/categories that the electrode responds to within that window.

Discussion

Our study demonstrates that multiscale integration organizes auditory computation in 

the human brain, both anatomically and functionally. We found that auditory cortex 

integrates hierarchically across time, with substantially longer integration windows in 

non-primary regions. Notably, we found that electrodes with short and long integration 

windows exhibited distinct functional properties. Electrodes with short integration windows 

(below ~200 ms) responded selectively to spectrotemporal modulations in a cochleagram 

representation of sound, and exhibited weak selectivity for sound categories, while 

electrodes with long integration windows (above ~200 ms) exhibited robust category 

selectivity. This finding suggests that distinct timescales in natural sounds are analyzed 
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by distinct neural computations, with short and long timescales analyzed by generic and 

category-specific computations, respectively.

These findings were enabled by our TCI method, which makes it possible to estimate the 

time window over which any neural response integrates sensory information. Unlike prior 

methods, TCI makes no assumptions about the type of response being measured; it simply 

estimates the time window when stimuli alter the neural response. As a consequence, the 

method should be applicable to any modality, stimulus set, or recording method. We applied 

TCI to intracranial recordings from epilepsy patients, using surface and depth electrodes 

placed throughout human auditory cortex. The precision and coverage of our recordings 

were essential to understanding how multiscale integration organizes auditory computation 

in the human brain.

Relationship to prior methods.

Many methods have been developed for exploring sensory timescales. In the auditory 

system, it is common to estimate a linear mapping between a spectrogram-like 

representation and the neural response5,22,23. The extent of the resulting “spectrotemporal 

receptive field” (STRF) provides an estimate of the integration window. This approach 

however cannot estimate the temporal extent of nonlinear temporal integration, which is 

prominent in cortical responses19,23,45. Flexible, nonlinear models such as deep neural 

networks are often challenging to fit given limited neural data25,26 and are difficult to 

analyze.

Higher-order cortical regions sometimes respond selectively to naturalistic temporal 

structure (e.g. the sequence of phonemes that comprise a word) and thus respond more 

weakly to temporally scrambled stimuli11,21,32. The temporal extent of this selectivity can 

be estimated by measuring how strongly or reliably a region responds to stimuli that have 

been scrambled at different timescales. Many neurons however are tuned to features that are 

similarly present in both intact and scrambled stimuli. For example, a neuron that integrated 

spectral energy would show similarly strong responses for intact and scrambled stimuli, even 

for stimuli that are scrambled within its integration window. This insensitivity to scrambling 

is common in regions in and around primary auditory cortex11.

The stimuli that make-up the TCI paradigm are similar to a standard scrambling paradigm 

(though note the use of two different scrambled orderings), but the analysis is quite different: 

standard scrambling paradigms measure the overall strength or reliability of the response 

across the scrambled sequence, while the TCI paradigm measures the minimum segment 

duration needed to achieve a context invariant response. Our analysis is related to a recent 

fMRI study that used a clever approach to examine the delay needed for responses to 

become synchronized across subjects after a stimulus change46. However, because the 

timescale of the fMRI response is an order of magnitude slower than auditory cortical 

integration windows, this study was not able to estimate integration windows within auditory 

cortex.

Another important concept is the “encoding window” of a neural response, which 

corresponds to the rate at which the neural response is updated to reflect changes in the 
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stimulus20,22,47. Encoding windows are related to the maximum frequency at which a 

neural response can synchronize to a stimulus (see ref20 for a more detailed discussion). 

Synchronization rates however are distinct from integration windows, since fast neural 

synchronization could be produced by both short (e.g. a delta function) or long integration 

responses (e.g. a sinusoidal filter that integrates over many cycles of an oscillation).

Modulation frequencies can also be coded by changes in firing rate in the absence of 

synchronization48–50. Integration windows, however, also cannot be inferred from this type 

of rate selectivity, since a neuron could respond selectively to a particular modulation 

frequency by integrating over a single cycle or many cycles of an modulation. In addition, 

non-primary regions of auditory cortex are poorly described by modulation tuning19, 

plausibly because they respond to complex structures in speech and music (e.g. words or 

musical notes) that are not well-described by modulation content51. Integration windows 

provide a simple way to compare the analysis timescale of primary and non-primary regions, 

which respond to very different types of structure8–10,13.

Finally, many neurons also exhibit “intrinsic fluctuations” that are not locked to the 

stimulus, but are nonetheless highly structured52. There is evidence that intrinsic timescales 

– measured as the decay of the autocorrelation function – exhibit a coarsely similar form 

of hierarchical organization53. The relationship between intrinsic timescales and stimulus 

integration windows could be explored in greater detail by measuring both quantities in the 

same neurons or electrodes and such data could provide a valuable way to test and constrain 

network models54.

Anatomical organization.

Multiscale temporal analysis has long been thought to play a central role in auditory 

processing3,22,24,31,55–58. But how multiscale integration is instantiated in the human 

auditory cortex has remained debated.

Hemispheric models posit that the left and right hemisphere are specialized for analyzing 

distinct stimulus timescales57,58, in part to represent the distinctive temporal structure of 

sound categories like speech and music27. Recent evidence for hemispheric specialization 

comes from studies that have shown that filtering-out fast temporal modulations in speech 

has a greater impact on responses in left auditory cortex27,28. However, as discussed above, 

the integration window of a response cannot be inferred from its modulation selectivity, 

and many non-primary responses are poorly described by modulation tuning19. Another 

common proposal is that the auditory cortex integrates hierarchically across time3,24,31,55,56. 

Early evidence for hierarchical temporal organization came from the observation that 

“phase-locking” slows from the periphery to the cortex48–50, which implies that neurons 

encode temporal modulations via changes in firing rate rather than synchronized activity. 

STRF-based analyses have also provided evidence that integration windows grow from the 

periphery to the cortex22,56, but the presence of prominent nonlinearities in cortex19,23,45 

has limited the utility of these types of analyses, particularly in non-primary regions19. Our 

study demonstrates that integration windows grow substantially (by a factor of ~3 or 4) as 

one ascends the auditory cortical hierarchy from primary to non-primary regions. While we 
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did not find a significant difference between the two hemispheres, this could be due to the 

sparse/limited coverage of intracranial recordings.

Across auditory cortex we found that integration centers scaled approximately linearly with 

integration widths and were close to the minimum possible for a causal window (Fig 4c; 

Extended Data Fig 7). This finding is not inevitable, since there could have been integration 

windows with a narrow width but delayed center. The fact that we never observed narrow 

but delayed integration windows suggests that auditory cortex “never waits”: it integrates 

information about as quickly as possible given the time window being analyzed1.

Our findings do not rule out the possibility that there might be a small neural population 

in non-primary auditory cortex with short integration widths and centers59,60, potentially 

reflecting direct, low-latency projections from the thalamus61. However, our results suggest 

that the dominant organization is hierarchical: electrodes with short-integration widths and 

centers are much more likely to be located in primary regions and their response shows little 

evidence for the type of higher-order category selectivity that characterizes electrodes with 

long integration windows (Figure 5; Extended Data Fig 7).

The hierarchical organization of temporal integration windows appears analogous to the 

hierarchical organization of spatial receptive fields in visual cortex62,63, which suggests 

that there might be general principles that underlie this type of organization. For example, 

both auditory and visual recognition become increasingly challenging at large temporal 

and spatial scales, in part because the input space grows exponentially with increasing 

scale. Hierarchical multiscale analysis may help overcome this exponential expansion by 

allowing sensory systems to recognize large-scale structures as combinations of smaller-

scale structures (e.g. a face from face parts) rather than attempting to recognize large-scale 

structures directly from the high-dimensional input3,24,55,56.

Functional organization.

How the human brain integrates across the complex multiscale structure that defines natural 

sounds like speech and music is one of the central questions of audition1–3,64. Prior 

studies have suggested that the human brain analyzes sounds using both generic acoustic 

features, such as spectrotemporal modulation4–7, as well as category-specific computations, 

nonlinearly tuned to the structure of important sound categories like speech and music8–15. 

But how these different computations integrate across time has remained unclear. A prior 

fMRI study used a scrambling technique called “quilting” to show that speech-selective 

regions respond selectively to intact temporal structure up to about 500 milliseconds in 

duration11. But this study was only able to identify a single analysis timescale across all 

of auditory cortex, likely because scrambling is a coarse manipulation and fMRI a coarse 

measure of the neural response. Our paradigm and recordings enabled us to identify a 

broad range of integration windows from ~50 to 400 ms, and we could thus test how the 

representation of sound changes as integration windows grow.

We emphasize that our findings are not an inevitable/generic consequence of increasing 

temporal integration, since we observed very similar results for integration-matched 

responses (Extended Data Fig 8). Of course, the performance of an ideal observer on any 
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task will always improve as integration windows grow since there is more information 

available. But this fact cannot explain why neural responses with short integration windows 

show weak category selectivity, since behaviorally people are excellent at categorizing 

sounds at short timescales65, and also cannot explain why neural responses with long 

integration windows show prominent category selectivity, since long-integration responses 

are perfectly capable of just encoding lower-level acoustic structure, as our matching 

analysis demonstrates (Extended Data Fig 8).

The shortest integration windows at which we observed category-selective responses (~200 

ms) correspond to about the duration of a multiphone syllable, which is substantially longer 

than duration of most speech phonemes (Extended Data Fig 1). This finding does not imply 

that speech-selective regions are insensitive to short-term structure such as phonemes, but 

rather that speech-selective responses respond to larger-scale patterns, such as phoneme 

sequences, consistent with recent work on phonotactics1,42,43.

Some studies have argued for two distinct processing timescales in auditory cortex29,58,66. 

The methods and findings from these studies vary widely, but in all cases what is being 

measured is a specific aspect of the neural tuning, such as modulation synchronization29 

or predictive oscillatory activity66, rather than the overall integration window. Our results 

suggest that integration windows increase in a graded fashion as one ascends the cortical 

hierarchy, in contrast with what might naively be expected if there were two distinct 

timescales. However, we do show that neural responses with short and long integration 

windows exhibit distinct functional properties.

Limitations and future directions.

As with any method, our results could depend upon the stimuli tested. We tested a diverse 

set of natural sounds with the goal of characterizing responses throughout auditory cortex 

using ecologically relevant stimuli. Because time is inevitably short when working with 

neurosurgical patients, we could only test a small number of sounds, but found that our key 

findings were nonetheless robust to the sounds tested (Extended Data Fig 5a). Nonetheless, 

it will be important in future work to test whether and how integration windows change for 

different stimulus classes.

A given neural response might effectively have multiple integration windows. For example, 

neural responses are known to adapt their response to repeated sounds on the timescale of 

seconds67 to minutes68 and even hours69, suggesting a form of memory70. TCI measures the 

integration window of responses that are reliable across repetitions, and as a consequence, 

TCI will be insensitive to response characteristics that change across repeated presentations. 

Future work could try and identify multiple integration windows within the same response 

by manipulating the type of context which surrounds a segment. Here, we examined two 

distinct types of contexts and found similar results (Extended Data Fig 5b), suggesting that 

hierarchical temporal integration is a robust property of human auditory cortex.

Our analyses focused on broadband gamma power, which provides an aggregate measure of 

local neural activity. Although broadband gamma often correlates strongly with spiking37,38, 

it is likely also influenced by dendritic processes71,72. For example, Leszczyński et al. 
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reported prominent broadband gamma responses in superficial layers of A1 and V1 that was 

not accompanied by multi-unit spiking and potentially reflected feedback-driven dendritic 

activity72. Thus, the integration windows measured in our study plausibly reflect a mixture 

of spiking and dendritic activity, as well as feedforward and feedback responses.

An important question is whether temporal integration windows reflect a fixed property of 

the cortical hierarchy or whether they are shaped by attention and behavioral demands73. 

In our study, we did not give subjects a formal task because our goal was to measure 

integration windows during natural listening without any particular goal or attentional focus. 

Future work could explore how behavioral demands shape temporal integration windows 

by measuring integration windows in the presence or absence of focused attention to a 

short-duration (e.g. phoneme) or long-duration (e.g. word) target.

Our study focused on characterizing integration windows within human auditory cortex, 

which we showed have integration windows ranging from roughly 50 to 400 milliseconds. 

Natural sounds, like speech and music, are clearly structured at much longer timescales 

(e.g. sentences and melodies)18, and this structure may be coded by higher-order cognitive 

regions with multi-second integration windows21,33,64. Natural sounds also have important 

structure at much shorter timescales (e.g. pitch periodicity), which are plausibly coded 

by subcortical nuclei with narrower integration windows22,56. The TCI method provides a 

conceptually simple tool to measure and compare integration windows across all of these 

regions, and thus provides a way to better understand how the brain constructs meaning from 

the complex multiscale structure that defines natural stimuli.

Methods

Participants & data collection.

Data were collected from 23 patients undergoing treatment for intractable epilepsy at the 

NYU Langone Hospital (14 patients) and the Columbia University Medical Center (9 

patients) (12 male, 11 female; mean age: 36 years, STD: 15 years). One patient was 

excluded because they had a large portion of the left temporal lobe resected in a prior 

surgery. Of the remaining 22 subjects, 18 had sound-responsive electrodes (see Electrode 

selection). No formal tests were used to determine the sample size, but the number of 

subjects was larger than in most intracranial studies, which often test fewer than 10 

subjects5,36. Electrodes were implanted to localize epileptogenic zones and delineate these 

zones from eloquent cortical areas before brain resection. NYU patients were implanted with 

subdural grids, strips, and depth electrodes depending on the clinical needs of the patient. 

CUMC patients were implanted with depth electrodes. All subjects gave informed written 

consent to participate in the study, which was approved by the Institutional Review Boards 

of CUMC and NYU. NYU patients were compensated $20/hour. CUMC patients were not 

compensated due to IRB prohibition.

Stimuli for the TCI paradigm.

Segments were excerpted from 10 natural sound recordings, each two seconds in duration 

(cat meowing, geese honking, cicadas chirping, clock ticking, laughter, English speech, 
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German speech, big band music, pop song, drumming). Shorter segments were created 

by subdividing the longer segments. Each natural sound was RMS-normalized before 

segmentation.

We tested seven segment durations (31.25, 62.5, 125, 250, 500, 1000, and 2000 ms). 

For each duration, we presented the segments in two pseudorandom orders, yielding 14 

sequences (7 durations × 2 orders), each 20 seconds. The only constraint was that a given 

segment had to be preceded by a different segment in the two orders. When we designed the 

stimuli, we thought that integration windows might be influenced by transients at the start of 

a sequence, so we designed the sequences such that the first 2 seconds and last 18 seconds 

contained distinct segments so that we could separately analyze the just last 18 seconds. In 

practice, integration windows were similar when analyzing the first 18 seconds vs. the entire 

20-second sequence. Segments were concatenated using cross-fading to avoid click artifacts 

(31.25 ms raised cosine window). Each stimulus was repeated several times (4 repetitions 

for most subjects; 8 repetitions for 2 subjects; 6 and 3 repetitions for two other subjects). 

Stimuli will be made available upon publication.

Natural sounds.

In a subset of 11 patients, we measured responses to a diverse set of 119 natural sounds 

from 11 categories, similar to those from our prior studies characterizing auditory cortex9 

(there were at least 7 exemplars per category). The sound categories are listed in Figure 

5a. Most sounds (108) were 4 seconds. The remaining 11 sounds were longer excerpts of 

English speech (28–70 seconds) that were included to characterize responses to speech for a 

separate study. Here, we just used responses to the first 4 seconds of these stimuli to make 

them comparable to the others. The longer excerpts were presented either at the beginning (6 

patients) or end of the experiment (5 patients). The non-English speech stimuli were drawn 

from 10 languages: German, French, Italian, Spanish, Russian, Hindi, Chinese, Swahili, 

Arabic, Japanese. We classified these stimuli as “foreign speech” since most were unfamiliar 

to the patients. Twelve of the sounds (all 4-seconds) were repeated four times in order to 

measure response reliability and noise-correct our measures. The other 107 stimuli were 

presented once. All sounds were RMS-normalized.

As with the main experiment, subjects did not have a formal task but the experiment was 

periodically paused and subjects were asked a simple question to encourage them to listen to 

the sounds. For the 4-second sounds, subjects were asked to identify/describe the last sound 

they heard. For the longer English speech excerpts, subjects were asked to repeat the last 

phrase they heard.

Preprocessing.

Electrode responses were common-average referenced to the grand mean across electrodes 

from each subject. We excluded noisy electrodes from the common-average reference by 

detecting anomalies in the 60 Hz power band (measured using an IIR resonance filter with 

a 3dB down bandwidth of 0.6 Hz; implemented using MATLAB’s iirpeak.m). Specifically, 

we excluded electrodes whose 60 Hz power exceeded 5 standard deviations of the median 

across electrodes. Because the standard deviation is itself sensitive to outliers, we estimated 
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the standard deviation using the central 20% of samples, which are unlikely to be influenced 

by outliers. Specifically, we divided the range of the central 20% of samples by that which 

would be expected from a Gaussian of unit variance. After common-average referencing, 

we used a notch filter to remove harmonics & fractional multiples of the 60 Hz noise (60, 

90, 120, 180; using an IIR notch filter with a 3dB down bandwidth of 1 Hz; the filter was 

applied forward and backward; implemented using MATLAB’s iirnotch.m).

We measured integration windows from the broadband gamma power response timecourse 

of each electrode. We computed broadband gamma power by measuring the envelope of 

the preprocessed signal filtered between 70 and 140 Hz (implemented using a 6th order 

Butterworth filter with 3dB down cutoffs of 70 and 140 Hz; the filter was applied forward 

and backward; envelopes were measured using the absolute value of the analytic signal, 

computed using the Hilbert transform; implemented using fdesign.bandpass in MATLAB). 

Results were robust to the frequency range used to measure broadband gamma (Extended 

Data Fig 5d). We estimated the integration window of the filter to be ~19 ms, calculated as 

the smallest interval containing 75% of the filter’s mass, where the mass is taken to be the 

envelope of the impulse response. We found in simulations that the bias introduced by the 

bandpass filter was small relative to the range of integration windows we observed in human 

auditory cortex (~50 to 400 ms) (Extended Data Fig 3a). Envelopes were downsampled to 

100 Hz (the original sampling rate was 512, 1000, 1024, or 2048 Hz, depending on the 

subject).

Occasionally, we observed visually obvious artifacts in the broadband gamma power for a 

small number of timepoints. To detect such artifacts, we computed the 90th percentile of 

each electrode’s response distribution across all timepoints. We classified a timepoint as 

an outlier if it exceeded 5 times the 90th percentile value for each electrode. We found 

this value to be relatively conservative in that only a small number of timepoints were 

excluded (on average, 0.04% of timepoints were excluded across all sound-responsive 

electrodes). We replaced the outlier values with interpolated values from nearby non-outlier 

timepoints (using “piecewise cubic hermite interpolation” as implemented by MATLAB’s 

interp1 function).

As is standard, we time-locked the iEEG recordings to the stimuli by either cross-correlating 

the audio with a recording of the audio collected synchronously with the iEEG data or by 

detecting a series of pulses at the start of each stimulus that were recorded synchronously 

with the iEEG data. We used the stereo jack on the experimental laptop to either send two 

copies of the audio or to send audio and pulses on separate channels. The audio on one 

channel was used to play sounds to subjects, and the audio/pulses on the other were sent 

to the recording rig. Sounds were played through either a Bose Soundlink Mini II speaker 

(at CUMC) or an Anker Soundcore speaker (at NYU). Responses were converted to units 

of percent signal change relative to silence by subtracting and then dividing the response of 

each electrode by the average response during the 500 ms before each stimulus.

Electrode selection.

We selected electrodes with a reliable broadband gamma response to the sound set. 

Specifically, we measured the test-retest correlation of each electrodes response across all 
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stimuli (using odd vs. even repetitions). We selected electrodes with a test-retest Pearson 

correlation of at least 0.1, which we found to be sufficient to reliably estimate integration 

windows in simulations (described below). We ensured that this correlation value was 

significant using a permutation test, where we randomized the mapping between stimuli 

across repeated presentations and recomputed the correlation (using 1000 permutations). We 

used a Gaussian fit to the distribution of permuted correlation coefficients to compute small 

p-values74. Only electrodes with a highly significant correlation relative to the null were kept 

(p < 10−5). We identified 190 electrodes out of 2847 total that showed a reliable response to 

natural sounds based on these criteria (62 right hemisphere, 128 left hemisphere).

Electrode localization.

Following standard practice, we localized electrodes as bright spots on a post-operative 

computer tomography (CT) image or dark spots on a magnetic resonance image (MRI), 

depending on which was available. The post-op CT or MRI was aligned to a high-resolution, 

pre-operative MRI that was undistorted by electrodes. Each electrode was projected onto 

the cortical surface computed by Freesurfer from the pre-op MRI, excluding electrodes 

greater than 10 mm from the surface. This projection is error prone because locations 

which are distant on the 2D cortical surface can be nearby in 3D space due to cortical 

folding. To minimize gross errors, we preferentially localized sound-responsive electrodes 

to regions where sound-driven responses are likely to occur75. Specifically, we calculated 

the likelihood of observing a significant response to sound using a recently collected fMRI 

dataset, where responses were measured to a large set of natural sounds across 20 subjects 

with whole-brain coverage76 (p < 10−5, measured using a permutation test). We treated this 

map as a prior and multiplied it by a likelihood map, computed separately for each electrode 

based on the distance of that electrode to each point on the cortical surface (using a 10 mm 

FWHM Gaussian error distribution). We then assigned each electrode to the point on the 

cortical surface where the product of the prior and likelihood was greatest (which can be 

thought of as the maximum posterior probability solution). We smoothed the prior map (10 

mm FWHM kernel) so that it would not bias the location of electrodes locally, only helping 

to resolve gross-scale ambiguities/errors, and we set the minimum prior probability to be 

0.05 to ensure every point had non-zero prior probability. We plot the prior map and its 

effect on localization in Supplemental Fig 1.

Anatomical analyses.

We grouped electrodes into regions-of-interest (ROI) based on their anatomical distance 

to posteromedial Heschl’s gyrus (TE1.1)77 (Fig 4b), which is a common anatomical 

landmark for primary auditory cortex (PAC)19,78. Distance was measured on the flattened 

2D representation of the cortical surface as computed by Freesurfer. Electrodes were 

grouped into three 10 millimeter bins (0–10, 10–20, and 20–30 mm), and we measured 

the median integration width and center across the electrodes in each bin, separately for each 

hemisphere.

Statistics were computed using a linear mixed effects (LME) model. In all cases, we used 

logarithmically transformed integration widths and centers, and for our key statistics, we 

did not bin electrodes into ROIs, but rather represented each electrode by its distance 
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to PAC. The LME model included fixed effects terms for distance-to-PAC, hemisphere, 

and type of electrode (grid, strip, or depth), as well as a random intercept and slope for 

each subject (slopes were included for both hemisphere and distance-to-PAC effects)79. 

Fitting and significance was performed by the matlab functions fitlme and coefTest. A full 

covariance matrix was fit for the random effects terms, and the Satterwaite approximation 

was used estimate the degrees of freedom of the denominator80. We report the estimated 

weight for the distance-to-PAC regressor (and its 95% confidence interval) as a measure of 

effect size in units of octaves per millimeter. We did not formally test for normality since 

regression models are typically robust to violations of normality81,82 and our key effects 

were highly significant (p < 0.001). The relevant data distribution can be seen in Extended 

Data Figure 4. No a priori hypotheses/predictions were altered after the data were analysed 

or during the course of writing/revising our manuscript.

Bootstrapping was used to compute errorbars. We resampled both subjects and electrodes 

with replacement, thus accounting for the hierarchical nature of the data. Specifically, 

for each subject we sampled a set of electrodes with replacement from that subject. We 

then sampled a set of subjects with replacement, and for each subject used the previously 

sampled electrodes. There were a small fraction of samples that were missing data from 

one of the bins/hemispheres, and we simply discarded these samples (bin 3 in the right 

hemisphere was missing samples for 4.0% of samples; the rest of the bins/hemispheres 

were all lower than this percentage). Errorbars plot the central 68% interval (equivalent to 1 

standard error).

Component analyses.

To investigate the functional selectivity of our electrodes, we used responses to the larger set 

of 119 natural sounds that were tested in a subset of 11 patients. There were 104 electrodes 

from these 11 subjects that passed the inclusion criteria described above. We subdivided 

these electrodes into three equally sized groups (Fig 5a). We then used component (Fig 5b) 

and prediction analyses (Fig 5c–d) to investigate selectivity for spectrotemporal modulations 

and categories.

Component methods are commonly used to summarize responses from a population of 

electrodes or neurons9,75,83. For each electrode, we measured the average response of each 

electrode across each 4-second sound (from 250 ms to 4 seconds post-stimulus onset), 

and projected these time-averaged responses onto the top two principle components (PCs) 

from each electrode group (Fig 5b). PCs were measured by applying the singular value 

decomposition (SVD) to the time-averaged electrode responses (demeaned prior to applying 

the SVD). The orientation of the PCs is arbitrary and so we flipped/rotated the PCs so that 

they were maximally aligned with each other across the three groups.

Because the first two PCs might obscure category selectivity present at higher PCs, we 

repeated the analysis using the two components that best separated the categories, estimated 

using linear discriminant analysis (LDA)84 (Extended Data Fig 7). To avoid statistical 

circularity, we used half the sounds to infer components and the other half to measure their 

response. To prevent the analysis from targeting extremely low-variance components, we 

applied LDA to the top five PCs from each electrode group.
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Feature predictions.

As a complement to the component analyses, we measured the degree to which individual 

electrode response timecourses could be predicted from category labels vs. a cochleagram 

representation of sound (Fig 5c–d).

Cochleagrams were calculated using a cosine filterbank with bandwidths designed to mimic 

cochlear tuning19 (29 filters between 50 Hz and 20 kHz, 2x overcomplete). The envelopes 

from the output of each filter were compressed to mimic cochlear amplification (0.3 power). 

The frequency axis was resampled to a resolution of 12 cycles per octave and the time axis 

was resampled to 100 Hz (the sampling rate used for all of our analyses).

For each category label, we created a binary timecourse with 1s for all timepoints/sounds 

from that category, and 0s for all other timepoints. We only labeled timepoints with a 1 if 

they had sound energy that exceeded a minimum threshold. Sound energy was calculated by 

averaging the cochleagram across frequency, and the minimum threshold was set to one fifth 

the mean energy across all timepoints and sounds.

We predicted electrode responses between 500 milliseconds pre-stimulus onset to 4 seconds 

post-stimulus onset. We used ridge regression to learn a linear mapping between these 

features and the response. We included five delayed copies of each regressor, with the delays 

selected to span the integration window of the electrode (from the bottom fifth to the top 

fifth quintile). Regression weights were fit using the 107 sounds that were presented once, 

and we evaluated the fits using the 12 test sounds that were repeated four times each, making 

it possible to compute a noise-corrected measure of prediction accuracy10,44:

0.5 * corr r1, p + 0.5 * corr r2, p 2

corr r1, r2
(1)

where r1 and r2 are two independent measures of the response (computed using odd and 

even repetitions) and p is the prediction computed from the training data. One electrode (out 

of 104) was discarded because of a negative test-retest correlation across the test sounds, 

making correction impossible. We used cross-validation within the training set to choose the 

regularization coefficient (testing a wide range of values from 2−100 to 2100 in octave steps). 

Figure 5c plots the median squared correlation (after noise correction) across the electrodes 

in each group for each feature set. Bootstrapping across subjects and electrodes was again 

used to compute errorbars.

Figure 5d plots the difference in squared correlation values for all individual electrodes 

between a combined model that included both cochleagrams and category labels and the 

individual feature sets, as a measure of the unique variance contributed by each feature 

type85. The data in Figure 5d were fit with a three-parameter logistic sigmoid curve (using 

MATLAB’s implementation of the Levenberg-Marquardt algorithm86 in fit.m):

y = c
1 + e −b x − a
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where x is the logarithmically transformed integration width (log2(i/50), where i is the 

integration width in milliseconds) and y is the unique variance explained by cochleagram 

features or category labels (parameters of fit logistic curve for unique cochleagram variance: 

a = 1.998, b = −4.601, c = 0.206; parameters for unique category variance: a = 2.011, b = 

4.125, c = 0.332). The mid-way point of the logistic curve corresponded to 200 and 201 ms 

for unique cochleagram and category variance, respectively.

Significance was again evaluated using an LME model. The key statistical question was 

whether category labels explained significantly more variance than the cochleagrams for 

electrodes with longer integration windows. To test for this interaction between integration 

window and feature type, we used an LME model to predict the difference between the 

correlation accuracies for the category vs. cochleagram features. We used the raw prediction 

accuracies for the two feature sets, rather than trying to measure unique variance to avoid 

any spurious dependence between the two measures (since estimating unique variance 

requires subtracting prediction accuracies from the same combined model), and we did 

not correct for noise, since the goal of this analysis was to assess significance and not 

effect size. The model included fixed effects terms for the electrode’s integration width 

and hemisphere, as well as random intercepts and slopes for each subject. A fixed effects 

regressor was added to control for electrode type (depth, grid, strip). We did not attempt to 

evaluate the significance of the hemisphere effect for this analysis because we did not have 

enough subjects with right hemisphere coverage that participated in both the TCI and natural 

sound experiment (2 subjects, 20 electrodes).

Integration matching.

We tested if the functional changes we observed with increasing integration (Fig 5) could be 

a generic consequence of greater temporal integration by matching the integration windows 

of our electrodes. To do this, we grouped the electrodes based on their integration width 

into three equally sized groups, as in our main analysis. We then increased the integration 

window of the short and intermediate groups, so that their distribution of integration 

windows closely matched those for the long-integration group (Extended Data Fig 8). 

Matching was accomplished by equating the cumulative distribution function across groups, 

which is a standard way to match the histogram of two distributions19. We manipulated the 

integration window of an electrode by convolving its response with a Gamma-distributed 

window, whose width was chosen separately for each electrode to achieve the desired overall 

integration window. The effective integration window was measured empirically by applying 

the TCI paradigm to the Gamma-convolved responses. We tested a wide range of Gamma 

widths (from 50 to 800 ms in ¼-octave steps) and selected the width that yielded the closest 

match to the desired integration window.

TCI Method

In this section, we give a complete description of our TCI method. We repeat some of the 

details already described in the Results so that this section is self-contained.
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Overview.

Integration windows are defined as the time window when stimuli alter the neural response. 

Our method involves presenting a set of stimulus segments in two different random orders, 

such that each segment occurs in two different contexts (Fig 1). If the integration window 

is less than the segment duration, then there should be a moment when the response is 

unaffected by the surrounding context segments. We developed an analysis to measure the 

degree to which the neural response depends upon context at each moment in time for each 

segment duration (the cross-context correlation). We then developed a model that estimated 

the overall integration window by pooling across these noisy, moment-by-moment estimates.

Cross-context correlation.

The cross-context correlation is schematized in Figure 2a. For each electrode and segment 

duration, we compile the responses to all segments into a matrix, aligned to segment onset 

(the segment-aligned response or SAR matrix) (Fig 2a). A separate SAR matrix is computed 

for each of the two contexts tested. Each row of the SAR matrix contains the response 

timecourse to a single segment. Corresponding rows contain the response timecourse to the 

same segment for two different contexts. We correlate corresponding columns across the 

two SAR matrices (schematized in Fig 2a by connected columnar boxes). This correlation 

provides a measure of the degree to which the response is the same across contexts. Before 

the onset of the shared segments, the integration window will fall on the context segments, 

which are random, and the correlation should thus be close to 0. After the onset of the shared 

segment, the integration window will begin to overlap the shared central segment, and if 

the window is less than the segment duration, there will be a moment/lag when it is fully 

contained within the shared segment and does not overlap the context. As a consequence, 

the response at that moment will be the same across the two contexts, yielding a correlation 

of 1. While noise prevents a correlation of 1, we can measure a noise ceiling for the 

cross-context correlation by measuring the correlation when the context is the same using 

repeated presentations of the same sequence.

The noise ceiling shows reliable and periodic variation across lags (see Fig 2b). We 

know the variation is reliable because it is mirrored in the cross-context correlation when 

the integration is short relative to the segment duration (evident for example in the HG 

electrode’s data for 250 and 500 ms segments in Fig 2b). This variation is expected since 

the sounds that happen to fall within the integration window will vary with lag, and the 

noise ceiling will depend upon how strongly the electrode responds to these sounds. The 

periodicity is also expected and is an inevitable consequence of correlating across a fixed 

set of segments. To see this, consider the fact that the onset of one segment is the offset of 

the preceding segment. Since we are correlating across segments for a fixed lag, the values 

being used to compute the correlation are nearly identical at the start and end of a segment 

(the only difference occurs for the first and last segment of the entire sequence). The same 

logic applies to all lags that are separated by a period equal to the segment duration.

Because the shorter segments were subsets of the longer segments, we could consider two 

types of context: (1) random context, where a segment is flanked by random other segments 

(2) natural context, where a segment is a part of a longer segment and thus surrounded by 
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its natural context (see schematic in Extended Data Fig 5b). Since the two contexts being 

compared must differ, one of the contexts always has to be random, but the other context 

can be random or natural. In practice, we found similar results for random-random and 

random-natural comparisons (Extended Data Fig 5b). This fact is practically useful since 

it greatly increases the number of comparisons that can be made. For example, each 31 

millisecond segment had 2 random contexts (one per sequence) and 12 natural contexts (2 

sequences × 6 longer segment durations). The two random contexts can be compared with 

each other as well as with the other 12 natural contexts. We averaged the cross-context 

correlation across all of these comparisons for maximal statistical power.

The number of datapoints in the correlation is equal to the number of segments. The number 

of segments was determined by however many segments could fit in a 20-second sequence, 

which varied inversely with the segment duration from 640 segments (31 ms duration) to 

10 segments (2 second duration). A consequence of this design is that the cross-context 

correlation will be more reliable for the shorter segment durations, since there are more 

datapoints. We consider this property useful since for responses with short integration 

windows there will be a smaller number of lags at the shorter segment durations that 

effectively determine the integration window, and thus it is helpful if these lags are highly 

reliable. Conversely, electrodes with longer integration windows exhibit a gradual build-up 

of the cross-context correlation at the longer segment durations, and as a consequence, there 

are many more lags that are relevant for determining the integration window. Our model 

enables us to pool across all of these lags to arrive at a robust estimate of the integration 

window.

Model-estimated integration windows.

To estimate the neural integration window, we used a parametric window to predict 

the cross-context correlation across all lags and segment durations, and we selected the 

parameters that yielded the best prediction.

We parametrized the window using a Gamma distribution (h) and we varied the width and 

center of the distribution by scaling and shifting the window in time:

ℎ t; δ, λ, β = g t − δ
λ , γ (2)

g t; γ = γγ

Γ γ tγ − 1e−γt (3)

The window shape is determined by γ and varies from more exponential to more bell-

shaped (Extended Data Fig 5c). The parameters λ and δ scale and shift the window, 

respectively. The width and center of the integration window do not correspond directly to 

any of the three parameters (δ, λ, γ), mainly because the scale parameter (λ) alters both the 

center and width. The integration width was defined as the smallest interval that contained 

75% of the window’s mass, and the integration center was defined as the window’s median. 

Both parameters were calculated numerically from the cumulative distribution function of 

the window.

Norman-Haignere et al. Page 22

Nat Hum Behav. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For a given integration window, we predicted the cross-context correlation at each lag and 

segment duration by measuring how much the integration window overlaps the shared 

central segment (w) vs. the N surrounding context segments (βn) (see Fig 3b for a 

schematic):

rceil
w2

w2 + ∑n = 1
N βn

2 (4)

where rceil is the measured noise ceiling, and the ratio on the right is the predicted 

correlation in the absence of noise. The predicted cross-context correlation varies with the 

segment duration and lag because the overlap varies with the segment duration and lag. 

When the integration window only overlaps the shared segment (w = 1, ∑βn = 0), the model 

predicts a correlation equal to the noise ceiling, and when the integration window only 

overlaps the surrounding context segments (w = 0, ∑βn = 1), the model predicts a correlation 

of 0. In between these two extremes, the predicted cross-context correlation equals the 

fraction of the response driven by the shared segment, with the response variance for each 

segment given by the squared overlap with the integration window. A formal derivation 

of this equation is given at the end of the Methods (see Deriving a prediction for the 

cross-context correlation). For a given segment duration, the overlap with each segment was 

computed by convolving the model integration window with a boxcar function whose width 

is equal to the segment duration (with edges tapered to account for segment cross-fading).

We varied the width, center, and shape of the model integration window and selected 

the window with the smallest prediction error (using a bias-corrected variant of the mean 

squared error; see Simulations and Deriving the bias-corrected loss for details). Since the 

cross-context correlation is more reliable for shorter segment durations due to the greater 

number of segments, we weighted the error by the number of segments used to compute 

the correlation before averaging across segment durations. Integration widths varied between 

31.25 and 1 second (using 100 logarithmically spaced steps). Integration centers varied 

from the minimum possible given for a causal window up to 500 milliseconds beyond the 

minimum in 10 millisecond steps. We tested five window shapes (γ = 1,2,3,4,5).

We assessed the significance of our model predictions by creating a null distribution 

using phase-scrambled model predictions. Phase scrambling exactly preserves the mean, 

variance and autocorrelation of the predictions but alters the locations of the peaks and 

valleys. Phase scrambling was implemented by shuffling the phases of different frequency 

components without altering their amplitude and then reconstructing the signal (using the 

FFT/iFFT). After phase-scrambling, we remeasured the error between the predicted and 

measured cross-context correlation, and selected the model with the smallest error (as was 

done for the unscrambled predictions). We repeated this procedure 100 times to build up a 

null distribution, and used this null distribution to calculate a p-value for the actual error 

based on unscrambled predictions (again fitting the null distribution with a Gaussian to 

calculate small p-values). For 96% of sound-responsive electrodes (182 of 190), the model’s 

predictions were highly significant (p < 10−5).

Norman-Haignere et al. Page 23

Nat Hum Behav. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the shape parameters tested (γ = 1,2,3,4,5), the minimum center for a causal window is 

equal to half the integration width (the blue line in Fig 4c). This value occurs when γ = 1, 

δ = 0, in which case the window has an exponential distribution. An exponential distribution 

is monotonically decreasing and takes its maximal value at t = 0, which intuitively fits the 

notion of a window with minimal delay. We note that for γ < 1, the center can be less 

than half the integration width, but this is arguably an idiosyncrasy of how the parameters 

were defined. If we instead define the integration width as the highest-density 50% interval, 

instead of the highest-density 75% interval, then the center equals the width for all windows 

with γ ≤ 1, which fits the intuition that all of these windows have minimal delay in the sense 

that they monotonically decrease from a maximal value at t = 0.

Modeling boundary effects.

The model just described assumes the neural response reflects a sum of responses to 

individual segments and does not explicitly account for responses that only occur at 

the boundary between segments. We found in simulations (described below) that strong 

boundary responses suppressed the cross-context correlation and led to an upward bias in 

the estimated integration widths when not accounted for. The suppression is likely due to 

the fact that boundary effects by definition depend upon two segments and thus must be 

context-dependent.

To correct this bias, we explicitly modeled boundary effects. By definition, boundary effects 

can only occur when the integration window overlaps two adjacent segments. We captured 

this fact using the equations below. For every pair of adjacent segments, we compute the 

magnitude of the boundary effect as:

b α1, α2 = η α1 + α2 g α1, α2 (5)

g α1, α2 = 0.5 1 − cos 2π α1
α1 + α2

(6)

where α1 and α2 represent how much the integration window overlaps the two adjacent 

segments being considered. The second term, (α1 + α2), reflects the overall amount of 

overlap across the two segments, and the third term (raised cosine function, g(α1, α2)) is 

a nonlinear function that ensures that boundary effects are only present when the window 

overlaps both segments (taking a value of 1 when overlap is equal across the two adjacent 

segments and a value of 0 when overlap is exclusive to just one segment). The free 

parameter η determines the overall strength of the boundary effects, which will depend 

upon the type of response being measured and thus needs to be estimated from the data. We 

tested a range of boundary strengths (η = 0, 0.25, 0.5, 1, 2.0) and selected the parameter that 

yielded the best prediction accuracy for each electrode/response.

For each lag and segment duration, we measured the strength of boundary effects for all 

pairs of adjacent segments using equation 5. We then summed the boundary effects across 

all adjacent segments and added this term to the denominator of equation 4, which results 

in a suppression of the cross-context correlation that depends upon the strength of boundary 
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effect. In simulations, we found this approach substantially reduced the estimated bias for 

integration windows with substantial boundary sensitivity and had no effect on integration 

windows without boundary sensitivity (as expected, since η = 0 removes the effect of the 

boundary).

Simulations.

We tested the ability of our complete analysis pipeline to correctly estimate ground-truth 

integration windows from a variety of simulated model responses. In all cases, there was a 

ground-truth, Gamma-distributed integration window. We varied the width and center of the 

window between 32 and 500 ms, excluding combinations that led to a non-causal window. 

For simplicity, all windows had the same shape (γ = 3), but we did not assume the shape 

was known and thus varied the shape along with the width and center when inferring the 

best-fit window, as was done for the neural analyses.

We simulated responses from four types of models. The first and simplest model integrated 

waveform magnitudes (absolute value of amplitude) over the specified Gamma window.

The second model integrated energy within a cochlear frequency band. Cochlear energy 

was computed in a standard manner19,51: the waveform was convolved with a filter 

whose frequency characteristics were designed to mimic cochlear frequency tuning and 

the envelope of the filter’s response was then compressed (raised to the 0.3 power) to mimic 

cochlear amplification. We used filters with five different center frequencies: 0.5, 1, 2, 4, and 

8 kHz.

The third model integrated energy across time and frequency in a cochleagram 

representation of sound (computed in the same manner described above). The 

spectrotemporal filters were taken from a standard model of cortical responses19,40. The 

filters are tuned in three dimensions: audio frequency, spectral modulation, and temporal 

modulation. The temporal envelope of the filters have a Gamma-distributed window, and 

we varied the width and center of the envelope in the same way as the other models. 

The temporal modulation rate is determined by the envelope, with the modulation center 

frequency equal to 3
3.5λ , where λ is the scale parameter of the Gamma-distributed envelope. 

We tested five audio frequencies (0.5, 1, 2, 4, and 8 kHz) and four spectral modulation scales 

(0.25, 0.5, 1, 2 cycles/octave).

The fourth model was a simple deep network, where we first passed the cochleagram 

through a series of ten pointwise nonlinearities (i.e. applied separately to each timestep) 

and then integrated the output within a specified time window, thus ensuring that the output 

had a well-defined integration window and was also a highly nonlinear function of the 

input. Each nonlinearity involved multiplication by a random, fully connected weight matrix 

(sampled from a unit-variance Gaussian), mean normalization (setting the mean of the 

activations at each timepoint to 0), and rectification (setting negative values to 0). We then 

integrated the output representation across time within a specified time window.

For each model/window, we simulated responses to all of the stimulus sequences from 

our paradigm (fourteen 20-second sequences; two per segment duration). We then used 
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this response to modulate a broadband gamma carrier (Gaussian noise filtered between 70 

and 140 Hz in the frequency domain; 75 dB/octave attenuation outside of the passband), 

which enabled us to test whether our gamma-extraction frontend had sufficient precision 

to enable accurate integration estimates (for simulations we used a 512 Hz sampling 

rate, the minimum sampling rate used for neural data analyses; measured envelopes were 

downsampled to 100 Hz, again mimicking the neural analyses). Finally, we added wide-

band noise to the signal in order to manipulate the SNR of the measurements (Gaussian 

noise filtered between 1 and 256 Hz in the frequency domain; 75 dB/octave attenuation 

outside the passband). We generated four repeated measurements per stimulus using 

independent samples of the carrier and wide-band noise (for most subjects, we also had 

four independent measurements per stimulus). We set the level of the wide-band noise to 

achieve a desired test-retest correlation (r = 0.05, 0.1, 0.2, 0.4), the same measure used 

to select electrodes (the noise level was iteratively increased/decreased until the desired 

test-retest correlation was attained). We tested the ability of our analysis to recover the 

correct integration windows from the 4 repeated measurements, as was done for our neural 

analyses. For each model/window, we repeated this entire process 10 times to generate 

more samples with which to test our analysis pipeline (each time using different carrier and 

wide-band noise samples).

We found we were able to recover ground-truth integration windows and centers from 

the simulated model responses (Extended Data Fig 3a). Accuracy was good as long as 

the test-retest correlation was greater than 0.1, the threshold we used to select electrodes. 

The median error in estimated integration widths across all simulations for a test-retest 

correlation of 0.1 ranged from 11% (waveform model) to 29% (spectrotemporal model). The 

median error for estimated centers was lower, ranging from 1% (waveform model) to 3% 

(spectrotemporal model).

For the spectrotemporal filters, the boundary model described above was important for 

correcting an upward bias induced by the presence of strong responses to spectrotemporal 

changes at the transition between segments (Extended Data Fig 3b). In addition, we found 

that our bias-corrected loss helped correct an upward bias present at low SNRs (Extended 

Data Fig 3c). We used the boundary model and bias-corrected loss for all of our analyses, 

although the results were similar without them.

Deriving a prediction for the cross-context correlation.

In this section, we derive the equation used to predict the cross-context correlation from a 

model integration window (equation 4). The cross-context correlation is computed across 

segments for a fixed lag and segment duration by correlating corresponding columns of SAR 

matrices from different contexts (Fig 2a). Consider two pairs of cells(es,A, es,B) from these 

SAR matrices, representing the response to a single segment (s) in two different contexts (A, 

B) for a fixed lag and segment duration (we do not indicate the lag and segment duration to 

simplify notation). To reason about how the shared and context segments might relate to the 

cross-context correlation at each moment in time, we assume that the response reflects the 

sum of the responses to each segment weighted by the degree of overlap with the integration 

window (Fig 3b):
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es, A = wr s + ∑
n = 1

N
βnr cs, A, n (7)

es, B = wr s + ∑
n = 1

N
βnr cs, B, n (8)

where r(s) reflects the response to the shared central segment, r(cs,A,n) and r(cs,B,n) reflect 

the response to the n-th surrounding segment in each of the two contexts (e.g. the segment 

right before and right after, two before and two after, etc.), and w and βn reflect the degree of 

overlap with the shared and surrounding segments, respectively (illustrated in Fig 3b).

Below we write down the expectation of the cross-context correlation in the absence of 

noise, substitute equations 7 & 8, and simplify (for simplicity, we assume in these equations 

that the responses are zero mean). Moving from line 9 to line 10 takes advantage of the fact 

that contexts A and B are no different in structure and so their expected variance is the same. 

Moving from line 11 to line 12, we have taken advantage of the fact that surrounding context 

segments are random, and thus all cross products that involve the context segments are zero 

in expectation, canceling out all of the terms except those noted in equation 12. Finally, in 

moving from equation 12 to 13, we take advantage of the fact that there is nothing special 

about the segments that make up the shared central segments compared with the surrounding 

context segments, and their expected variance is therefore equal and cancels between the 

numerator and denominator.

E rcross = Es es, Aes, B
Es es, A

2 Es es, B
2 (9)

= Es es, Aes, B
Es es, A

2 (10)

=
Es wr s + ∑n = 1

N βnr cs, A, n wr s + ∑n = 1
N βnr cs, B, n

Es wr s + ∑n = 1
N βnr cs, A, n

2 (11)

= w2Es r2 s
w2Es r2 s + ∑n = 1

N βn
2Es r2 cs, A, n

(12)

= w2

w2 + ∑n = 1
N βn

2 (13)

We multiplied equation 13 by the noise ceiling to arrive at our prediction of the cross context 

correlation (equation 4).
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Deriving the bias-corrected loss.

Here, we derive the correction procedure used to minimize the bias when evaluating model 

predictions via the squared error.

Before beginning, we highlight a potentially confusing, but necessary distinction between 

noisy measures and noisy data. As we show below, the bias is caused by the fact that our 

correlation measures are noisy in the sense that they will not be the same across repetitions 

of the experiment. The bias is not directly caused by the fact that the data is noisy, since 

if there are enough segments the correlation measures will be reliable even if the data are 

noisy, which is what matters since we explicitly measure and account for the noise ceiling. 

To avoid confusion, we use the superscript (n) to indicate noisy measures, (t) to indicate the 

true value of a noisy measure (i.e. in the limit of infinite segments), and (p) to indicate a 

“pure” measure computed from noise-free data.

Consider the error between the measured rcross
n  and model-predicted pcross

n  cross-context 

correlation for a single lag and segment duration (the model prediction is noisy because of 

multiplication with the noise ceiling which is measured from data):

rcross
n − pcross

n 2
(14)

Our final cost function averages these pointwise errors across all lags and segment durations 

weighted by the number of segments used to compute each correlation (which was greater 

for shorter segment durations). Here, we analyze each lag and segment duration separately, 

and thus ignore the influence of the weights which is simply a multiplicative factor that can 

be applied at the end after bias correction.

Our analysis proceeds by writing the measured rcross
n  and predicted pcross

n  cross-context 

correlation in terms of their underlying true and pure measures (equations 15 to 18). We then 

substitute these definitions into the expectation of the squared error and simplify (equations 

19 to 22), which yields insight into the cause of the bias.

The cross-context correlation rcross
n  is the sum of the true cross-context correlation plus 

error:

rcross
n = rcross

t + ecross (15)

And the true cross-context correlation is the product of the pure/noise-free cross-context 

correlation rcross
p  with the true noise ceiling rceil

t :

rcross
t = rcross

p rceil
t

(16)

The predicted cross-context correlation is the product of the noise-free prediction pcross
p

times the measured noise ceiling rceil
n :
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pcross
n = pcross

p rceil
n

(17)

And the measured noise ceiling is the sum of the true noise ceiling rceil
t  plus error (eceil):

rceil
n = rceil

t + eceil (18)

Below we substitute the above equations into the expectation for the squared error and 

simplify. Only the error terms (ecross and eceil) are random, and thus in equation 21, we have 

moved all of the other terms out of the expectation. In moving from equations 21 to 22, we 

make the assumption / approximation that the errors are uncorrelated and zero mean, which 

causes all but three terms to dropout in equation 22. This approximation, while possibly 

imperfect, substantially simplifies the expectation and makes it possible to derive a simple 

and empirically effective bias-correction procedure, as described next.

E rcross
n − pcross

n 2 = E rcross
p rceil

t + ecross − pcross
p rceil

t + eceil
2

(19)

= E rceil
t rcross

p − pcross
p + ecross − pcross

p eceil
2

(20)

= rceil
t 2

rcross
p − pcross

p 2 + E ecross2 + pcross
p 2E eceil

2

+ 2rceil
t rcross

p − pcross
p E ecross − 2rceil

t rcross
p − pcross

p pcross
p E eceil

− 2pcross
p E eceilecross

(21)

≈ rceil
t 2

rcross
p − pcross

p 2 + E ecross2 + pcross
p 2E eceil

2 (22)

The first term in equation 22 is what we would hope to measure: a factor which is 

proportional to the squared error between the pure cross-context correlation computed from 

noise-free data rcross
p  and the model’s prediction of the pure cross-context correlation 

pcross
p . The second term does not depend upon the model’s prediction and thus can be 

viewed as a constant from the standpoint of analyzing model bias. The third term is 

potentially problematic, since it biases the error upwards based on the squared magnitude of 

the predictions, with the magnitude of the bias determined by the magnitude of the errors 

in the noise ceiling. This term results in an upward bias in the estimated integration width, 

because narrower integration windows have less overlap with context and the predicted 

cross-context correlation tends to be larger in magnitude as a consequence. This bias is only 

present when there is substantial error in the noise ceiling, which explains why we only 

observed the bias for data with low reliability (Extended Data Fig 3c).

We can correct for this bias by subtracting a factor whose expectation is equal to the 

problematic third term in equation 22. All we need is a sample of the error in the 
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noise ceiling, which our procedure naturally provides since we measure the noise ceiling 

separately for segments from each of the two contexts and then average these two estimates. 

Thus, we can get a sample of the error by subtracting our two samples of the correlation 

ceiling and dividing by 2 (averaging is equivalent to summing and dividing by 2 and the 

noise power of summed and subtracted signals is equal). We then take this sample of the 

error multiply it by our model prediction, square the result, and subtract this number from 

the measured squared error. This procedure is done separately for every lag and segment 

duration.

We found this procedure substantially reduced the bias when pooling across both random 

and natural contexts (compare Extended Data Fig 3a to Extended Data Fig 3c), as was 

done for all of our analyses except those shown in Extended Data Figure 5b. When only 

considering random contexts, we found this procedure somewhat over-corrected the bias 

(inducing a downward bias for noisy data), perhaps due to the influence of the terms omitted 

in our approximation (equation 22). However, our results were very similar when using 

random or natural contexts (Extended Data Fig 5b) and when using either the uncorrected or 

bias-corrected error. Thus, we conclude that our findings were not substantially influenced 

by noise and were robust to details of the analysis.

Extended Data

Extended Data Fig. 1. Histogram of phoneme, syllable, and word durations in TIMIT
Durations of phonemes, multi-phoneme syllables, and multi-syllable words in the commonly 

used TIMIT database. Phonemes and words are labeled in the database. Syllables were 

computed from the phoneme labels using the software tsylb284. The median duration for 

each structure is 64, 197, and 479 milliseconds, respectively.
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Extended Data Fig. 2. Cross-context correlation for 20 representative electrodes
Electrodes were selected to illustrate the diversity of integration windows. Specifically, 

we partitioned all sound-responsive electrodes into 5 groups based on the width of their 

integration window, estimated using a model (Fig 3 illustrates the model). For each group, 

we plot the four electrodes with the highest SNR (as measured by the test-retest correlation 

across the sound set). Electrodes have been sorted by their integration width, which is 

indicated to the right of each plot, along with the location, hemisphere and subject number 

for each electrode. Each plot shows the cross-context correlation and noise ceiling for a 

single electrode and segment duration (indicated above each column). There were more 

segments for the shorter durations, and as a consequence, the cross-context correlation and 

noise ceiling were more stable/reliable for shorter segments (the number of segments is 
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inversely proportional to the duration). This property is useful because at the short segment 

durations, there are a smaller number of relevant time lags, and it is useful if those lags are 

more reliable. The model used to estimate integration windows pooled across all lags and 

segment durations, taking into account the reliability of each datapoint.

Extended Data Fig. 3. Simulation results
a, Integration windows estimated from four different model responses (from top to bottom): 

(1) a model that integrated waveform magnitudes within a known window (2) a model 

that integrated energy within a cochlear frequency band (3) a model that integrated 

spectrotemporal energy in a cochleagram representation of sound (4) a simple, deep 

neural network. All models had a ground truth, Gamma-distributed integration window. 

We independently varied the integration width and center of the models (excluding non-

causal combinations) and tested if we could infer the ground truth values. Results are 

shown for several different SNRs, as measured by the test-retest correlation of the response 
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across repetitions, the same metric used to select electrodes (we selected electrodes with a 

test-retest correlation greater than 0.1). Black dots correspond to a single model window/

simulation. Red dots show the median estimate across all windows/simulations. Some 

models included more variants (e.g. different spectrotemporal filters), which is why some 

plots have a higher dot density. There is a small upward bias for very narrow integration 

widths (31 ms), likely due to the effects of the filter used to measure broadband gamma, 

which has an integration width of ~19 milliseconds. The integration widths of our electrodes 

(~50 to 400 ms) were mostly above the point at which this bias would have a substantial 

effect, and the bias works against our observed results since it compresses the possible 

range of integration widths. b, Integration windows estimated without explicitly modeling 

and accounting for boundary effects. Results are shown for the spectrotemporal model, 

which produces strong responses at the boundary between two segments due to prominent 

spectrotemporal changes. Note there is a nontrivial upward bias, particularly for integration 

widths, when not accounting for boundary effects (see Methods for a more detailed 

discussion). c, Integration windows estimated without accounting for an upward bias in the 

squared error loss. The bias grows as the SNR decreases (see Methods for an explanation). 

Results are shown for the waveform amplitude model, but the bias is present for all models 

since it is caused by the loss. Our bias-corrected loss largely corrected the problem, as can 

be observed in panel a.
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Extended Data Fig. 4. Integration windows for different electrode types and subjects
a, This panel plots integration widths (left) and centers (right) for individual electrodes 

as a function of distance to primary auditory cortex, defined as posteromedial Heschl’s 

gyrus. The electrodes have been labeled by their type (grid, depth, strip). The grid/strip 

electrodes were located further from primary auditory cortex on average, but given their 

location did not show any obvious difference in integration properties. The effect of distance 

was significant for the depth electrodes alone (the most numerous type of electrode) when 

excluding grids and strips (width: F1,14.53 = 24.51, p < 0.001, βdistance = 0.065 octaves/mm, 

CI = [0.039, 0.090]; center: F1,12.83 = 27.76, p < 0.001, βdistance = 0.052 octaves/mm, CI 

= [0.032, 0.071], N=114 electrodes). To be conservative, electrode type was included as 

a covariate in the linear mixed effects model used to assess significance as a whole. b, 
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Same as panel a but indicating subject membership instead of electrode type. Each symbol 

corresponds to a unique subject. The effect of distance on integration windows is broadly 

distributed across the 18 subjects.

Extended Data Fig. 5. Robustness analyses
a, Sound segments were excerpted from 10 sounds. This panel shows integration windows 

estimated using segments drawn from two non-overlapping splits of 5 sounds each (listed 

on the left). Since many non-primary regions only respond strongly to speech or music8,9,11, 

we included speech and music in both splits. Format is analogous to Figure 4 but only 

showing integration widths (integration centers were also similar across analysis variants). 

The effect of distance was significant for both splits (split1: F1,12.660 = 40.20, p < 0.001, 
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βdistance = 0.069 octaves/mm, CI = [0.047, 0.090], N=136 electrodes; split 2: F1,21.66 = 

30.11, p < 0.001, βdistance = 0.066 octaves/mm, CI = [0.043, 0.090], N=135 electrodes). b, 

Shorter segments were created by subdividing longer segments, which made it possible to 

consider two types of context (see schematic): (1) random context, in which each segment 

is surrounded by random other segments (2) natural context, where a segment is a subset 

of a longer segment and thus surrounded by its natural context. When comparing responses 

across contexts, one of the two contexts must be random so that the contexts differ, but 

the other context can be random or natural. Our main analyses pooled across both types of 

comparison. Here, we show integration widths estimated by comparing either purely random 

contexts (top panel) or comparing random and natural contexts (bottom panel). The effect 

of distance was significant for both types of context comparisons (random-random: F1,28.056 

= 30.01, p < 0.001, βdistance = 0.064 octaves/mm, CI = [0.041, 0.087], N=121 electrodes; 

random-natural: F1,18.816 = 27.087, p < 0.001, βdistance = 0.062 octaves/mm, CI = [0.039, 

0.086], N=154 electrodes). c, We modeled integration windows using window shapes that 

varied from more exponential to more Gaussian (the parameter γ in equations 2&3 controls 

the shape of the window, see Methods). For our main analysis, we selected the shape that 

yielded the best prediction for each electrode. This panel shows integration widths estimated 

using two different fixed shapes. The effect of distance was significant for both shapes (γ 
= 1: F1,21.712 = 24.85, p < 0.001, βdistance = 0.067 octaves/mm, CI = [0.040, 0.093], N=154 

electrodes; γ = 4: F1,20.973 = 19.38, p < 0.001, βdistance = 0.055 octaves/mm, CI = [0.031, 

0.080], N=154 electrodes). d, Similar results were obtained using two different frequency 

ranges to measure gamma power (70–100s Hz: F1,21.05 = 19.38, p < 0.001, βdistance = 0.058 

octaves/mm, CI = [0.032, 0.083], N=133 electrodes; 100–140 Hz: F1,20.56 = 12.57, p < 0.01, 

βdistance = 0.051 octaves/mm, CI = [0.023, 0.080], N=131 electrodes).
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Extended Data Fig. 6. Relationship between integration widths and centers without any causality 
constraint
This figure plots integration centers vs. widths for windows that were not explicitly 

constrained to be causal. Results were similar to those with an explicit causality constraint 

(Fig 4c). Same format as Figure 4c.
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Extended Data Fig. 7. Components most selective for sound categories at different integration 
widths
Electrodes were subdivided into three equally sized groups based on the width of their 

integration window. The time-averaged response of each electrode was then projected onto 

the top 2 components that showed the greatest category selectivity, measured using linear 

discriminant analysis (each circle corresponds to a unique sound). Same format as Figure 

5b, which plots responses projected onto the top 2 principal components. Half of the sounds 

were used to compute the components, and the other half were used to measure their 

response to avoid statistical circularity. As a consequence, there are half as many sounds as 

in Figure 5b.
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Extended Data Fig. 8. Results for integration-matched responses
a, For our functional selectivity analyses, we subdivided the electrodes into three equally 

sized groups, based on the width of their integration window. To test if our results were an 

inevitable consequence of differences in temporal integration, we matched the integration 

windows across the electrodes in each group. Matching was performed by integrating the 

responses from the electrodes in the short and intermediate groups within an appropriately 

chosen window, such that the resulting integration window matched those for the longest 

group (see Integration matching in Methods). This figure plots a histogram of the effective 

integration windows after matching. b-d, These panels show the results of our applying 

our functional selectivity analyses to integration-matched responses. Format is the same as 

Figure 5b–d.
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Fig 1. Temporal context invariance (TCI) paradigm.
Schematic of the paradigm used to measure integration windows. Segments of natural 

stimuli are presented using two different random orderings (concatenated using cross-

fading). As a consequence, the same segment is surrounded by different context segments. 

If the segment duration is longer than the integration window (top panel), there will be 

a moment when the window is fully contained within each segment. As a consequence, 

the response at that moment will be unaffected by the surrounding context segments. If 

the segment duration is shorter than the integration window (bottom panel), the integration 

window will always overlap the surrounding context segments, and they can therefore 

alter the response. The TCI paradigm estimates the minimum segment duration needed to 

achieve a context invariant response. This figure plots waveforms for an example sequence 

of segments that share the same central segment. Segment boundaries are demarcated by 

colored boxes. The hypothesized integration window is plotted above each sequence at the 

moment when it best overlaps the shared segment.
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Fig 2. Cross-context correlation.
a, Schematic of the analysis used to assess context invariance for a single electrode 

and segment duration. The response timecourses to all segments of a given duration are 

organized as a matrix: the segment-aligned response (SAR) matrix. Each row contains the 

response timecourse to a different segment, aligned to segment onset. A separate matrix is 

calculated for each of the two contexts. The central segments are the same across contexts, 

but the surrounding segments differ. The gray region highlights the time window when the 

shared segments are present. To determine if the response is context invariant, we correlate 

corresponding columns across SAR matrices from different contexts (the “cross-context 

correlation”). This analysis is schematized by the linked columnar boxes. For each box, 

we plot a schematic of the integration window at that moment in time. At the start of the 

shared segments (first box pair), the integration window will fall on the preceding contexts 
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segments, which are random across contexts and so the cross-context correlation should 

be approximately zero. As the lag relative to segment onset increases, the integration will 

begin to overlap the shared central segment. If the integration window is less than the 

segment duration, there will be a lag when the response is the same across contexts and 

the correlation will be 1 (second box pair). In practice, noise prevents a correlation value 

of 1, but we can compute a noise ceiling by measuring the correlation when the context is 

identical using repeated presentations of each sequence (not depicted). b, The cross-context 

correlation (blue line) and noise ceiling (black line) for two example electrodes from the 

left hemisphere of one patient (HG: Heschl’s gyrus, STG: superior temporal gyrus). Each 

plot shows a different segment duration. The gray region shows the time interval when the 

shared segment was present. The STG electrode required longer segment durations for the 

cross-context correlation to reach the noise ceiling, and the build-up/fall-off with lag was 

more gradual for the STG electrode, consistent with a longer integration window. The plots 

in this panel were derived from ~40 minutes of data.
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Fig 3. Model-estimated integration windows.
a, Temporal integration windows were modeled using a Gamma distribution. The width and 

center of the model window were varied, excluding combinations of widths and centers 

that resulted in a non-causal window (indicated by gray boxes with dashed red line). b, 
Schematic showing the procedure used to predict the cross-context correlation. For a given 

lag and segment duration, we measured how much the window overlapped the shared central 

segment (w, blue segment) vs. all surrounding context segments (βn, yellow, purple, and 

green segments). The cross-context correlation should reflect the fraction of the response 

variance due to the shared segment, multiplied by the noise ceiling (rceil). The variance 

due to each segment is given by the squared overlap with the model window. The overlap 

measures (w, βn) varied as a function of lag and segment duration and were computed by 

convolving the model window with boxcar functions representing each segment (tapered 

at the boundaries to account for cross-fading). c, Illustration of how the width (top panel) 

and center (bottom panel) of the window alter the model’s prediction for a single segment 

duration (63 milliseconds). Increasing the width lowers and stretches-out the predicted 

cross-context correlation, while increasing the center shifts the cross-context correlation to 

later lags. d, The prediction error for model windows of varying widths and centers for the 

example electrodes from Figure 2b. Redder colors indicate lower error. e, The measured and 

predicted cross-context correlation for the best-fit window with lowest error (same format as 

Fig 2b).
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Fig 4. Anatomy of model-estimated integration windows.
a, Map of integration widths (top) and centers (bottom) for all electrodes with a reliable 

response to sound. b, Electrodes were binned into ROIs based on their distance to a 

common anatomical landmark of primary auditory cortex (posteromedial Heschl’s gyrus, 

TE1.1). This figure plots the median integration width and center across the electrodes 

in each bin. Inset shows the ROIs for one hemisphere. Error bars plot one standard error 

of the bootstrapped sampling distribution across subjects and electrodes. c, Scatter plot 

of integration centers vs. widths for all electrodes. The integration width places a lower 

bound on the integration center for a causal window (blue line). Integration centers scaled 

approximately linearly with the integration width and remained relatively close to the 

minimum possible for a causal window. The orange line shows the affine function that best 

fit the data (equation shown). The line appears curved because the axes are logarithmically 

scaled. Each dot corresponds to an electrode and larger dots indicate that multiple electrodes 

were assigned to that pairing of centers/widths.
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Fig 5. Functional selectivity in electrodes with differing integration windows.
Responses were measured in a subset of patients to a larger collection of 119 natural 

sounds (4-seconds in duration) from 11 sound categories, listed in panel b. a, Electrodes 

from these patients were subdivided into three equally sized groups based on the width of 

their integration window. b, This panel plots the time-averaged response of the electrodes 

across all 119 sounds, projected onto the top 2 principal components from each group. The 

population response to sounds from different categories becomes increasingly segregated 

as integration windows increase. c, The accuracy of cochleagrams (blue line), category 

labels (red line), and both cochleagrams and categories in predicting electrode response 

timecourses. This panel plots the median squared correlation for each feature set (noise-

corrected) across the electrodes in each group. d, This panel plots the difference in 

prediction accuracy between the combined model and the individual models (i.e. just 
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cochleagrams or just category labels), which provides a measure of the unique variance 

explained by each feature type. Each circle corresponds to a single electrode (N=104). A 

logistic curve has been fit to the distribution of prediction accuracies for each feature set.
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