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Summary

Under natural environmental settings or in the human body, the majority of microorganisms exist 

in complex polymicrobial biofilms adhered to abiotic and biotic surfaces. These microorganisms 

exhibit symbiotic, mutualistic, synergistic, or antagonistic relationships with other species during 

biofilm colonization and development. These polymicrobial interactions are heterogeneous, 

complex, and hard to control, thereby often yielding worse outcomes than monospecies infections.

Concerning fungi, Candida spp., in particular, Candida albicans is often detected with various 

bacterial species in oral biofilms. These Candida-bacterial interactions may induce the transition 

of C. albicans from commensal to pathobiont or dysbiotic organism. Consequently, Candida–

bacterial interactions are largely associated with various oral diseases, including denture 

stomatitis, dental caries, periodontitis, peri-implantitis, endodontic infections, and oral cancer. 

Given the severity of oral diseases caused by cross-kingdom consortia that develop hard-to-

remove and highly drug-resistant biofilms, fundamental research is warranted to strategically 

develop cost-effective and safe therapies to prevent and treat cross-kingdom interactions and 

subsequent biofilm development. While studies have shed some light, targeting fungal-involved 

polymicrobial biofilms has been limited. This mini-review outlines the key features of Candida-

bacterial interactions and their impact on various oral diseases. In addition, current knowledge on 

therapeutic strategies to target Candida-bacterial polymicrobial biofilms is discussed.
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Introduction

In a wide variety of environments from natural settings to the human body, the 

majority of microorganisms exist in complex polymicrobial biofilms adhered to abiotic 

and biotic surfaces. During biofilm colonization and development, microbes exhibit 

symbiotic, mutualistic, synergistic, or antagonistic relationships with other species. Those 
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polymicrobial biofilms are often detrimental, causing food spoilage, industrial pipe fouling 

and corrosion, as well as human infectious diseases. Specifically, polymicrobial biofilms 

can cause various infections in a wide range of the human body, from the oral cavity 

(Kolenbrander 2000, Schaudinn et al. 2009) to lung (Stressmann et al. 2012, Zhao et al. 

2012, Filkins et al. 2015) to urinary tract (Ronald 2002, Kline et al. 2016) to chronic 

wounds (Gjødsbøl et al. 2006, Dowd et al. 2008). These polymicrobial biofilms tend to be 

challenging to treat and often yield worse outcomes than monospecies infections by altering 

the sensitivity to antimicrobial agents (Orazi et al. 2019).

The gastrointestinal tract and the oral cavity are the representative human body parts that 

harbor a complex and diverse multitude of microorganisms, where they serve an essential 

role in local and systemic health. In particular, the oral cavity is a unique ecosystem that 

contains 600 to 1,000 bacterial species as well as more than 100 fungal species, colonizing 

soft and hard tissues either permanently or transiently (Aas et al. 2005, Manson et al. 

2008, Peters et al. 2012a, Brown et al. 2019). In health, commensal microbiota inhibits 

pathogen colonization while supplying the host with essential nutrients, maintaining a 

stable micro-ecosystem (Martín et al. 2013, Negrini et al. 2021). However, disruptions 

of such commensal microbial communities from steady-state composition may result in 

the imbalance of host-microbiome interaction and illness (Negrini et al. 2021). Although 

clinical evidence indicates that the coexistence of bacteria and fungus in the oral cavity 

may accelerate susceptibility to host infection, previous oral biofilm studies have largely 

focused on the development of bacterial biofilms (mostly monospecies), and the aspect of 

cross-kingdom interactions have been underexplored. However, recent mechanistic studies 

exhibit the role and importance of bacterial-fungal interactions during biofilm formation and 

development as well as their implication in oral health and disease states.

Concerning fungi, Candida spp. are the most commonly detected fungal species in the 

oral cavity (Ghannoum et al. 2010, Dupuy et al. 2014, Witherden et al. 2017, Delaney 

et al. 2019). Particularly, C. albicans is often found with various bacterial species in oral 

polymicrobial biofilms which may induce the transition of C. albicans from commensal 

to pathobiont or dysbiotic organism (O’Donnell et al. 2015, Janus et al. 2016, Delaney 

et al. 2018, Xiao et al. 2018, de Cássia Negrini et al. 2019). In this cross-kingdom 

interaction, the cell wall of C. albicans, a critical structure for maintaining the cell shape 

and immunogenicity (Hall et al. 2013), plays an important role as the major point of contact 

between the fungus and bacteria (Buurman et al. 1998, Hoyer 2001). For example, hypha-

specific adhesins, ALS (agglutinin-like sequence) group of cell wall glycoproteins (e.g., 

Als1 and Als3), are shown to mediate the cross-kingdom interaction of C. albicans with 

various bacteria commonly found in the oral cavity, such as Streptoccus gordonii (Silverman 

et al. 2010, Bamford et al. 2015), Streptococcus oralis (Xu et al. 2017), Porphyromonas 
gingivalis (Sztukowska et al. 2018), Staphylococcus aureus (Peters et al. 2012b), and 

Staphylococcus epidermidis (Beaussart et al. 2013). These Candida–bacterial interactions 

have been found to be associated with various oral diseases including dental caries, denture 

stomatitis, periodontitis, peri-implantitis, and oral cancer. Unfortunately, drug susceptibility 

studies revealed that it is challenging to eradicate those Candida-bacterial polymicrobial 

biofilm-induced diseases due to alterations of the efficacy of antibiotics by either fungal 
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cells or bacteria (Jenkinson et al. 2002) and lack of targeting polymicrobial interactions 

(Kim et al. 2021).

This mini-review aims to present the characteristics of Candida-bacterial interactions and 

their impact on polymicrobial biofilm formations in the context of various oral diseases. In 

addition, diverse therapeutic strategies to target Candida-bacterial polymicrobial biofilms are 

introduced.

Candida-bacterial biofilm-associated oral diseases

Bacterial colonization and biofilm formation on tooth surfaces or oral soft tissues are 

modulated by the type of species that initially bind and subsequent colonizers interacting 

with those. Candida-bacterial cross-kingdom interactions may also participate in those 

processes and affect biofilm development, thus contributing to the severity of biofilm-

associated oral diseases. There are numerous pieces of evidence showing that the association 

of C. albicans and various bacteria is implicated in diverse aspects of oral diseases (Figure 

1), which are summarized in the following subsections.

Dental caries

Dental caries, also known as tooth decay, is a representative biofilm- and diet-dependent 

oral disease (Sheiham et al. 2015, Bowen et al. 2018). Among various fermentable sugars, 

sucrose is considered the most cariogenic (Leme et al. 2006) due to its contribution 

to biofilm formation and development by serving as a substrate for the production 

of extracellular polysaccharides (EPS) (Bowen et al. 2018). While bacteria have been 

traditionally considered as a major component of the etiology of dental caries (Thomas 

et al. 2012, Wolff et al. 2013, Simón-Soro et al. 2015), many recent studies revealed that 

C. albicans are often detected from plaque biofilms, particularly in children with severe 

early childhood caries (ECC) (Hajishengallis et al. 2017, Jean et al. 2018, Xiao et al. 2018, 

Garcia et al. 2021). Specifically, synergistic interaction between C. albicans and cariogenic 

bacterium Streptococcus mutans is heavily studied in vitro and in vivo in the context of 

dental caries (Falsetta et al. 2014, Ellepola et al. 2017, He et al. 2017, Hwang et al. 2017, 

Kim et al. 2017). The consensus is that EPS produced by S. mutans plays an important 

role in mediating C. albicans-S. mutans cross-kingdom interaction, generating a virtuous 

cycle whereby it enhances C. albicans growth and metabolic activity, in turn, accelerating S. 
mutans growth and EPS production as well. This enhanced EPS production also facilitated 

the surface coating of C. albicans with EPS, established the alliance between C. albicans 
and S. mutans at an early stage of biofilm development, thereby outperforming S. gordonii 
in a 3-species mixed biofilm model (Figure 2) (Wan et al. 2021). Interestingly, a more 

recent study showed that only C. albicans-S. mutans cross-kingdom biofilm matured and 

created an acidic microenvironment when cultured in human saliva, while S. mutans alone 

were not successful (Kim et al. 2020). In addition, a variety of other factors that involved 

in C. albicans-S. mutans interaction has been discussed. For example, one study revealed 

that the removal of extracellular DNA disrupted the initial stage of cross-kingdom biofilm 

formation (Guo et al. 2021). Other studies suggested that S. mutans antigen I/II (Yang 

et al. 2018), S. mutans collagen-binding proteins (Garcia et al. 2021), deletion of the S. 
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mutans delta subunit of RNA polymerase (RpoE) (Xue et al. 2011), C. albicans-derived 

polysaccharide biofilm matrix (Khoury et al. 2020), or the presence of alkaloid nicotine 

(Liu et al. 2017) can boost the C. albicans-S. mutans cross-kingdom biofilm formation. 

Furthermore, the new critical role of C. albicans in inducing oral microbial dysbiosis 

that exacerbates the pathogenesis of root caries has been reported (Du et al. 2021) and 

the new cross-feeding mechanism between S. mutans and C. albicans has been suggested 

with the aid of multi-omics analyses (Ellepola et al. 2019). Other than C. albicans-S. 
mutans biofilms, cross-kingdom interactions of C. albicans with Actinomyces viscosus also 

significantly increased the cariogenic virulence of biofilm (Deng et al. 2019a). Although 

some antagonistic interactions between C. albicans and S. mutans regarding inhibition 

of C. albicans hyphal formation have been reported (Jarosz et al. 2009, Vílchez et al. 

2010), it appears that most cross-kingdom interactions facilitate biofilm accumulation while 

increasing the acidogenicity of biofilm, amplifying the virulence of biofilms.

Denture stomatitis

Denture stomatitis is an inflamed condition of the oral mucosa that is directly in contact 

with dentures. Although C. albicans has been extensively studied as the sole main etiological 

factor of denture stomatitis, recent studies revealed that cross-kingdom interactions between 

C. albicans and bacteria often prosper in denture biofilms. For example, several studies 

reported frequent isolation of C. albicans with S. aureus or S. epidermidis from the 

oral mucous of patients wearing dental prostheses (Tawara et al. 1996, Baena-Monroy 

et al. 2005, Peters et al. 2010, Pereira et al. 2013). In another study, Fusobacterium 
nucleatum as well as F. nucleatum subsp. animalis and vincentii were exclusively detected 

in high numbers with C. albicans from denture stomatitis patients (Shi et al. 2016). 

A recent profiling study demonstrated that a gram-positive anaerobe Scardovia showed 

a positive correlation with C. albicans from plaque formed inside of a denture, while 

three anaerobes (Leptotrichia, Lachnoanaerobaculum, and Moryella) showed a negative 

correlation (Fujinami et al. 2021). In addition, cooperative physical and metabolic processes 

among C. albicans, S. oralis, and Actinomyces oris were found to contribute to early biofilm 

formation on denture material from in vitro model (Cavalcanti et al. 2016a). Similar to the 

findings from the dental caries study (Liu et al. 2017), the effect of nicotine is also appeared 

to increase the coaggregation of C. albicans and S. mutans in denture biofilm (Ashkanane et 

al. 2019).

Periodontitis

Periodontitis is caused by an imbalance between the microbiota and immune defense 

that results in the loss of soft-tissue seal around teeth, formation of periodontal pockets, 

and subsequent bone destruction (Buduneli et al. 2011, Lamont et al. 2018, Jabri et 

al. 2021). While various microorganisms have been known to be associated with the 

initiation and progression of the periodontitis, red complex, P. gingivalis, Tannerella 
forsythia, and Treponema denticola, as well as Aggregatibacter actinomycetemcomitans 
have been considered the most pathogenic bacteria involved in periodontitis (Teles et al. 

2013). Lately, the role of yeast and its cross-kingdom interaction with various bacteria 

in periodontitis pathogenesis were discussed. Investigation of the associations of Candida 
and periodontopathic bacteria from seniors (≥ 60 years old) demonstrated that the surface 
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area of inflamed periodontal tissue was significantly greater when Tannerella forsythia and 

Treponema denticola were detected together with C. albicans from patients (Shigeishi et al. 

2021). Also, several studies revealed various interaction mechanisms between C. albicans 
and P. gingivalis. For example, fungal cell adhesins Als3 and Mp65, aspartic proteases 

Sap6 and Sap9, and protein enolase appeared to mediate the direct physical contact with 

P. gingivalis (Bartnicka et al. 2019). Particularly, C. albicans Als3 directly interacted 

with P. gingivalis InlJ, acting as an adhesin-receptor system for C. albicans-P. gingivalis 
association (Sztukowska et al. 2018). Similarly, C. albicans surface mannoprotein Flo9 and 

F. nucleatum outer membrane protein RadD were involved in interspecies co-adherence (Wu 

et al. 2015). In other studies, it showed that virulence factors of P. gingivalis such as cysteine 

proteases and peptidylarginine deiminase enzymes played a crucial role in C. albicans-P. 
gingivalis association (Karkowska-Kuleta et al. 2018, Karkowska-Kuleta et al. 2020). As an 

environmental factor affecting C. albicans-P. gingivalis association, heme, an important iron 

source for both species, was shown to enhance the pathogenic potential of P. gingivalis while 

interacting with C. albicans (Guo et al. 2020). Such C. albicans-P. gingivalis association 

facilitated the invasion and infection of gingival tissue cells (Tamai et al. 2011, Bartnicka et 

al. 2020), and hampered wound closure (Haverman et al. 2017).

Peri-implantitis

Osseointegrated dental implants have become a clinical standard for replacing missing 

teeth (Nickenig et al. 2008, Johannsen et al. 2012, Park et al. 2020). The inflammatory 

response of the gingival tissue around implants represents a growing challenge as many 

studies demonstrated a high incidence of peri-implant diseases after implantation (Atieh 

et al. 2013, Gomes et al. 2015, Papathanasiou et al. 2016, Gurgel et al. 2017, Lee et al. 

2017). Such peri-implant diseases could lead to destructive failures, resulting in discomfort, 

painful and costly surgical replacement of failed implants, and the potential breakdown 

of overall oral health (Charalampakis et al. 2012, Sakka et al. 2012, Rosen et al. 2013). 

The microbiota linked to dental implant failure has been shown to be associated with a 

higher prevalence of periodontal pathogens, such as P. gingivalis, Prevotella intermedia, 

Fusobacterium spp, as well as gram-negative cocci, together with Candida spp (Alcoforado 

et al. 1991, Leonhardt et al. 1999, Hultin et al. 2002, Canullo et al. 2015). While the 

mechanistic investigation of cross-kingdom interaction between Candida and bacteria on 

peri-implantitis has been limited, there are some studies describing their implications. For 

example, one study demonstrated the mutualistic relationship between C. albicans and 

mitis group streptococci (i.e., Streptococcus mitis, Streptococcus sanguinis, S. oralis, and 

S. gordonii) promoted biofilm formation on titanium surfaces, resulting in increased tissue 

damage (Souza et al. 2020). Another study demonstrated similar findings that mutualistic 

C. albicans-S. gordonii cross-kingdom interactions enhanced biofilm formation and fostered 

a high level of resistance to combination therapy with antifungal and antibacterial drugs 

(Montelongo-Jauregui et al. 2018). In addition, there was a study aimed at evaluating the 

interaction between C. albicans and Streptococcus salivarius biofilms developed on titanium 

surfaces, under reduced oxygen levels (Martorano-Fernandes et al. 2020). Unlike their 

antagonistic relationship observed in oral candidiasis models (Ishijima et al. 2012, James et 

al. 2016), the presence of S. salivarius did not affect fungus growth or C. albicans virulence 

in the context of peri-implant disease (Martorano-Fernandes et al. 2020). Interestingly, 
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virulence factors of C. albicans expressed in biofilms formed on titanium (i.e., expression of 

genes associated with adhesins and hydrolytic enzymes) significantly varied depending on 

associated bacterial species (e.g., S. sanguinis, S. mutans, and P. gingivalis) (Cavalcanti et al. 

2016b).

Oral cancer

Oral cancer is one of the most prevalent cancers which mainly occurs in the squamous 

cells (Pushalkar et al. 2011, Arzmi et al. 2019). While various risk factors for oral cancer 

are known, including tobacco use, heavy alcohol consumption, and human papillomavirus 

infection, microbial infections also can contribute to its pathogenesis (Arzmi et al. 2019). 

In particular, C. albicans is considered one of the major microorganisms contributing to 

oral cancer development, potentially promoting carcinogenesis via several mechanisms 

(Kaźmierczak-Siedlecka et al. 2020). For instance, cross-kingdom interactions of C. albicans 
with oral bacteria A. naeslundii and S. mutans enhanced invasion of oral squamous 

cell carcinoma and increased the expression of cancerous inflammatory cytokines, which 

promoted oral carcinogenesis (Arzmi et al. 2018). Also, metabolites from C. albicans-S. 
aureus cross-kingdom biofilm promoted changes in proto-oncogenes and cell cycle gene 

expression in normal and neoplastic oral epithelial cell lines (Amaya Arbeláez et al. 

2021). It is worth noting that those cross-kingdom interactions are not only involved in 

the pathogenesis of oral cancer but also cause catastrophic complication. During cytotoxic 

chemotherapy, the dysbiotic state is often promoted, elevating the risk of oral candidiasis, 

which results in infectious complications that are a common cause of morbidity and 

mortality in cancer patients (Bertolini et al. 2019). This was proposed whereby the 

mutualistic relationships between C. albicans and Enterococcus faecalis facilitate their 

overgrowth, which augments mucosal barrier breach by releasing proteolytic enzymes and 

enhancing virulence gene expression by C. albicans (Bertolini et al. 2019).

Combined, cross-kingdom interactions between C. albicans and oral bacteria are widely 

associated with the virulence of various oral diseases. Thus, their mechanism of action 

should be further understood to successfully manage Candida-involved complex biofilm-

associated oral diseases. Further investigations using clinically relevant ecological biofilm 

models combined with powerful analytical tools may progress our knowledge to the next 

level.

Therapeutic approaches for Candida-bacterial biofilm-associated oral 

diseases

Given the aggressive damage caused by cross-kingdom consortia that develop hard-to-

remove and highly drug-resistant biofilms, there is a great need to strategically develop 

cost-effective and safe therapies to prevent cross-kingdom interactions and subsequent 

biofilm development. While there have been endeavors to develop therapeutic strategies 

to treat pathogenic bacterial biofilms, targeting fungal-involved polymicrobial biofilms has 

been limited. Since fungal-bacterial biofilms exhibit dynamic inter-kingdom interactions 

and diverse drug resistance patterns (Orazi et al. 2019, Khan et al. 2021), efficacies of 

antibiofilm agents are often limited. Here, the use of naturally derived bioactive molecules, 
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chemically synthesized compounds, nano-formulated drugs, alternative biofilm treatment 

strategies as well as antibiofilm surfaces aimed at targeting Candida-bacterial biofilms are 

summarized (also illustrated in Figure 3).

Natural antibiofilm products

A variety of natural antibiofilm agents derived from medicinal plants have been introduced 

due to their unique characteristics such as low toxicity, high biocompatibility, and low 

manufacturing cost. Among them, a portion of bioactive molecules exhibits antibiofilm 

activities that can target different stages of cross-kingdom biofilm development. For 

example, cajuputs candy was able to inhibit C. albicans hyphal transformation and suppress 

insoluble glucan formation by S. mutans (Septiana et al. 2019). Similarly, the use of 

curcumin concomitantly downregulated glucosyltransferase and quorum sensing-related 

gene expression of S. mutans as well as the ALS family of C. albicans (Li et al. 2019). 

Other natural compounds extracted from Cranberry (Philip et al. 2019), green tea (Farkash et 

al. 2019), Rhamnus prinoides (Campbell et al. 2020), Camellia japonica and Thuja orientalis 
(Choi et al. 2017), olive oil (Arias et al. 2016) as well as Casearia sylvestris (Ribeiro et 

al. 2019) have been also reported to exert antibiofilm activity against C. albicans-S. mutans 
cross-kingdom biofilms. In regards to other Candida-bacterial biofilms, gymnemic acids, 

isolated from Gymnema sylvestre, prevented the development of C. albicans-S. gordonii 
biofilm by inhibiting S. gordonii binding to C. albicans hyphae (Veerapandian et al. 2019).

Synthetic antibiofilm products

To improve the efficacy and equip diverse functions, extensive efforts have been made to 

develop chemically synthesized antibiofilm agents. Synthetic antimicrobial peptide (AMP) 

is one of the widely applied chemically synthesized antibiofilm agents, mainly used to 

target monospecies biofilm. Recently, however, cyclic dipeptides have been shown to 

inhibit S. mutans and C. albicans adhesion to a hydroxyapatite disc, thereby preventing 

their cross-kingdom biofilm formation (Simon et al. 2019). In addition, cholic acid-

peptide conjugates (Gupta et al. 2019), ceragenins (Hacioglu et al. 2019), and guanylated 

polymethacrylates (Qu et al. 2016), which are synthetic compounds mimicking AMP, 

have shown to be effective in disrupting C. albicans-S. aureus biofilms. Ceragenins were 

also tested against C. albicans cross-kingdom biofilms with Pseudomonas aeruginosa, 

Acinetobacter baumannii, Escherichia coli, or Klebsiella pneumoniae, exhibiting its superior 

efficacy to naturally occurring AMPs (Hacioglu et al. 2020). Other synthetic compounds 

include nitrochalcone (Bombarda et al. 2019) and peroxynitric acid solution (Iwaki et 

al. 2020) that were effective against C. albicans-S. mutans biofilm, which outperformed 

broad-spectrum antimicrobial agent chlorohexidine with less cytotoxicity. There also have 

been attempts to combine synthetic compounds and a classic anticaries agent such as 

fluoride. Sodium trimetaphosphate accompanied with fluoride elevated pH of C. albicans-S. 
mutans biofilm close to the neutral values, which may reduce the tooth demineralization 

(Cavazana et al. 2020). The combinations of tt-farnesol and 4’-hydroxychalcone were 

effective against preformed C. albicans-S. mutans biofilm when combined with fluoride 

(Lobo et al. 2021). Other various combination therapies involving multiple synthetic and 

natural compounds have also demonstrated enhanced antibiofilm efficacy against cross-

kingdom biofilms. Povidone-iodine and fluconazole combination treatment inhibited the 
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production of α-glucan by S. mutans and enhanced fluconazole efficacy against C. albicans 
(Kim et al. 2018). Eugenol with fluconazole or azithromycin also exhibited enhanced 

antibiofilm activity against C. albicans-S. mutans biofilm (Jafri et al. 2020). In addition, 

2-aminobenzimidazole with curcumin (Tan et al. 2019), berberine and amphotericin B 

(Gao et al. 2021), anidulafungin and tigecycline (Rogiers et al. 2018), and fluconazole 

and minocycline (Li et al. 2015) were effective in deterring C. albicans-S. aureus biofilm. 

Interestingly, some antifungal agents are repurposed to treat C. albicans involved cross-

kingdom biofilms. For example, voriconazole, a second-generation broad-spectrum triazole 

antifungal drug, was found to regulate the ergosterol pathway that is critical for the 

interaction of C. albicans and A. viscosus (Deng et al. 2019b).

Nanotechnology-based antibiofilm products

While several natural and synthetic biofilm agents exhibit potent antibiofilm activity, their 

efficacy is often hampered by the limited penetration of these drugs into dense biofilms. To 

address this issue, recently nanotechnology-based biofilm eradication strategies have been 

extensively applied to enhance drug penetration and delivery (Besinis et al. 2015, Koo et 

al. 2017, Benoit et al. 2019, Liu et al. 2019). However, these were mainly tested against 

monospecies biofilms, and utilization of bioactive nanoparticles to deter cross-kingdom 

biofilms has been very limited. Encouragingly, one study reported that 20–30 nm-sized 

chitosan nanoparticles reduced the viability of C. albicans and S. mutans as well as biomass 

of the cross-kingdom biofilm (Ikono et al. 2019). More recent studies also demonstrated that 

loaded curcumin on chitosan nanoparticles (Ma et al. 2020) and positively-charged silver 

nanoparticles (Lara et al. 2020) exhibited excellent antibiofilm activity against polymicrobial 

biofilms of C. albicans and S. aureus. Another study using nanoemulsion containing 

a quaternary ammonium salt also revealed that it effectively inhibited adherence of C. 
albicans, S. mutans, Lactobacillus casei, and A. viscosus to glass surfaces and subsequent 

biofilm formation by combinations thereof (Ramalingam et al. 2012).

Alternative antibiofilm strategies

In spite of the advent of such diverse pioneering antibiofilm approaches, antimicrobial 

resistance and off-target effect due to broad-spectrum antimicrobials demand searching for 

alternative biofilm treatment strategies. As consequence, the use of probiotic bacteria to 

suppress pathogenic strains has been suggested as an alternative strategy for controlling oral 

biofilms (Söderling et al. 2011, Saha et al. 2014). Among them, the effect of Lactobacillus 
genus against C. albicans-S. mutans biofilms has been mainly investigated. Interestingly, 

Lactobacillus plantarum 108 supernatant (Srivastava et al. 2020) and Lactobacillus salivarius 
(Krzyściak et al. 2017) exhibited capabilities of disrupting C. albicans-S. mutans biofilm 

formation and development while inhibiting the hyphal transformation of C. albicans. 

Furthermore, the use of Lactobacillus plantarum CCFM8724 outperformed chlorhexidine 

in treating and preventing dental caries induced by C. albicans-S. mutans biofilm in vivo 
(Zhang et al. 2020). Similarly, antagonizing Streptococcus parasanguinis disrupted C. 
albicans-S. mutans biofilm by altering sugar metabolism and glucosyltransferase activity 

of S. mutans (Huffines et al. 2020), which is critical for EPS-matrix development and 

GtfB-mediated cross-kingdom interaction (Hwang et al. 2017, Kim et al. 2021). Another 

alternative approach for biofilm eradication is antimicrobial photodynamic therapy (aPDT). 
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aPDT requires a photosensitizer that generates short-lived cytotoxic reactive oxygen species 

(ROS) only under stimulating light, enabling localized and time-controlled therapy. A study 

showed that aPDT therapy using erythrosine as the photosensitizer exhibited a significant 

antimicrobial effect against biofilm composed of C. albicans, S. mutans, and Lactobacillus 
casei (Gong et al. 2019). Also, photodithazine- (Quishida et al. 2015a, Quishida et al. 

2015b) and curcumin-based aPDT (Quishida et al. 2016) significantly reduced the metabolic 

activity and total biomass of multispecies biofilms of C. albicans, S. mutans, and Candida 
glabrata.

Antibiofilm surfaces

Finally, the sharp increase in using dental implants and devices causes a new class of 

microbially induced infectious diseases via biofilm accumulation on these surfaces (Arciola 

et al. 2018, Dhall et al. 2021). By recognizing the importance of fungal-bacterial interaction 

in pathogenic biofilm development, it is crucial to invent infection-resistant biomaterials 

that can confront polymicrobial biofilms to mitigate the prevalence of microbially induced 

medical device infections. In this regard, a fluoride-releasing dental prosthesis copolymer 

was developed that can interrupt polymicrobial biofilm interactions of C. albicans, L. 
casei, and S. mutans (Yassin et al. 2016). Also, a self-adhesive sealant modified with di-

n-butyldimethacrylate-tin showed strong anti-biofilm efficacy against C. albicans-S. mutans 
biofilm neither affects the mechanical properties of the sealant nor causes cytotoxicities 

(Cocco et al. 2020). While current reports describing the surface that can deal with 

cross-kingdom biofilms are extremely limited, diverse active biomaterials targeting various 

mechanisms of action are desired.

Concluding Remarks

As summarized here, polymicrobial biofilms containing C. albicans and various pathogenic 

bacteria together are ubiquitously associated with a variety of oral diseases and have 

the potential to exacerbate diseases. Therefore, it iterates the importance of expanding 

biofilm investigations from single-species systems to complex cross-kingdom relationships. 

Furthermore, it turned out that HIV-infected children are highly susceptible to C. albicans 
associated oral lesions, candidiasis (Charone et al. 2013, Rosa Oliveira et al. 2016, Charone 

et al. 2017), which is an important marker of immune suppression that may progress to 

more severe infections with other pathogens. Thus, more vigorous research efforts should be 

made to develop innovative antibiofilm therapeutics against fungal-associated polymicrobial 

biofilms. Although several approaches have been introduced to deal with cross-kingdom 

biofilms, the vast majority is relying on broad-spectrum antimicrobial activity that can kill 

both fungus and bacterium but lack targeting polymicrobial interactions. A recent binding 

mechanism-based non-microbicidal approach that intervenes in symbiotic C. albicans-S. 
mutans biofilm interaction suggests a new paradigm in treating cross-kingdom biofilms 

(Kim et al. 2021). Furthermore, it is worth noting that most of the current therapeutics has 

been mainly tested using in vitro model. A thorough assessment of the efficacy and safety of 

new therapeutics using an appropriate in vivo model should be accompanied for developing 

successful applications in the prevention and treatment of polymicrobial infections.
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Figure 1. 
Association of Candida albicans and various bacteria in oral diseases. A variety of gram-

positive and -negative oral bacteria interact with C. albicans, contributing to virulences of 

diverse oral diseases ranging from dental caries to oral cancer.

Hwang Page 19

Environ Microbiol Rep. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Representative confocal images of C. albicans-S. mutans, C. albicans-S. gordonii, and 

C. albicans-S. mutans–S. gordonii biofilms cultured in media supplemented with 1% 

sucrose. Gray, green, red, and blue colors indicate C. albicans, S. mutans, S. gordonii, 
and extracellular polysaccharides (EPS)-matrix, respectively. Adapted with permission from 

Wan et al. (2021) Cross-Kingdom Cell-to-Cell Interactions in Cariogenic Biofilm Initiation. 

Journal of Dental Research, Vol. 100(1) 74–81. Copyright © International & American 

Associations for Dental Research 2020
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Figure 3. 
Various antibiofilm strategies to eradicate Candida-bacterial cross-kingdom biofilm. It 

includes but is not limited to naturally derived bioactive molecules, chemically synthesized 

compounds, nano-formulated drugs, and alternative biofilm treatment strategies. ROS 

denotes reactive oxygen species.
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