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Advanced Materials for SARS-CoV-2 Vaccines

Moustafa T. Mabrouk, Wei-Chiao Huang, Luis Martinez-Sobrido, and Jonathan F. Lovell*

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by
severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold
millions worldwide and has hurtled vaccines into the spotlight as a go-to
approach to mitigate it. Advances in virology, genomics, structural biology,
and vaccine technologies have enabled a rapid and unprecedented rollout of
COVID-19 vaccines, although much of the developing world remains unvac-
cinated. Several new vaccine platforms have been developed or deployed
against SARS-CoV-2, with most targeting the large viral Spike immunogen.
Those that safely induce strong and durable antibody responses at low dos-
ages are advantageous, as well are those that can be rapidly produced at a
large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale
or microscale dimensions and represent diverse and unique biomaterials.
Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multim-
eric display technologies for subunit vaccines have received much attention.
Nanoscale vaccine adjuvants have also been used in combination with other
vaccines. To deal with the ongoing pandemic, and to be ready for potential
future ones, advanced vaccine technologies will continue to be developed in
the near future. Herein, the recent use of advanced materials used for devel-

oping COVID-19 vaccines is summarized.

1. Introduction

In two years, SARS-CoV-2 has reshaped the world, infecting
hundreds of millions of people, killing millions, and severely
impacting the entire human population. Vaccines are a center-
piece for strategies to overcome pandemics. They depend on
delivering antigens to the immune system to trigger an adap-
tive immune response, effected in large part by cytotoxic CD8*
T cells that destroy infected cells, and virus neutralizing anti-
bodies secreted by B cells. SARS-CoV-2 is a complex enveloped
single-stranded RNA coronavirus encoding 11 open reading
frames in its genome as illustrated in Figure 1A.) The Spike
(S) glycoprotein has been the central focus for most vaccine
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development, since it mediates viral
entry and induces neutralizing antibody
responses, which are predictive of protec-
tion from symptomatic SARS-CoV-2 infec-
tion.23] As waves of new viral variants
emerge, other targets such as the mem-
brane (M), envelope (E), or nucleocapsid
(N) proteins may emerge as complemen-
tary vaccine antigens to help increase
breadth of protection.

S forms a homotrimeric structure com-
prising two domains, S1 and S2, separated
by a Furin cleavage site (FCS).>¢l S1 con-
tains the receptor binding domain (RBD)
which binds to human angiotensin con-
verting enzyme 2 (hACE2) on host cells.
Subsequently, proteolytic cleavage by Furin
and by Transmembrane protease serine 2
(TMPRSS2) at the FCS and just upstream
of the fusion peptide, respectively, acti-
vates the S2 fusion machinery leading to
viral entry.”! S is a class I fusion glycopro-
tein that undergoes major structural rear-
rangements from prefusion to post-fusion
conformation during viral fusion to host
cell membranes. It was previously shown that prefusion-stabi-
lized class I fusion protein antigens better preserve neutraliza-
tion epitopes for viruses including respiratory syncytial virus
(RSV) fusion (F) glycoprotein.®l Similar to the Middle East res-
piratory syndrome coronavirus (MERS-CoV) S protein,”! two
proline substitutions (2P) at residues 986 and 987 at the C-ter-
minal boundary of the first heptad repeat were found to stabi-
lize SARS-CoV-2 S in its prefusion conformation.l'”) These 2P
stabilizing mutations have been widely adopted in many SARS-
CoV-2 vaccines including the Moderna mRNA-1273 vaccine
(Spikevax), the Pfizer/BioNTech BNT162b2 vaccine (Comir-
naty), the Novavax NVX-CoV2373 vaccine (Nuvaxovid), and the
Johnson and Johnson Ad26.CoV2.S vaccine (Janssen COVID-19
Vaccine).'"! In contrast, the AstraZeneca/Oxford ChAdOxl1
nCoV-19/AZD1222 (Vaxzevria) antigen uses the wildtype SARS-
CoV-2 S sequence and cells transduced with the adenovirus-
vectored vaccine produce intact trimeric S, albeit with some
proteolytic S degradation.'”l To mitigate this, another common
antigen enhancement strategy used by NVX-CoV2373[8% and
Ad26.CoV2.5" for example, is to insert mutations or deletions
at the proteolytic-prone FCS to improve antigen stability and
preserve immunogenicity.

As shown in the schematic illustration in Figure 1B,
COVID-19 vaccines have taken on a wide variety of formats.
Table 1 lists some of the vaccine types that have reported peer-
reviewed phase 3 clinical trial results so far.'%! Various advanced
materials have emerged as vaccines for the S subunit antigen
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Figure 1. The SARS-CoV-2 genome, the S glycoprotein, and representative vaccine strategies. A) Schematic representation of the SARS-CoV-2 genome
and its S glycoprotein with some notable features. The right panel indicates the structure of S (PDB ID: 6VXX). B) Representative SARS-CoV-2 vaccine
classes. Trade name examples are provided below the schematic illustrations. The left part of (A) is adapted under the terms of the CC-BY Creative
Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0). Copyright 2020, The Authors, published by Frontiers.

Parts of Figure 1 created with Biorender.com.

itself or the genetic code encoding for it, allowing in situ pro-
duction of the protein inside the host cells.'”) Adjuvants have
also been used to boost the immune reaction through multiple
mechanisms including antigen depot effect, enhanced antigen
presentation and cellular uptake through particle formation,
induction of chemokines and cytokines, immune cell recruit-
ment at the injection site, and promoting antigen transport to
draining lymph nodes.!'8")

Synthetic mRNA has emerged to greatly shape the
COVID-19 vaccine response. mRNA can be used for in situ
production of antigenic proteins in a safe and highly modular
manner. Once a vaccine system is developed, developing a vac-
cine with a different nucleic acid sequence for a different target
antigen is simpler and faster than for a recombinant protein.
Although mRNA is less stable than DNA, it eliminates the
need for nuclear targeting and in vivo transcription, as well

Table 1. COVID-19 vaccines with peer-reviewed phase Ill clinical trial data available.

Vaccine type Names Developer Antigen Adjuvant/excipient Ref.
mRNA BNT162b2/Comirnaty Pfizer/BioNTech S Cationic lipid [20]
mRNA-1273/SpikeVax Moderna [21]

CVnCoV CureVac [22]

Non-replicating adenovirus AZD1222/Vaxzevria AstraZeneca S None [23]
Sputnik V Gamaleya [24]

Ad26.COV2.S/)anssen Covid-19 Vaccine Johnson and Johnson [25]

Inactivated Virus BBIBP-CorV Sinopharm Whole virus Alum [26]
CoronaVac Sinovac [27]

Protein subunit Nuvaxovid/NVX-CoV2373 Novavax S Matrix-M [28]
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as the potential hazard of genetic integration.””) mRNA tech-
nology has been investigated not for only vaccines, but also to
generate virus-neutralizing ACE2 decoys.’% The high mole-
cular weight of nucleic acids and their strong negative charge
impedes their delivery across the cell membranes, in addition
to being prone to degradation in vivo. Thus, nucleic acid vac-
cines require delivery systems. Synthetic nanocarriers such as
cationic polymers and lipid nanoparticles (LNPs) can be used
for the delivery of mRNA vaccines across cell membranes.3"
The Pfizer/BioNTech mRNA-1273 and Moderna BNT162b2
vaccines have been highly successful, launching a new era of
mRNA vaccines. The replication-incompetent adenovirus type
viral-vector vaccines by Janssen and AstraZeneca have also seen
global deployment as novel vaccine platforms. Over 15 different
vaccines have been approved or authorized for emergency use
worldwide, and the landscape is rapidly changing, with hun-
dreds of candidates in various stages of clinical testing.’?l Not
only are a wide variety of new vaccine technologies advancing
through clinical trials, but clinical testing is also changing. Pla-
cebo controlled trials are becoming increasingly difficult to plan
as populations become vaccinated and exposed to SARS-CoV-2,
and thus some recent vaccine trials make use of an established
comparator vaccine, with an endpoint of comparative neutral-
izing antibody titers. Current vaccines were designed against
the S sequence of the Wuhan SARS-CoV-2 strain, and while
vaccine-induced antibodies neutralize the prevalent circulating
variants such as Beta and Delta, they do so with diminished
potency.?334 As more mutated variants emerge in the future,
redesigned antigens and accompanying new iterations of vac-
cines may be required to deal with them.

Several prior literature reviews have summarized COVID-19
vaccine design,®>~¥] antigen design,!""38] vaccine pipelines,?*!
including with a focus on nanotechnology***! and nanomate-
rials,*?*] and biomimetic materials.*" In this review, design
and optimization of SARS-CoV-2 antigens and materials used
for their delivery and adjuvantation are reviewed. Inactivated
and viral vectored vaccine platforms, which are successful and
important classes of COVID-19 vaccines are not discussed
herein, given that their entirely viral nature shifts their discus-
sion beyond the scope of antigen engineering or vaccine formu-
lation using exogenous biomaterials.

2. Antigen Design

The SARS-CoV-2 lipid bilayer outer surface includes the M, E, and
S structural proteins. The sera of mice immunized while M and E
proteins show minimal neutralization activity, and these antigens
are not currently being widely pursued.’”! The S glycoprotein,
which forms trimeric structures of S1-S2 heterodimers on the
virus surface is responsible for binding to hACE2 and cell entry.
The S1 subunit contains the RBD which can adopts two distinct
conformations: “up” or “down”, and only the “up” conformation
exposes the receptor-binding site ,“%1 while the S2 subunit com-
prises the fusion peptide and heptad repeat (HR) regions 1 and
2 (Figure 1A). After receptor mediated endocytosis, S1 is cleaved
away, which facilitates the fusion peptide insertion into the host
cell membrane bringing HR1 and HR2 together which allows the
fusion of the viral and host cell membranes.*’] The S glycoprotein
is the main target antigen for most advanced vaccines.
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Full-length S harbors multiple neutralizing epitopes®! and T
cell epitopes, is large (1200 amino acids), contains a hydrophobic
transmembrane domain, and can present challenges for main-
taining antigen integrity, relative to the smaller RBD.*® The RBD
is promising as a target for eliciting neutralizing antibodies as it is
less glycosylated than S, which can increase its immunogenicity
and it induces a high frequency of neutralizing antibodies.*>%
On the other hand, the smaller molecular weight of RBD can
decrease its immunogenicity, making it a target for multimeriza-
tion strategies using advanced materials. Such delivery platforms
should be flexible enough for rapid readjustment and adapta-
tion to deal with viral variants with mutations that escape neu-
tralization.’ As shown in Figure 2, nanoparticulate vaccination
approaches have several potential advantages. Compared to small
and compact antigens, nanoparticles are better delivered through
phagocytosis and endocytosis to immune cells in draining lymph
nodes.’” In addition, usually such multimeric display tech-
nologies are compatible with multivalent antigen display. For
example, the SpyCatcher multimerization technology has been
used to display multiple copies of the RBD from various beta-cor-
onaviruses to induce broadly neutralizing antibodies.l3! Antigen
density can often be tuned with nanoparticle-displayed antigens,
which can lead to enhancement in B-cell receptor engagement
and subsequent B cell activation.’¥ Finally, some antigen dis-
play platforms enable the cellular co-delivery of antigens and
adjuvants simultaneously. This presents potential advantages of
activating the same antigen-presenting cells that take up the vac-
cine antigens, leading to more effective responses.

2.1. mRNA Vaccines

mRNA vaccines emerged in the pandemic as effective and rap-
idly producible COVID-19 vaccines. The related DNA vaccines
that preceded mRNA vaccines were in testing for several dec-
ades,> and the recent success mRNA vaccines has been enabled
by gradual advances in mRNA modification, stabilization, and
delivery methods.*>8 mRNA vaccines will be a major focus for
research and development efforts for the foreseeable future.”!
Compared to DNA, mRNA molecules are smaller, are tran-
scribed in vitro, so they bypass the in vivo transcription process,
but have been prone to biochemical degradation and induction
of undesirable type I interferon immune responses. As shown in
Figure 3, several mRNA modification strategies have emerged.
The major features of an mRNA molecule, namely the 5" cap,
the 5" untranslated region (UTR), the coding sequence, the 3’
UTR, and the polyadenenosine tail are all targets for optimiza-
tion.[¥l These modifications generally serve to improve the in
vitro transcription, in vivo translation or stability of the molecule.
In addition, the use of modified bases, especially N1-methylpseu-
douridine (NImW¥) in place of uridine, used in both the Pfizer/
BioNTech BNT162b2 and the Moderna mRNA-127 vaccines,
diminishes the undesirable type I interferon immune response,
in addition to improving stability.®! An emerging approach to
mRNA vaccines is the development of self-amplifying RNA
(saRNA), which encodes a replicase sequence and holds poten-
tial to reduce the injection dose and possibly the number of
required injections, by extending mRNA half-life.[5
Representative approaches for DNA and mRNA-based
COVID-19 vaccines are listed in Table 2. The use of ionizable

© 2022 Wiley-VCH GmbH



ADVANCED
SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

Virus-like particle platforms Inactivated virus

» W W%

Capacity for multivalent display

—YYYYY
FYYYY

Diverse antibody
response

Nanoparticles with
mutivalent antigens

Multivalent interactions,
promote B cell receptor

www.advmat.de

Improved uptake or particles in
immune cells in draining lymph node

™

Capacity to co-deliver adjuvants

cross linking

activated dendritic cell

Figure 2. Nanoscale antigen delivery systems present potential advantages for vaccine delivery. Numerous vaccine platforms, including virus-like
particles and inactivated viruses, have nanoscale dimensions and can exhibit enhanced uptake of antigen in immune cells in draining lymph nodes.
In addition, antigen delivery systems can often facilitate multivalent antigen responses, have tunable antigen density and in some cases can co-deliver

adjuvant along with antigen. Parts of Figure 2 created with Biorender.com.

cationic lipids for their delivery has been central for the success
of the Pfizer/BioNTech BNT162b2 and the Moderna mRNA-
1273 vaccines. However, numerous other materials have been
used for formulation of mRNA. Although the first human
approved mRNA was against COVID-19, mRNA vaccines have
been in clinical testing for diseases such as HIV, rabies, influ-
enza, and Zika virus for several years.>’]

2.2. Subunit Vaccines

Coronavirus subunit vaccines are developed based on specific
viral antigenic fragments, produced as recombinant proteins.]
Subunit vaccines have no risk of causing viral infection or
genomic integration as they are devoid of genetic material. As
such, subunit vaccines are generally considered to be safe and
well-tolerated. The S glycoprotein and its RBD has been the
subject of extensive research efforts for SARS-CoV-2 subunit
vaccines. Some representative examples are shown in Table 3.

3. Virus-Like Particles

As a component of subunit vaccines, a protein scaffold utilizes
a self-assembling protein to form a virus-like particle (VLP)

mRNA

which has defined size and number of monomers that can dis-
play the antigen of interest on its surface either by conjugation,
genetic fusion or tag coupling.®!! As shown in Figure 4, the
RBD in particular has been the subject of a great deal of VLP-
related research, as the relatively small antigen tends to benefits
from particulate presentation.

VLPs have attracted attention for infectious disease vaccines
and a wide variety of nanoarchitectures can be used in their
design.®! The SpyTag/SpyCatcher technology is a method for
irreversible protein ligation based on modification of domains
from the surface proteins of Streptococcus pyogenes where an
isopeptide bond can be formed specifically between the tag
and the catcher.®% Three generations of this technology have
been developed with increased reaction speed.’] The assembly
of SARS-CoV-2 RBD on a SpyCatcher003-mi3 nanoparticle
platform yielded 20 nm particles with no sign of aggregation
(Figure 4A)."% The resultant VLP showed binding to a range
of neutralizing antibodies as well as ACE2, confirming that the
RBD was displayed intact on the particle surface. RBD-SpyVLP
showed stability against cold chain failures such as elevated tem-
peratures up to 25 °C for 2 weeks and five freeze—thaw cycles.
Upon immunization of mice or pigs, neutralizing humoral
immune responses were observed against both S and RBD.

To assess the effect of multiplexing of different RBDs on
the same nanoparticle, mosaic nanoparticles were prepared to

h 5’ Cap 5’ Untranslated Region (UTR) Open Reading Frame, encoding antigen 3’UTR Poly-A tail
eatures: ——
Start
codon
’_‘ Stop
codon
Optional - Self-replication domai Modified b
d Modified 5’ ca e elf-replication domain odified bases -
engineered |- stabfl)ity Optimized UTR Replicase sequence e.g. N1-methylpseudouridine (N1m%) Encoded poly-A tail
features: and translation Enhances translation enables more copies allows translation while decreasing Long tail enhances stability
and increases half-life degradation and interferon respones

Figure 3. Selected features of mRNA that can be engineered for improved vaccine efficacy.
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Antigen Formulation technology Notes Ref.
S mRNA Lipid nanoparticles Safe and effective protection from COVID-19 in phase 3 clinical trials [20,21]
RBD mRNA Lipid nanoparticles Single dose immunization protected hAce2 transgenic mice from SARS-CoV-2 challenge [63]
RBD mRNA Polyglucan—spermidine Production of neutralizing antibodies in mice against RBD in mice [64]
RBD mRNA Polymeric micelle Vitamin E succinate modified polyethyleneimine copolymer mRNA elicited antigen-specific antibodies [65]
S DNA Chitosan Inhaled particles allowed cells to secrete S that competes with virus binding to ACE2 receptor [66]
S DNA Naked DNA Various variants of S were used to immunize non-human primates [67]
S DNA Polymeric micelle Deoxycholic acid polyethyenimine polymer encapsulated S for skin delivery [68]

and elicited neutralizing antibodies in mice

raise cross-reactive immune responses against zoonotic sar-
becoviruses.>?l The RBDs were chosen based on sarbecovirus
RBD receptor usage and cell tropism.®8 The chosen zoonotic
RBDs were co-assembled into nanoparticles with or without
SARS-CoV-2 RBD and compared to homotypic SARS-CoV-2
RBD using SpyTag/SpyCatcher technology where SpyTag003
was genetically fused to each single one and then assembled
into SpyCatcher003-mi3. The resultant particles were used to
immunize mice and compared to soluble RBD. Multimerizing
the RBD on homotypic nanoparticles better-induced IgGs that
can bind to zoonotic RBDs compared to soluble RBD or S, or
natural infection.

The effect of conjugating the tag on N versus C terminus
(RBDn vs RBDc) was investigated using the Tag/Catcher-AP205
platform.” Although both expressed well in monomeric forms,
the C terminus conjugate VLP tended to aggregate while the N
terminus one was monodisperse and stable. The soluble RBDs
together with their VLPs were used to immunize mice and
showed superior neutralization activity when in the particulate
form with RBDn-VLP being superior to RBDc-VLP.

Chiba and co-workers used biotinylated variants of S so
that it could be displayed on a streptavidin coated MS2 bacte-
riophage. The resulting S protein-coated particles were tested
for immunogenicity in golden Syrian hamsters. After a single

Table 3. Representative materials for nanoparticulate subunit vaccines.

dose, the vaccine generated neutralizing antibodies and pro-
tected hamsters from SARS-CoV-2 challenge.®”!

Artificial protein scaffolds make use of computation-
ally designed proteins that can separate an individual pro-
tein folding subunit from the final macromolecular structure
assembly. Recombinant proteins are traditionally expressed
and purified, then self-assemble into VLPs when mixed. A two
protein component (I53-50A and I53-50B) system was compu-
tationally designed to produce an icosahedral protein complex
containing 120 subunits that assemble into 28 nm particles as
shown in Figure 4B.B% The self-assembling VLP was used to
display either RBDI"?! or SI3] by genetically fusing these with the
153-50A component. The RBD was genetically fused with vari-
able linkers (RBD-8GS-, RBD-12GS-, and RBD-16GS153-50).72
The resultant RBD-displayed particles showed stable sub-
micrometer size below 50 nm. Hydrogen/deuterium-exchange
mass spectrometry and glycoproteomics confirmed the surface
display of RBD with the native confirmation and glycosylation.
The antigenicity and epitope accessibility of VLP-bound RBD
were confirmed through its reactivity with human ACE2 ecto-
domain and two site-specific monoclonal antibodies. S protein
fusions also resulted in stable nanoparticles (S-I153-50NPs)
with size =30 nm. The VLPs were assessed in non-human pri-
mates that were immunized with 88 pg of RBD equivalent in

Antigen Binding technology Notes Ref.
RBD SpyTag/SpyCatcher Effective vaccine with 1 g dose per mouse. Stabile with elevated temperatures and freeze—thaw cycles [70]
Multiple RBDs Co-display of SARS-CoV-2 and other RBDs on mosaic nanoparticles for broad antibody response [53]
RBD RBD particles generated with the Tag/Catcher-AP205 platform induced neutralizing antibodies 7]
RBD Artificial protein scaffold RBD fusion proteins linked to 153-50A with 16 glycine and serine residues showed [72]
the best immunogenicity in the resulting particles
S S-153-50NPs protected macaques against dose viral challenge [73]
RBD or S AS03 was found to be a potent adjuvant when combined with RBD or prefusion S trimer nanoparticles [74]
S AuNP Elicited anti-S antibodies in mice, but neutralizing activity was minimal [75]
RBD peptide Sae1493-KLH conjugate induced anti-peptide antibodies [76]
RBD Ferritin cages 24-mer RBD self-assembling ferritin protein nanoparticles effectively induced strong 77
neutralizing antibodies in mice
RBD 24-mer RBD bullfrog H. pylori ferritin protein nanoparticles protected ferrets from viral challenge [78]
RBD Cobalt liposomes Display of RBD on liposome induced neutralizing antibodies in mice with 0.1 ug antigen doses [79]
S Streptavidin/biotin MS2 bacteriophage scaffold coated with S conferred protection in hamsters after single injection of 60 ug [80]
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Figure 4. Protein nanoparticles for RBD delivery. A) The RBD-SpyVLP vaccine candidate consists of SpyCatcher003-VLP conjugated with SpyTag-
RBD.F% B) The I53 protein icosahedron architecture, with the fivefold symmetry through each vertex and threefold symmetry through each face of
the icosahedron with 12 pentamers and 20 trimers are aligned along the fivefold and threefold symmetry axes.®? C) Conjugating the RBD to the
24-meric ferritin particles using the SpyTag/SpyCatcher (SPY) system.®3l D) SARS-CoV-2 RBD nanoparticles were constructed by expressing RBD with
a C-terminal sortase A donor sequence and a H. pylori ferritin nanoparticle.®4 E) Modeling of an RBD nanoparticle based on H. pylori ferritin and the
RBD.78l A) Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license.”®l Copyright 2021, The Authors, pub-
lished by Springer Nature. B) Reproduced with permission.[82l Copyright 2016, American Association for the Advancement of Science. C) Reproduced
with permission.83 Copyright 2021, The Authors, published by American Society for the Advancement of Science. Reprinted/adapted from ref. [83].
© The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons
Attribution NonCommercial License 4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/. D) Reproduced with permission.¥ Copyright
2021, The Authors, published by Springer Nature. E) Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International

license.8l Copyright 2021, The Authors, published by ASM Journals.

the RBD-12GS-I53-50 formulation in a 4-week prime-boost
regime that resulted in induction of protective neutralizing anti-
bodies.”2l S-153-50NPs was used to immunize mice, rabbits,
and cynomolgus macaques showing strong immune responses
in all species and protecting macaques against viral challenge.’!
Furthermore, RBD or S nanoparticles were combined with the
adjuvants Essai O/W 1 849 101, AS03, AS37, CpG1018-alum
or alum and benchmarked in their ability to elicit protective
immunity against SARS-CoV-2 infection in rhesus macaques.”
RBD-16GSI53-50 immunizations showed that AS03 was best
able to produce a mixed Th1-Th2 response while other adju-
vants were biased to either Thl or Th2. Upon identifying AS03
as the preferred adjuvant, the RBD was compared to Hexa-Pro,
a stable variant of the prefusion S trimer,'” in its soluble and
nanoparticulate form with 153-50. AS03 was a potent adjuvant
with either immunogen, resulting in a neutralizing immune
response.’ The icosahedral protein scaffold with RBD fusion
decoration has advanced into phase three clinical testing with
the GBP510 vaccine (ClinicalTrials.gov # NCT05007951).
Ferritin is the primary iron storage protein and naturally
assembles into nanonanocages, which can be genetically
engineered to functionalize its surface.’) Multiple copies of
RBD were displayed on the surface of ferritin nanoparticles

Adv. Mater. 2022, 34, 2107781
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consisting of either 24-mer or 60-mers composed of an inner
layer of locking domains and a cluster of T cell epitopes, as
shown in Figure 4C.®¥ The CR3022 monoclonal antibody
was used for immunoaffinity separation as it can bind to both
SARS-CoV-1/2 RBDs. SARS-CoV-1/2 RBDs (“RBD-up” con-
formation) were attached to protein nanoparticles using the
SpyTag/SpyCatcher system. In the same manner to compare
antigens, RBD was compared to heptad repeats®! and it was
found that heptad repeats conjugated to ferritin nanoparti-
cles through Spytag/Spycatcher technology not only produced
neutralizing humoral and cellular responses but also these
neutralizing antibodies were able to neutralize other coronavi-
ruses providing cross-protection. In another approach, the RBD
was displayed on the surface of ferritin nanoparticles through
sortase A enzyme as represented in Figure 4D.®Y The vaccine
elicited neutralizing antibodies in non-human primates.
Helicobacter pylori-bullfrog ferritin nanoparticles were used to
produce RBD self-assembling protein-based vaccine. The conju-
gated ferritin RBD self-assembled into 24-mer nanoparticles as
described in (Figure 4E) that were able to protect ferrets against
SARS-CoV-2 challenge after three injections of 15 g doses with
AddaVax adjuvant.”®] A ferritin cage with surface S or RBD were
able to produce detectable antibodies level after single dose,

© 2022 Wiley-VCH GmbH
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Figure 5. Inorganic materials. A) An alum-stabilized Pickering emulsion schematic (top) and scanning electron microscopy image (bottom) after
solidification by replacing squalene with paraffin wax. The scale bars represent 10 um and 200 nm (inset).l®l B) Schematic (top) and electron micros-
copy image (bottom) of gold nanoparticles (AuNP) after functionalization with thiol-poly (ethylene glycol)—amine, activation with glutaraldehyde (GTA)
and conjugation with an S, 403 peptide.”® C) Illustration (top) and electron microscopy image (bottom) of AuNP coated with Bis (p-sulfonatophenyl)
phenylphosphine dihydrate dipotassium salt (BSPP) and S. The arrows show S bound AuNPs. Scale bar: 200 or 20 nm (inset).”> A) Reproduced with
permission.®l Copyright 2020, Wiley-VCH. B) Reproduced with permission.”¢l Copyright 2021, Elsevier. C) Bottom: Reproduced with permission.”!
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but can even get higher levels after a second booster dose.*!

Ferritin-RBD nanoparticles were also able to induce long-term
memory in mice when compared to soluble RBD.*

To compare three protein scaffolds, Kang and co-workers dis-
played RBD on three different protein nanoparticle via SpyTag-
SpyCatcher system, Ferritin (24-mer), mi3 (60-mer), and 153—-50
(120-mer).”* The sera from immunized mice showed that when
adjuvanted with Addavax, all three nanoparticles resulted in high
neutralizing antibodies levels which were significantly higher
than the monomeric RBD immunized mice. In a similar com-
parative approach, Lainscek et al. compared RBD genetic fusions
presented using various nanoscaffolds including foldons, fer-
ritin, lumazine synthase, and f-annulus peptides, encoded by a
DNA vaccine.™ The small S-annulus peptide scaffold induced
the best virus neutralization in mice.

Medicago uses plants to produce VLP vaccines. Plant-based
platforms in theory enable rapid and scaled product develop-
ment. AS03-adjuvant, squalene-based adjuvant, or CpG1018, toll-
like receptor 9 (TLRY) agonist adjuvants, were used with a plant-
based VLP displaying the S glycoprotein to vaccinate healthy
individuals with single or two doses of 3.75, 75, or 15 ug VLP.
AS03 showed a balanced Th1/Th2 response after two injections
with enhancement in neutralizing antibodies level at higher
doses.”® To durability and cross reactivity of the produced anti-
bodies, AS03 were used as adjuvant of choice to immunize
20 healthy individuals with two doses of 3.75 pg VLP 21 days
apart.® At day 201, sera from vaccinated individuals showed

Adv. Mater. 2022, 34, 2107781

2107781 (7 of 17)

durable neutralizing antibody response against SARS-CoV-2
with significant cross reactivity between in some individuals
against SARS-CoV but not MERS-CoV. Plant viruses themselves
can be used as a VLP scaffold. SARS-CoV-2 derived peptides
were directly conjugated in a trivalent fashion onto cow pea
mosaic virus (CPMV), generating neutralizing antibodies.*’!

4. Inorganic Materials

Aluminum salts have been regarded as a safe vaccine adjuvant
for over 70 years. A Pickering emulsion (PAPE) was developed
using a microgel squalene-in-water system stabilized with alum as
shown in Figure 5A.°® The resultant microparticles had spherical
morphology with antigen at the surface with stability for at least
120 days at 37 °C. About 90% of the RBD was adsorbed to the
microparticles after incubation with PAPE for 30 min at room
temperature. The vaccine produced a mixed Th1/Th2 response in
mice. Gold nanoparticles (AuNP) are one of the most widely used
inorganic biomaterial.*”! Sekimukai et al. found that although S pro-
tein/AuNP could be formed as shown in Figure 5B and induced a
strong IgG response, the vaccine failed to induce protective anti-
bodies or limit eosinophilic infiltration in lungs.”! An S derived
peptide (Ss1493) Was chosen based on BepiPred-2.0: Sequential
B-Cell Epitope Predictor tool and conjugated to keyhole limpet
hemocyaninon (KLH) to increase immunogenicity and the con-
jugate was displayed on the surface of 10 nm AuNP as shown in
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Figure 5C.V% The resultant particles elicited antibodies against the
peptide but were not tested for neutralization or protective efficacy.

5. Lipid Materials for Vaccines

5.1. Lipid-Based Nanoparticles for mRNA Vaccines

Lipid delivery systems are the most widely used tool for mRNA
vaccine delivery as they offer advantages of in vivo stabiliza-
tion, enhanced cell permeability and endosomal escape.[190:101]
The process of delivery of mRNA through endomembranes
via multiple mechanisms is illustrated in Figure 6A.1%2 The
tunable nature of such systems that incorporate multiple lipid
components lends itself to modification and optimization
(Figure 6B).°2 For example, Elia et al., tested several ionizable
lipids to optimize a design of an mRNA vaccine encoding SARS-
CoV-2 human Fc-conjugated receptor binding domain (RBD-
hFc).19%] After escaping the endosome, the mRNA is translated
into the corresponding protein. Near complete protection in
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hACE2 transgenic mice was achieved after a single injection of
mRNA-RBD as well as robust humoral and cellular responses
that lasted for at over 6 months in BALB/c mice.[%’]

RBD and S1 subunit mRNA formulations were compared
using the GenVoy-ILM lipid system, an ionizable lipid mix to
generate LNPs. Sera from mice groups injected with 30 ug of
mRNA of either S1 subunit or RBD formulations showed high
levels of neutralizing antibodies with the RBD being superior
to S1 subunit. RBD immunized mice had enhanced cellular
response when compared to those with S1 subunit.!%°]

One or two doses of an RBD mRNA LNP formulation
(termed ARCoV) elicited neutralizing antibodies against mul-
tiple SARS-CoV-2 strains in mice and non-human primates./*4
The formulation showed homogenous morphology with reg-
ular size distribution (Figure 6C) and was able to retain 85% of
its activity when stored at 37 °C for 7 days. Alternatively, a self-
amplifying RNA encoding a prefusion stabilized SARS-CoV-2
S was formulated with LNP and dose titration (0.01-10 pg) was
tested for humoral and cellular immunogenicity and neutrali-
zation activity in mice.'%! All doses resulted in mice sera with
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Figure 6. Lipid nanoparticles for mRNA delivery. A) Putative mechanisms of endosomal escape of nanocarriers. 1) Nanocarriers induce destabilization
of endosomal membranes for cytosolic release of genetic cargos. 11) Nanocarriers, particularly polyplexes, scavenge protons and become cationic in
acidic lumens of endosome compartments, resulting in the inflow of more protons and counter ions. This osmotic gradient induces influx of water to the
endosomes, causing endosome rupture. 11) Nanocarriers swell in acidic pH due to the electrostatic repulsion and physically rupture the endosome.'%2
B) General structure of lipid nanoparticles. lonizable or cationic lipids are the main component responsible for the encapsulation of nucleic acid and
intracellular delivery.'"2 C) Cryo-transmission electron microscopy images of ARCoV particles showing homogeneous morphologies of solid spheres
that lack an aqueous core. Scale bar: 200 nm.[" D) Structures of ionizable lipids used in the Pfizer/BioNTech BNT162b2 vaccine and the Moderna
mRNA-1273 vaccine.l'® A B) Reproduced with permission.[" Copyright 2020, Elsevier. C) Reproduced with permission.['™ Copyright 2020, Elsevier.
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higher quantities of neutralizing IgG compared to convalescent
sera.

Overall, mRNA and LNP formulation is an emerging prac-
tice with many optimization methodologies to consider.'”) The
ionizable lipids used by in mRNA vaccines play a substantial
role in their efficacy. Pfizer/BioNTech’s Comirnaty vaccine uses
an amino lipid termed ALC-0315, while Moderna’s SpikeVax
vaccine uses lipid H.[%® Their chemical structures are similar
and are shown in Figure 6D.

Although LNPs have emerged as the current carrier of choice
for advanced mRNA vaccines, other non-lipid approaches
are viable and are mentioned briefly here. They typically
involve cationic polymers instead of lipids. For example, a
polyglucin:spermidine conjugate was investigated as a poten-
tial carrier for a mRNA-RBD vaccine and induced neutralizing
antibodies in mice.*¥ Chitosan was used to produce a DNA
vaccine encoding a secreted S portion that has the potential
for treatment and vaccination as well by acting as a competi-
tive antagonist at the ACE2 receptor.® Full length S protein
encoding mRNA was successfully encapsulated into a core—
shell structured lipopolyplex nanoparticles.'”) A cationic
polymer termed SW-01 was used to condense the mRNA into
the core and then coated with a shell of ionized and non-ion-
ized lipids using microfluidics. The resultant vaccine, SW0123,
produced neutralizing antibodies in both C57BL/6 and BALB/c
mice. SW0123 is now under evaluation in a Phase I clinical trial
in China (SW0123 is now under evaluation in a Phase I clinical
trial in China (Chinese Clinical Trial Registry, CTR20210542).

His-tagged
{  Antigen

CoPoP bilayer
(single leaflet)
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5.2. Liposome and Micelle Adjuvants

Liposome-based vaccine delivery systems hold the advantages of
human safety track record, ease of manufacture, and control over
lipid composition. They can also be designed to control para-
meters such as vesicle charge and size which impact entrapment
efficiency. Liposome-based vaccines can be used for delivering
different kinds of antigens, either proteins or nucleic acids, which
can be adsorbed at the surface, or be entrapped in the aqueous
core of liposomes. Lipophilic compounds including several
immune stimulants can be incorporated into the lipid bilayer.
For instance, ASO1, a liposomal adjuvant system incorporating
two molecular adjuvants (a monophosphoryl lipid A (MPLA)
and a saponin molecule (QS-21)) stimulates humoral and cell-
mediated immune responses when coadministration with anti-
gens."% The effectiveness and safety of ASO1 has led it to being
widely, used even with inactivated viruses.'!l GlaxoSmithKline
(GSK), which produces ASO1, has engaged in several partner-
ships to embed its pandemic adjuvant AS03, an adjuvant system
composed of ortocopherol, squalene and polysorbate 80 in an oil-
in-water emulsion with SARS-CoV-2-protein-based vaccines such
as the Medicago CoVLP (ClinicalTrials.gov # NCT04636697) and
the GBP510 (ClinicalTrials.gov # NCT05007951) vaccines.

In another approach to further enhance immunogenicity
of liposomal adjuvant systems, his-tagged protein antigens
were engineered to bind on the bilayer surface based on inter-
action with immobilized cobalt ions in the bilayer through
a novel porphyrin phospholipid conjugate (termed CoPoP),

Figure 7. Lipids for protein antigen particles. A) Top: A peptide with a his-tag (green) binding to pre-formed CoPoP liposomes in an aqueous solution
with simple admixing."? Bottom: Cryo-electron microscopy image of the RBD displayed on immunogenic CoPoP liposomes. B) Electron microscopy
images of SARS-CoV-2 3Q-2P-FL, formulated in polysorbate 80 surfactant in the presence of Matrix-M adjuvant (Novavax). S rosettes are circled in
yellow and Matrix-M adjuvant cages are circled in white. Matrix-M does not appear to interact with the S nanoparticles.[®! A) Top: Reproduced with
permission.[" Copyright 2015, Springer Nature. Bottom: Reproduced with permission.”) Copyright 2020, Wiley-VCH. B) Reproduced under the terms
of the CC-BY Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0)."¢1 Copyright 2020, American
Association for the Advancement of Science.
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allowing enhanced antigen presentation and uptake as shown
in Figure 7A.'2l RBD presentation on the surface of these
liposomes resulted in a potent neutralizing antibody response
in mice with just 0.1 pug dose per mouse. This technology
has recently advanced to clinical trials (ClinicalTrials.gov #
NCT04783311) under the tradename EuCorVac-19.””!

Another saponin based adjuvant, Matrix-M, is made of Quil-
laja saponins that are formulated into nanoparticles together
with cholesterol and phospholipids.'"3l Matrix-M enhances
Th1 and Th2 responses as well as inducing multiple antibody
subclasses."™ ] Matrix-M, a key component of the Novavax
Nuvaxovid vaccine, increases the immunogenicity of full-length
recombinant SARS-CoV-2 S nanoparticle vaccine shown in
Figure 7B.13]

6. Materials for Vaccine Storage and Delivery

There are many challenges when it comes to a pandemic mass
vaccination. One is the logistics of vaccine storage and global
distribution that require active cold chains to enable shipments,
including low temperature storage conditions or a narrow range
of storage temperatures. For example, some mRNA vaccines
require shipment and long-term storage at —80 °C. Liposomal
vaccines can aggregate if frozen and thus should not be stored
below 0 °C.'"I Another challenge can be the lack of available
trained health care workers who can administer vaccines. A
vaccine delivery platform that can break cold chain limitations

A
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and allow for self-administration could improve efficient world-
wide vaccination in both developed and developing countries.

6.1. Thermostability

Next generations of COVID-19 vaccines should consider
global distribution efficiency, and thus reduced cold chain
requirements could be a significant advantage."® One of the
main approaches to increasing the thermostability of a vaccine
is to remove its aqueous solvent. Many drying techniques are
available for vaccines such as spray and freeze drying (lyophiliza-
tion). Although spray drying is fast and can produce free flowing
powder which can be desirable in industry, lyophilization is a
preferred technique for the drying of biologics it does not subject
the vaccine to heating stress. Moreover, it can retain the sterility
of the sample during the process. Freezing stress can have prob-
lematic effects on nanoparticulate vaccines, necessitating the use
of cryoprotectants.!?) A hybrid drying technique between both
spray and freeze drying (spray freeze drying) can be adapted to
produce freeze dried spherical free flowing powder rather than
cake. The large-scale production process of a lyophilized vaccine
is substantially different than a liquid vaccine, therefore consid-
eration of vaccine production capacity is important.
Lyophilization is frequently used to improve protein storage
stability. Liposome-displayed S and RBD were lyophilized
with a 75% sucrose cryoprotectant that was found effective in
inhibiting liposomal aggregation upon reconstitution.'?l The
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Figure 8. Stability of lyophilized RBD vaccines. A) RBD-decorated liposomes are shown before and after lyophilization (left). RBD stability, as gauged by
reactivity with hACE2 was then assessed for the liquid or lyophilized vaccines (right).%l B) RBD-SpyVLPs reactivity with various conformational mono-
clonal antibodies and hACE2 is maintained with lyophilization (top). Upon immunization with either pre- or post-lyophilized or five times freeze thawed
RBD-SpyVLPs, mice effectively induced antibodies before and after boosting (bottom). A) Adapted under the terms of the CC-BY Creative Commons
Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0).%% Copyright 2021, The Authors, published by American Associa-
tion for the Advancement of Science. B) Adapted under the terms of the CC-BY Creative Commons 4.0 International license (https://creativecommons.
org/licenses/by/4.0).% Copyright 2021, The Authors, published by Springer Nature.
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Figure 9. Needle-free vaccine delivery. A) The design of separable microneedle patches for skin delivery where a thermal responsive “PNIPAM-B”
polymer was inserted between the backing layer and microneedles containing Resiquimod loaded deoxycholic acid polyethylenimine micelles with
surface condensed DNA encoding for either S protein “DLP-RS” or N protein “DLP-RN.” PNIPAM-B polymer is hydrophobic at room temperature and
transfers to hydrophilic if the temperature is lower than the LCST (14-16 °C).['?%l Thus, the backing layer of SMN can be separated from skin and leave
the microneedles embedded. B) Skin vaccination induces antigen-specific cellular and humoral immune responses as the introduction of vaccine com-
ponents into the skin microenvironment results in antigen loading and functional skewing of skin-resident APCs capable of directly or indirectly inducing
T cell responses in the draining lymph nodes. The magnitude, breadth, and longevity of these responses are influenced by vaccine dose, spatiotemporal
vaccine release kinetics, and immunoregulatory signals delivered with the antigen or released by other skin cells.'?2 C) IgA and resident memory B
and T cells in the nasal passages and upper airways are elicited by intranasal vaccination and prevent infection and reduce virus shedding. Serum IgG
elicited by intramuscular vaccination transudates into the lungs and prevents pulmonary infection but allows infection in the nasal passages and virus
shedding. shedding.®!l A) Reproduced with permission.['?%l Copyright 2021, American Chemical Society. B) Reproduced with permission.l?4 Copyright
2021, The Authors. Published by Elsevier. C) Reproduced with permission.[3l Copyright 2021, American Association for the Advancement of Science.

powdered vaccine was able to withstand elevated temperatures
(60°C) for at least 2 weeks in terms of antigen stability when
tested for conformational stability via slot blot and colloidal
stability of the liposomes when measured with dynamic light
scattering.?% Lyophilization of RBD-SpyVLP rendered it ther-
mostable without a loss in immunogenicity. The vaccine was
able to withstand five freeze—thawing cycles retaining its correct
conformation and immunogenicity (Figure 8B).""

Lyophilization of mRNA also can enhance its stability. A lyo-
philized RNA platform developed by CureVac as a rabies vac-
cine was able to withstand storage temperatures 5-25 °C for
3 years and was stable for =6 months at 40 °C.['?I A lipid-based
delivery system for mRNA-RBD vaccine (named ARCoV) was
tested for its thermostability for 7 days at different temperatures.
The results showed that the system can protect its mRNA cargo
at 37 °C retaining about 85% of its activity in liquid form.[04

6.2. Delivery Methods

Intramuscular injection is the most used delivery method for
COVID-19 vaccine administration and is chosen due to reproduc-
ible dose delivery and historic precedent.?l Besides the need to
be administered with trained personnel, the use of needles carries
the hazard of infection and vaccine hesitance, and also can cause
supply chain shortages. Other vaccine delivery methods have
gained interest, namely intradermal and intranasal or inhalable.
Microarray patches offer an attractive means of delivery of
biologics through the skin allowing controlled release of vac-
cine components intradermally or intracutaneously. Skin
science advances provide evidence that these immuniza-
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tions can induce sustained humoral and cellular immune
responses.'??2l For example, a poly(vinyl acetate) separable
microneedle patch was prepared via micromolding technology
to deliver a low molecular weight polyethylenimine nanoparti-
cles encapsulating DNA encoding for either S or N proteins.
poly(N-isopropylacrylamide-co-butyl acrylate) was used as a
separable layer thanks to its thermoresponsive properties,
where it becomes hydrophilic and easily separated at 14-16 °C
(Figure 9A). The nanoparticles were able to encapsulate a
hydrophobic immunostimulant, Resiquimod, only after chem-
ical conjugation of deoxycholic acid to polyethyleneimine
forming an amphiphilic self-assembling polymer that DNA
can be condensed on its surface via electrostatic condensa-
tion.1?¥ Both formulations induced significant cellular and
humoral response in mice when compared to naive groups but
only the S protein encoding formulation sera was tested for
neutralization activity with pseudotyped virus showing signifi-
cant neutralizing activity. A carboxymethyl cellulose dissolving
microneedle array incorporating the S1 subunit from S was
fabricated using a tip-loading 3-stage manufacturing strategy.
A 2 week prime-boost regimen resulted in eliciting neutral-
izing antibodies for at least 4 weeks in mice.l'?! A needle free
jet injector was used to immunize Rhesus macaques using 1 or
2 mg ZyCoV-D (naked plasmid DNA) and compared with intra-
dermal injections and it was found that it was able to produce
comparable neutralizing antibodies to intradermal injection.
Electroporation was used to administer Inovio Pharma (INO-
4800)11%! which was previously used to administer MERS,[12¢]
Ebola,””! and Zika virus vaccines.'?®! In general, microarray
patches are among the most promising skin-targeted vaccine
delivery systems with the advantages of self-administration,
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elimination of needle hazard are painless and can effectively
induce immune response (Figure 9B).[130131]

Another delivery route of interest is inhalation or intranasal
administration. Compared to intramuscular or subcutaneous
injections, vaccines targeted to the lungs can boost the local
immune response and produce mucosal immunity from
secreted IgA and tissue resident immune cells that can prevent
the infection onset as shown in Figure 9C.’*l In one study, a
chimpanzee adenovirus-vectored vaccine encoding a prefu-
sion stabilized S was found to be effective when administered
intranasally dose induced high levels of neutralizing antibodies,
promoted systemic and mucosal IgA and T cell responses, and
prevented SARS-CoV-2 infection in both the upper and lower
respiratory tracts.'*¥l In another study, two doses of aerosolized
adenovirus type-5 vector-based COVID-19 vaccine was found to
be well tolerated in adult humans and was able to elicited neu-
tralizing antibody responses, similar to one dose of intramus-
cular injection.3 In another approach, targeted phage-based
vaccination was developed against SARS-CoV-2 where a dual
ligand peptide-targeted phage was engineered based on a struc-
ture-guided antigen design.* One of these engineered epitopes
was displayed on the major capsid protein pVIII of the phage
and induced a specific and sustained humoral response when
injected in mice. Moreover, the peptide CAKSMGDIVC was
co-displayed on the phages (on the minor capsid protein plII)
which enables their transport across the lung epithelium and
into the systemic circulation. As a result, aerosolization of these
phages into the lungs of mice generated a systemic and specific
antibody response.**l Taken together, intranasal delivery shows
promise, but further data is required to show a compelling
advantage over traditional intramuscular administration.

7. Conclusion

Advanced materials have emerged to shape vaccines that have
mitigated the severity of the COVID-19 pandemic. Cationic
lipid materials for mRNA delivery in particular have been
instrumental in being developed quickly to generate safe and
effective vaccines. Self-assembly technologies for subunit vac-
cines have emerged and have been advanced to the point of
clinical testing. Moving forward, more information will emerge
about long-term efficacy and safety of these vaccine candidates,
which will be helpful in shaping future vaccine design, both
for the ongoing COVID-19 pandemic and for other infectious
disease targets. The ability to have vaccine platforms that can
be easily manipulated to fit new antigens or viral variants is
of importance. Thermostable platform technologies are desir-
able to decrease the cost of shipment and storage and facilitates
worldwide distribution. Overall, advanced vaccine materials
have made great headway in the past couple of years, and are
poised for further research and development breakthroughs in
the near future.

Acknowledgements

This work was supported by the National Institutes of Health

(R43A1165089).

Adv. Mater. 2022, 34, 2107781

2107781 (12 of 17)

www.advmat.de

Conflict of Interest

W.C.H. and J.F.L. hold interest in POP Biotechnologies. The other
authors declare no conflict.

Keywords
COVID-19, SARS-CoV-2, vaccines
Received: September 28, 2021

Revised: November 28, 2021
Published online: February 7, 2022

[11 N. Chazal, Front. Microbiol. 2021, 12, 2677.

[2] D.S. Khoury, D. Cromer, A. Reynaldi, T. E. Schlub, A. K. Wheatley,
J. A. Juno, K. Subbarao, S. . Kent, J. A. Triccas, M. P. Davenport,
Nat. Med. 2021, 27, 1205.

[3] V. V. Edara, W. H. Hudson, X. Xie, R. Ahmed, M. S. Suthar, JAMA,
J. Am. Med. Assoc. 2021, 325, 1896.

[4] G.A. Poland, I. G. Ovsyannikova, R. B. Kennedy, Vaccine 2021, 39, 4239.

[5] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. Mcguire,
D. Veesler, Cell 2020, 187, 281.

[6] M. Hoffmann, H. Kleine-Weber, S. Péhimann, Mol. Cell 2020, 78, 779.

[7] D. Bestle, M. R. Heindl, H. Limburg, T. Van Lam Van, O. Pilgram,
H. Moulton, D. A. Stein, K. Hardes, M. Eickmann, O. Dolnik,
C. Rohde, H.-D. Klenk, W. Garten, T. Steinmetzer, E. Béttcher-
Friebertshauser, Life Sci. Alliance 2020, 3, €202000786.

[8] J. S. Mclellan, M. Chen, M. G. Joyce, M. Sastry, G. B. E. Stewart-
Jones, Y. Yang, B. Zhang, L. Chen, S. Srivatsan, A. Zheng, T. Zhou,
K. W. Graepel, A. Kumar, S. Moin, J. C. Boyington, G.-Y. Chuang,
C. Soto, U. Baxa, A. Q. Bakker, H. Spits, T. Beaumont, Z. Zheng,
N. Xia, S.-Y. Ko, J.-P. Todd, S. Rao, B. S. Graham, P. D. Kwong,
Science 2013, 342, 592.

[9] ). Pallesen, N. Wang, K. S. Corbett, D. Wrapp, R. N. Kirchdoerfer,
H. L. Turner, C. A. Cottrell, M. M. Becker, L. Wang, W. Shi,
W.-P. Kong, E. L. Andres, A. N. Kettenbach, M. R. Denison,
J. D. Chappell, B. S. Graham, A. B. Ward, ). S. Mclellan, Proc. Natl.
Acad. Sci. U. S. A. 2017, 114, E7348.

[10] C.-L. Hsieh, ). A. Goldsmith, J. M. Schaub, A. M. Divenere,
H.-C. Kuo, K. Javanmardi, K. C. Le, D. Wrapp, A. G. Lee, Y. Liu,
C.-W. Chou, P. O. Byrne, C. K. Hjorth, N. V. Johnson, J. Ludes-
Meyers, A. W. Nguyen, |. Park, N. Wang, D. Amengor, J. J. Lavinder,
G. C. Ippolito, J. A. Maynard, 1. ). Finkelstein, J. S. Mclellan, Science
2020, 369, 1501.

[11] L. Dai, G. F. Gao, Nat. Rev. Immunol. 2021, 217, 73.

[12] Y. Watanabe, L. Mendonga, E. R. Allen, A. Howe, M. Lee,
J. D. Allen, H. Chawla, D. Pulido, F. Donnellan, H. Davies,
M. Ulaszewska, S. Belij-Rammerstorfer, S. Morris, A.-S. Krebs,
W. Dejnirattisai, J. Mongkolsapaya, P. Supasa, G. R. Screaton,
C. M. Green, T. Lambe, P. Zhang, S. C. Gilbert, M. Crispin, ACS
Cent. Sci. 2021, 7, 594.

[13] J.-H. Tian, N. Patel, R. Haupt, H. Zhou, S. Weston, H. Hammond,
J. Logue, A. D. Portnoff, J. Norton, M. Guebre-Xabier, B. Zhou,
K. Jacobson, S. Maciejewski, R. Khatoon, M. Wisniewska,
W. Moffitt, S. Kluepfel-Stahl, B. Ekechukwu, ]. Papin, S. Boddapati,
C. ). Wong, P. A. Piedra, M. B. Frieman, M. ). Massare, L. Fries,
K. L. Bengtsson, L. Stertman, L. Ellingsworth, G. Glenn, G. Smith,
Nat. Commun. 2021, 12, 372.

[14] R. Bos, L. Rutten, J. E. M. van der Lubbe, M. J. G. Bakkers,
G. Hardenberg, F. Wegmann, D. Zuijdgeest, A. H. de Wilde,
A. Koornneef, A. Verwilligen, D. van Manen, T. Kwaks, R. Vogels,
T. J. Dalebout, S. K. Myeni, M. Kikkert, E. J. Snijder, Z. Li,

© 2022 Wiley-VCH GmbH



ADVANCED

SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

[19]

[16]
[17]
[18]
[19]

(20]

[21]

(22]

(23]

(24

(25]

26]

(27]

Adv. Mater. 2022, 34, 2107781

D. H. Barouch, |. Vellinga, J. P. M. Langedijk, R. C. Zahn, ). Custers,
H. Schuitemaker, npj Vaccines 2020, 5, 91.

L. Duan, Q. Zheng, H. Zhang, Y. Niu, Y. Lou, H. Wang, Front.
Immunol. 2020, 11, 2593.

A. S. Omrani, I. M. Tleyjeh, Clin. Microbiol. Infect. 2021, 27, 1729.
N. P. Restifo, H. Ying, L. Hwang, W. W. Leitner, Gene Ther. 2000, 7, 89.
S. Awate, L. A. Babiuk, G. Mutwiri, Front. Immunol. 2013, 4, 114.

Z. Liang, H. Zhu, X. Wang, B. Jing, Z. Li, X. Xia, H. Sun, Y. Yang,
W. Zhang, L. Shi, Front. Immunology 2020, 11, 2896.

F. P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman,
S. Lockhart, . L. Perez, G. Pérez Marc, E. D. Moreira, C. Zerbini,
R. Bailey, K. A. Swanson, S. Roychoudhury, K. Koury, P. Li,
W. V. Kalina, D. Cooper, R. W. Frenck, L. L. Hammitt, O. Tiireci,
H. Nell, A. Schaefer, S. Unal, D. B. Tresnan, S. Mather,
P. R. Dormitzer, U. Sahin, K. U. Jansen, W. C. Gruber, N. Engl. J.
Med. 2020, 383, 2603.

L. R. Baden, H. M. El Sahly, B. Essink, K. Kotloff, S. Frey,
R. Novak, D. Diemert, S. A. Spector, N. Rouphael, C. B. Creech,
J. Mcgettigan, S. Khetan, N. Segall, J. Solis, A. Brosz, C. Fierro,
H. Schwartz, K. Neuzil, L. Corey, P. Gilbert, H. Janes, D. Follmann,
M. Marovich, J. Mascola, L. Polakowski, J. Ledgerwood,
B. S. Graham, H. Bennett, R. Pajon, C. Knightly, et al., N. Engl. J.
Med. 2020, 384, 403.

P. G. Kremsner, R. A. Ahuad Guerrero, E. Arana-Arri,
G. ). Aroca Martinez, M. Bonten, R. Chandler, G. Corral, E. ). L. De Block,
L. Ecker, ). J. Gabor, C. A. Garcia Lopez, L. Gonzales,
M. A. Granados Gonzélez, N. Gorini, M. P. Grobusch,
A. D. Hrabar, H. Junker, A. Kimura, C. F. Lanata, C. Lehmann,
I. Leroux-Roels, P. Mann, M. F. Martinez-Reséndez, T. J. Ochoa,
C. A. Poy, M. . Reyes Fentanes, L. M. Rivera Mejia, V. V. Ruiz Herrera,
X. Séez-Llorens, O. Schénborn-Kellenberger, et al., Lancet Infect.
Dis. 2021, https://doi.org/10.1016/51473-3099 (21)00677-0.

M. Voysey, S. A. C. Clemens, S. A. Madhi, L. Y. Weckx,
P. M. Folegatti, P. K. Aley, B. Angus, V. L. Baillie, S. L. Barnabas,
Q. E. Bhorat, S. Bibi, C. Briner, P. Cicconi, A. M. Collins,
R. Colin-Jones, C. L. Cutland, T. C. Darton, K. Dheda,
C. ). A. Duncan, K. R. W. Emary, K. J. Ewer, L. Fairlie, S. N. Faust,
S. Feng, D. M. Ferreira, A. Finn, A. L. Goodman, C. M. Green,
C. A. Green, P. T. Heath, on behalf of the Oxford COVID Vaccine
Trial Group, Lancet 2021, 397, 99.

D. Y. Logunov, I. V. Dolzhikova, D. V. Shcheblyakov,
A. I. Tukhvatulin, O. V. Zubkova, A. S. Dzharullaeva,
A. V. Kovyrshina, N. L. Lubenets, D. M. Grousova, A. S. Erokhova,
A. G. Botikov, F. M. Izhaeva, O. Popova, T. A. Ozharovskaya,
I. B. Esmagambetoy, I. A. Favorskaya, D. I. Zrelkin, D. V. Voronina,
D. N. Shcherbinin, A. S. Semikhin, Y. V. Simakova, E. A. Tokarskaya,
D. A. Egorova, M. M. Shmarov, N. A. Nikitenko, V. A. Gushchin,
E. A Smolyarchuk, S. K. Zyryanov, S. V. Borisevich,
B. S. Naroditsky, et al., Lancet 2021, 397, 671.

J. Sadoff, G. Gray, A. Vandebosch, V. Cardenas, G. Shukarey,
B. Grinsztejn, P. A. Goepfert, C. Truyers, H. Fennema,
B. Spiessens, K. Offergeld, G. Scheper, K. L. Taylor, M. L. Robb,
J. Treanor, D. H. Barouch, . Stoddard, M. F. Ryser, M. A. Marovich,
K. M. Neuzil, L. Corey, N. Cauwenberghs, T. Tanner, K. Hardt,
J. Ruiz-Guifiazi, M. Le Gars, H. Schuitemaker, ). Van Hoof,
F. Struyf, M. Douoguih, N. Engl. J. Med. 2021, 384, 2187.

N. Al Kaabi, Y. Zhang, S. Xia, Y. Yang, M. M. Al Qahtani,
N. Abdulrazzaq, M. Al Nusair, M. Hassany, J. S. Jawad, ). Abdalla,
S. E. Hussein, S. K. Al Mazrouei, M. Al Karam, X. Li, X. Yang,
W. Wang, B. Lai, W. Chen, S. Huang, Q. Wang, T. Yang, Y. Liu,
R. Ma, Z. M. Hussain, T. Khan, M. Saifuddin Fasihuddin,
W. You, Z. Xie, Y. Zhao, et al., JAMA, J. Am. Med. Assoc. 2021,
326, 35.

M. D. Tanriover, H.
A. Azap, S. Akhan,

L. Doganay, M. Akova, H. R. Giner,
S. Kése, F. S. Erding, E. H. Akalin,

(28]

(29]
(30]
(31

(32]

(3]

(34

(33]
(36]
(37)
[38]
(391
[40]
(41
[42]
[43]

(44]
(43]

[46]
(47]
[48]
[49]
(50]

(51]

2107781 (13 of 17)

www.advmat.de

O. F. Tabak, H. Pullukgu, ©. Batum, S. Simsek Yavuz, O. Turhan,
M. T. Yildirmak, |. Kéksal, Y. Tasova, V. Korten, G. Yilmaz,
M. K. Celen, S. Altin, I. Celik, Y. Bayindir, I. Karaoglan, A. Yilmaz,
A. Ozkul, H. Giir, S. Unal, CoronaVac Study Group, Lancet 2021,
398, 213.

P. T. Heath, E. P. Galiza, D. N. Baxter, M. Boffito, D. Browne,
F. Burns, D. R. Chadwick, R. Clark, C. Cosgrove, ). Galloway,
A. L. Goodman, A. Heer, A. Higham, S. lyengar, A. Jamal,
C. Jeanes, P. A. Kalra, C. Kyriakidou, D. F. Mcauley, A. Meyrick,
A. M. Minassian, ). Minton, P. Moore, I. Munsoor, H. Nicholls,
O. Osanlovu, ). Packham, C. H. Pretswell, A. San Francisco Ramos,
D. Saralaya, et al. for the 2019nCoV-302 Study Group, N. Engl. .
Med. 2021, 385, 1172.

N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman, Nat. Rev. Drug
Discovery 2018, 17, 261.

M. Li, S. Li, Y. Huang, H. Chen, S. Zhang, Z. Zhang, W. Wu,
X. Zeng, B. Zhou, B. Li, Adv. Mater. 2021, 33, 2101707.

J. Yao, Y. Fan, Y. Li, L. Huang, J. Drug Targeting 2013, 21, 926.

F. Thienemann, G. Chakafana, D. Pifieiro, F. |. Pinto, P. Perel,
K. Singh, J.-L. Eiselé, D. Prabhakaran, K. Sliwa, Global Heart 2021,
16, 29.

D. Planas, D. Veyer, A. Baidaliuk, I. Staropoli, F. Guivel-Benhassine,
M. M. Rajah, C. Planchais, F. Porrot, N. Robillard, J. Puech, M. Prot,
F. Gallais, P. Gantner, A. Velay, . Le Guen, N. Kassis-Chikhani,
D. Edriss, L. Belec, A. Seve, L. Courtellemont, H. Péré, L. Hocqueloux,
S. Fafi-Kremer, T. Prazuck, H. Mouquet, T. Bruel, E. Simon-Loriére,
F. A. Rey, O. Schwartz, Nature 2021, 596, 276.

T. A. Bates, H. C. Leier, Z. L. Lyski, S. K. Mcbride, F. J. Coulter,
J. B. Weinstein, ). R. Goodman, Z. Lu, S. A. R. Siegel, P. Sullivan,
M. Strnad, A. E. Brunton, D. X. Lee, A. C. Adey, B. N. Bimber,
B. J. O’'Roak, M. E. Curlin, W. B. Messer, F. G. Tafesse, Nat.
Commun. 2021, 12, 5135.

D. R. Burton, L. M. Walker, Cell Host Microbe 2020, 27, 695.

M. F. Haidere, Z. A. Ratan, S. Nowroz, S. B. Zaman, Y.-J. Jung,
H. Hosseinzadeh, |. Y. Cho, Biomol. Ther. 2021, 29, https://doi.
org/10.4062/biomolther.2020.178.

C. ). Batty, M. T. Heise, E. M. Bachelder, K. M. Ainslie, Adv. Drug
Delivery Rev. 2021, 169, 168.

P. Lee, C.-U. Kim, S. H. Seo, D.-J. Kim, Immune Network 2021, 21, e4.
M. D. Shin, S. Shukla, Y. H. Chung, V. Beiss, S. K. Chan,
O. A. Ortega-Rivera, D. M. Wirth, A. Chen, M. Sack, J. K. Pokorski,
N. F. Steinmetz, Nat. Nanotechnol. 2020, 15, 646.

E. Tanzi, C. Genovese, M. Tettamanzi, C. Fappani,
M. C. Raviglione, A. Amendola, J. Prev. Med. Hyg. 2021, 62, E18.

K. Rawat, P. Kumari, L. Saha, Eur. J. Pharmacol. 2021, 892, 173751.
P. Hassanzadeh, J. Controlled Release 2020, 328, 112.

C. Zeng, X. Hou, M. Bohmer, Y. Dong, View 2021, 2, 20200180.

S. Wu, Y. Xia, Y. Hu, G. Ma, Adv. Drug Delivery Rev. 2021, 176, 113871.
J. Sun, Z. Zhuang, ). Zheng, K. Li, R. L.-Y. Wong, D. Liu, J. Huang,
J. He, A. Zhu, ). Zhao, X. Li, Y. Xi, R. Chen, A. N. Alshukairi, Z. Chen,
Z. Zhang, C. Chen, X. Huang, F. Li, X. Lai, D. Chen, L. Wen,
J. Zhuo, Y. Zhang, Y. Wang, S. Huang, J. Dai, Y. Shi, K. Zheng,
M. R. Leidinger, et al., Cell 2020, 182, 734.

R. Yan, Y. Zhang, Y. Li, F. Ye, Y. Guo, L. Xia, X. Zhong, X. Chi,
Q. Zhou, Cell Res. 2021, 31, 717.

J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, F. Li, Proc.
Natl. Acad. Sci. USA 2020, 117, 11727.

L. Du, Y. He, Y. Zhou, S. Liu, B.-J. Zheng, S. Jiang, Nat. Rev. Micro-
biol. 2009, 7, 226.

O. C. Grant, D. Montgomery, K. Ito, R. J. Woods, Sci. Rep. 2020,
10.

H. Kleanthous, J. M. Silverman, K. W. Makar,
N. Jackson, D. W. Vaughn, npj Vaccines 2021, 6, 128.
W. F. Garcia-Beltran, E. C. Lam, K. St Denis, A. D. Nitido,
Z. H. Garcia, B. M. Hauser, J. Feldman, M. N. Pavlovic,

1.-K.  Yoon,

© 2022 Wiley-VCH GmbH


https://doi.org/10.1016/s1473-3099(21)00677-0
https://doi.org/10.4062/biomolther.2020.178
https://doi.org/10.4062/biomolther.2020.178

ADVANCED

SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

(52

(53]

(54
[55]
(56]
(571
(58]
(59
(60]
(61]

(62]
[63]

(64

(63]

(66]

(67]

(68]

(69]
[70]

(/1

(2]

Adv. Mater. 2022, 34, 2107781

D. ). Gregory, M. C. Poznansky, A. Sigal, A. G. Schmidt,
A. ). lafrate, V. Naranbhai, A. B. Balazs, Cell 2021, 184, 2372.

W.-C. Huang, B. Deng, C. Lin, K. A. Carter, J. Geng, A. Razi, X. He,
U. Chitgupi, ). Federizon, B. Sun, C. A. Long, |. Ortega, S. Dutta,
C. R. King, K. Miura, S.-M. Lee, |. F. Lovell, Nat. Nanotechnol. 2018,
13, 1174.

A. A. Cohen, P. N. P. Gnanapragasam, Y. E. Lee, P. R. Hoffman,
S. Ou, L. M. Kakutani, J. R. Keeffe, H.-J. Wu, M. Howarth,
A. P. West, C. O. Barnes, M. C. Nussenzweig, P. . Bjorkman,
Science 2021, 371, 735.

H. G. Kelly, S. ). Kent, A. K. Wheatley, Expert Rev. Vaccines 2019, 18, 269.
M. A. Liu, J. Intern. Med. 2003, 253, 402.

S. H. Boo, Y. K. Kim, Exp. Mol. Med. 2020, 52, 400.

P. S. Kowalski, A. Rudra, L. Miao, D. G. Anderson, Mol. Ther. 2019,
27,710.

N. Chaudhary, D. Weissman, K. A. Whitehead, Nat. Rev. Drug Dis-
covery 2021, 20, 817.

M. J. Hogan, N. Pardi, Annu. Rev. Med. 2022, 73, https://doi.
org/10.1146 /annurev-med-042420-112725.

N. A. C. Jackson, K. E. Kester, D. Casimiro, S. Gurunathan,
F. Derosa, npj Vaccines 2020, 5, 11.

K. D. Nance, . L. Meier, ACS Cent. Sci. 2021, 7, 748.

N. N. Sanders, Mol. Ther. 2021, 29, 1944.

Q. Huang, K. Ji, S. Tian, F. Wang, B. Huang, Z. Tong, S. Tan,
J. Hao, Q. Wang, W. Tan, G. F. Gao, |. Yan, Nat. Commun. 2021, 12,
2355.

L. I. Karpenko, A. P. Rudometoy, S. V. Sharabrin, D. N. Shcherbakoy,
M. B. Borgoyakova, S. I. Bazhan, E. A. Volosnikova, N. B. Rudometova,
L. A. Orlova, I. A. Pyshnaya, B. N. Zaitsev, N. V. Volkova, M. S. Azaev,
A. V. Zaykovskaya, O. V. Pyankov, A. A. llyichev, Vaccines 2021, 9, 76.

J. Ren, Y. Cao, L. Li, X. Wang, H. Lu, . Yang, S. Wang, J. Controlled
Release 2021, 338, 537.

D. Tatlow, C. Tatlow, S. Tatlow, S. Tatlow, Clin. Exp. Pharmacol.
Physiol. 2020, 47, 1874.

J. Yu, L. H. Tostanoski, L. Peter, N. B. Mercado, K. Mcmahan,
S. H. Mahrokhian, J. P. Nkolola, J. Liu, Z. Li, A. Chandrashekar,
D. R. Martinez, C. Loos, C. Atyeo, S. Fischinger, J. S. Burke,
M. D. Slein, Y. Chen, A. Zuiani, F. |. N. Lelis, M. Travers, S. Habibi,
L. Pessaint, A. Van Ry, K. Blade, R. Brown, A. Cook, B. Finneyfrock,
A. Dodson, E. Teow, |. Velasco, et al., Science 2020, 369, 806.

Y. Yin, W. Su, J. Zhang, W. Huang, X. Li, H. Ma, M. Tan, H. Song,
G. Cao, S. Yu, D. Yu, J. H. Jeong, X. Zhao, H. Li, G. Nie, H. Wang,
ACS Nano 2021, 15, 14347.

N. Wang, J. Shang, S. Jiang, L. Du, Front. Microbiol. 2020, 11, 298.
T. K. Tan, P. Rijal, R. Rahikainen, A. H. Keeble, L. Schimanski,
S. Hussain, R. Harvey, J. W. P. Hayes, ). C. Edwards, R. K. McLean,
V. Martini, M. Pedrera, N. Thakur, C. Conceicao, |. Dietrich,
H. Shelton, A. Ludi, G. Wilsden, C. Browning, A. K. Zagrajek,
D. Bialy, S. Bhat, P. Stevenson-Leggett, P. Hollinghurst, M. Tully,
K. Moffat, C. Chiu, R. Waters, A. Gray, M. Azhar, et al., Nat.
Commun. 2021, 12, 542.

C. Fougeroux, L. Goksgyr, M. Idorn, V. Soroka, S. K. Myeni,
R. Dagil, C. M. Janitzek, M. Segaard, K.-L. Aves, E. W. Horsted,
S. M. Erdogan, T. Gustavsson, J. Dorosz, S. Clemmensen,
L. Fredsgaard, S. Thrane, E. E. Vidal-Calvo, P. Khalifé,
T. M. Hulen, S. Choudhary, M. Theisen, S. K. Singh,
S. Garcia-Senosiain, L. Van Oosten, G. Pijlman, B. Hierzberger,
T. Domeyer, B. W. Nalewajek, A. Strgbaek, M. Skrzypczak, et al.,
Nat. Commun. 2021, 12, 324.

A. C. Walls, B. Fiala, A. Schifer, S. Wrenn, M. N. Pham, M. Murphy,
L. V. Tse, L. Shehata, M. A. O’connor, C. Chen, M. J. Navarro,
M. C. Miranda, D. Pettie, R. Ravichandran, ). C. Kraft, C. Ogohara,
A. Palser, S. Chalk, E.-C. Lee, K. Guerriero, E. Kepl, C. M. Chow,
C. Sydeman, E. A. Hodge, B. Brown, J. T. Fuller, K. H. Dinnon,
L. E. Gralinski, S. R. Leist, K. L. Gully, et al., Cell 2020, 183, 1367.

(73]

(74]

(73]

[7e]

[77]

(78]

(79

(80]

(81]
(82]
(83]

(84]

(85]
(86]

(87]
(88]
(89]

(90]

(1]

[92]

(93]

2107781 (14 of 17)

www.advmat.de

P. J. M. Brouwer, M. Brinkkemper, P. Maisonnasse, N. Dereuddre-
Bosquet, M. Grobben, M. Claireaux, M. De Gast, R. Marlin,
V. Chesnais, S. Diry, J. D. Allen, Y. Watanabe, . M. Giezen,
G. Kerster, H. L. Turner, K. Van Der Straten, C. A. Van Der
Linden, Y. Aldon, T. Naninck, I. Bontjer, J. A. Burger, M. Poniman,
A. Z. Mykytyn, N. M. A. Okba, E. E. Schermer, M. J. Van Breemen,
R. Ravichandran, T. G. Caniels, ]. Van Schooten, N. Kahlaoui, et al.,
Cell 2021, 184, 1188.

P. S. Arunachalam, A. C. Walls, N. Golden, C. Atyeo, S. Fischinger,
C. Li, P. Aye, M. ). Navarro, L. Lai, V. V. Edara, K. Réltgen,
K. Rogers, L. Shirreff, D. E. Ferrell, S. Wrenn, D. Pettie,
J. C. Kraft, M. C. Miranda, E. Kepl, C. Sydeman, N. Brunette,
M. Murphy, B. Fiala, L. Carter, A. G. White, M. Trisal, C.-L. Hsieh,
K. Russell-Lodrigue, C. Monjure, ). Dufour, et al., Nature 2021, 594,
253.

H. Sekimukai, N. Iwata-Yoshikawa, S. Fukushi, H. Tani,
M. Kataoka, T. Suzuki, H. Hasegawa, K. Niikura, K. Arai,
N. Nagata, Microbiol. Immunol. 2020, 64, 33.

S. Farfan-Castro, M. J. Garcia-Soto, M. Comas-Garcia,
J. 1. Arévalo-Villalobos, G. Palestino, O. Gonzélez-Ortega,
S. Rosales-Mendoza, Nanomed.: Nanotechnol. Biol. Med. 2021, 34,
102372.

L. He, X. Lin, Y. Wang, C. Abraham, C. Sou, T. Ngo, Y. Zhang,
I. A. Wilson, ). Zhu, Sci. Adv. 2021, 7, eabf1591.

Y.-I. Kim, D. Kim, K.-M. Yu, H. D. Seo, S.-A. Lee, M. A. B. Casel,
S.-G. Jang, S. Kim, W. Jung, C.-J. Lai, Mbio 2021, 12, €00230.

W.-.C. Huang, S. Zhou, X. He, K. Chiem, M. T. Mabrouk,
R. H. Nissly, I. M. Bird, M. Strauss, S. Sambhara, ). Ortega,
E. A. Wohlfert, L. Martinez-Sobrido, S. V. Kuchipudi,
B. A. Davidson, . F. Lovell, Adv. Mater. 2020, 32, 2005637.

S. Chiba, S. J. Frey, P. J. Halfmann, M. Kuroda, T. Maemura,
J. E. Yang, E. R. Wright, Y. Kawaoka, R. S. Kane, Commun. Biol.
2021, 4, 597.

B. Nguyen, N. H. Tolia, npj Vaccines 2021, 7, eabf1591.

J. B. Bale, S. Gonen, Y. Liu, W. Sheffler, D. Ellis, C. Thomas,
D. Cascio, T. O. Yeates, T. Gonen, N. P. King, D. Baker, Science
2016, 353, 389.

L. He, X. Lin, Y. Wang, C. Abraham, C. Sou, T. Ngo, Y. Zhang,
I. A. Wilson, ). Zhu, Sci. Adv. 2021, 7, eabf1591.

K. O. Saunders, E. Lee, R. Parks, D. R. Martinez, D. Li, H. Chen,
R. J. Edwards, S. Gobeil, M. Barr, K. Mansouri, S. M. Alam,
L. L. Sutherland, F. Cai, A. M. Sanzone, M. Berry, K. Manne,
K. W. Bock, M. Minai, B. M. Nagata, A. B. Kapingidza,
M. Azoitei, L. B. Tse, T. D. Scobey, R. L. Spreng, R. W. Rountree,
C. T. DeMarco, T. N. Denny, C. W. Woods, E. W. Petzold, ]. Tang,
et al., Nature 2021, 594, 553.

R. A. Hills, M. Howarth, Curr. Opin. Biotechnol. 2022, 73, 346.

B. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-Linek,
V. T. Moy, M. Howarth, Proc. Natl. Acad. Sci. USA 2012, 109,
E690.

D. Hatlem, T. Trunk, D. Linke, J. C. Leo, Int. J. Mol. Sci. 2019, 20, 2129.
M. Letko, A. Marzi, V. Munster, Nat. Microbiol. 2020, 5, 562.

Z. Wang, H. Gao, Y. Zhang, G. Liu, G. Niu, X. Chen, Front. Chem.
Sci. Eng. 2017, 11, 633.

X. Ma, F. Zou, F. Yu, R. Li, Y. Yuan, Y. Zhang, X. Zhang, |. Deng,
T. Chen, Z. Song, Y. Qiao, Y. Zhan, ). Liu, J. Zhang, X. Zhang,
Z. Peng, Y. Li, Y. Lin, L. Liang, G. Wang, Y. Chen, Q. Chen, T. Pan,
X. He, H. Zhang, Immunity 2020, 53, 1315.

A. E. Powell, K. Zhang, M. Sanyal, S. Tang, P. A. Weidenbacher,
S. Li, T. D. Pham, ). E. Pak, W. Chiu, P. S. Kim, ACS Cent. Sci. 2021,
7,183.

W. Wang, B. Huang, Y. Zhu, W. Tan, M. Zhu, Cell Mol. Immunol.
2021, 18, 749.

Y.-F. Kang, C. Sun, Z. Zhuang, R.-Y. Yuan, Q. Zheng, J.-P. Li,
P.-P. Zhou, X.-C. Chen, Z. Liu, X. Zhang, X.-H. Yu, X.-W. Kong,

© 2022 Wiley-VCH GmbH


https://doi.org/10.1146/annurev-med-042420-112725
https://doi.org/10.1146/annurev-med-042420-112725

ADVANCED
SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

Q.-Y. Zhu, Q. Zhong, M. Xu, N.-S. Zhong, Y.-X. Zeng, G.-K. Feng,
C. Ke, J.-C. Zhao, M.-S. Zeng, ACS Nano 2021, 15, 2738.

[94] D. Lain3¢ek, T. Fink, V. Forstneri¢, |. Hafner-Bratkovi¢, S. Orehek,
7. Strmsek, M. Mancek-Keber, P. Pecan, H. Esih, S. Malengek,
J. Aupi¢, P. Dekleva, T. Plaper, S. Vidmar, L. Kadunc, M. Ben¢ina,
N. Omersa, G. Anderluh, F. Pojer, K. Lau, D. Hacker, B. E. Correia,
D. Peterhoff, R. Wagner, V. Bergant, A. Herrmann, A. Pichlmair,
R. Jerala, Vaccines 2021, 9, 431.

[95] B. ). Ward, P. Gobeil, A. Séguin, J. Atkins, I. Boulay,
P.-Y. Charbonneau, M. Couture, M.-A. D'aoust, |. Dhaliwall,
C. Finkle, K. Hager, A. Mahmood, A. Makarkov, M. P. Cheng,
S. Pillet, P. Schimke, S. St-Martin, S. Trépanier, N. Landry, Nat.
Med. 2021, 27, 1071.

[96] P. A. Gobeil, S. Pillet, I. Boulay, N. Charland, A. Lorin, M. Cheng,
D. Vinh, P. Boutet, R. Van Der Most, F. Roman, M. De los Angeles
Ceregido Perez, M.-A. D'Aoust, N. Landry, B. J. Ward, medRxiv
2021, https://doi.org/10.1101/2021.08.04.21261507.

[97] O. A. Ortega-Rivera, M. D. Shin, A. Chen, V. Beiss, M. A. Moreno-
Gonzalez, M. A. Lopez-Ramirez, M. Reynoso, H. Wang, B. L. Hurst,
J. Wang, J. K. Pokorski, N. F. Steinmetz, J. Am. Chem. Soc. 2021, 143,
14748.

[98] S. Peng, F. Cao, Y. Xia, X.-D. Gao, L. Dai, J. Yan, G. Ma, Adv. Mater.
2020, 32, 2004210.

[99] A. Sasidharan, N. A. Monteiro-Riviere, Nanomed. Nanobiotechnol.
2015, 7, 779.

[100] X. Hou, T. Zaks, R. Langer, Y. Dong, Nat. Rev. Mater. 2021, 6, 1078.

[101] Y. Zhang, C. Sun, C. Wang, K. E. Jankovic, Y. Dong, Chem. Rev.
2021, 121, 12181.

[102] J. Kim, Y. Eygeris, M. Gupta, G. Sahay, Adv. Drug Delivery Rev. 2021,
170, 83.

[103] U. Elia, S. Ramishetti, R. Rosenfeld, N. Dammes, E. Bar-Haim,
G. S. Naidu, E. Makdasi, Y. Yahalom-Ronen, H. Tamir, N. Paran,
O. Cohen, D. Peer, ACS Nano 2021, 15, 9627.

[104] N.-N. Zhang, X.-F. Li, Y.-Q. Deng, H. Zhao, Y.-J. Huang, G. Yang,
W.-J. Huang, P. Gao, C. Zhou, R.-R. Zhang, Y. Guo, S.-H. Sun,
H. Fan, S.-L. Zu, Q. Chen, Q. He, T.-S. Cao, X.-Y. Huang, H.-Y. Qiu,
J.-H. Nie, Y. Jiang, H.-Y. Yan, Q. Ye, X. Zhong, X.-L. Xue, Z.-Y. Zha,
D. Zhou, X. Yang, Y.-C. Wang, B. Ying, et al., Cell 2020, 182, 1271.

[105] W. Tai, X. Zhang, A. Drelich, ). Shi, J. C. Hsu, L. Luchsinger,
C. D. Hillyer, C.-T. K. Tseng, S. Jiang, L. Du, Cell Res. 2020, 30,
932.

[106] P. F. McKay, K. Hu, A. K. Blakney, K. Samnuan, J. C. Brown,
R. Penn, J. Zhou, C. R. Bouton, P. Rogers, K. Polra, P. J. C. Lin,
C. Barbosa, Y. K. Tam, W. S. Barclay, R. ). Shattock, Nat. Commun.
2020, 71, 3523.

[107] X. Xia, Vaccines 2021, 9, 734.

[108] M. D. Buschmann, M. J. Carrasco, S. Alishetty, M. Paige,
M. G. Alameh, D. Weissman, Vaccines 2021, 9, 65.

[109] R. Yang, Y. Deng, B. Huang, L. Huang, A. Lin, Y. Li, W. I/, ] Liu,
S. Lu, Z. Zhan, Y. Wang, R. A, W. Wang, P. Niu, L. Zhao, S. Li, X. Ma,
L. Zhang, Y. Zhang, W. Yao, X. Liang, J. Zhao, Z. Liu, X. Peng, H. Li,
W. Tan, Signal Transduction Targeted Ther. 2021, 6, 213.

[170] V. S. Moorthy, W. R. Ballou, Malaria J. 2009, 8.

[111] A. Roberts, E. W. Lamirande, L. Vogel, B. Baras, G. Goossens,
I. Knott, ). Chen, J. M. Ward, V. Vassiley, K. Subbarao, Viral
Immunol. 2010, 23, 509.

[112] S. Shao, J. Geng, H. Ah Yi, S. Gogia, S. Neelamegham, A. Jacobs,
J. F. Lovell, Nat. Chem. 2015, 7, 438.

[113] S. E. Magnusson, A. F. Altenburg, K. L. Bengtsson, F. Bosman,
R. D. De Vries, G. F. Rimmelzwaan, L. Stertman, Immunol. Res.
2018, 66, 224.

[114] S. E. Magnusson, J. M. Reimer, K. H. Karlsson, L. Lilja,
K. L. Bengtsson, L. Stertman, Vaccine 2013, 31, 1725.

[115] J. M. Reimer, K. H. Karlsson, K. Lévgren-Bengtsson, S. E. Magnusson,
A. Fuentes, L. Stertman, PLoS One 2012, 7, e41451.

Adv. Mater. 2022, 34, 2107781

2107781 (15 of 17)

www.advmat.de

[116] S. Bangaru, G. Ozorowski, H. L. Turner, A. Antanasijevic,
D. Huang, X. Wang, ). L. Torres, ). K. Diedrich, J.-H. Tian,
A. D. Portnoff, N. Patel, M. J. Massare, . R. Yates, D. Nemazee,
J. C. Paulson, G. Glenn, G. Smith, A. B. Ward, Science 2020, 370,
1089.

[117] World Health Organization & United Nations Children’s Fund
(UNICEF) COVID-19 Vaccination: Supply and Logistics Guidance:
Interim Guidance, 12 February 2021, World Health Organization,
https://apps.who.int/iris/handle/10665/339561.

[118] K. AboulFotouh, Z. Cui, R. O. Williams, AAPS PharmSciTech 2021,
22, 126.

[119] M. T. Mabrouk, W.-C. Huang, B. Deng, N. Li-Purcell, A. Seffouh,
J. Ortega, G. Ekin Atilla-Gokcumen, C. A. Long, K. Miura,
J. F. Lovell, Int. J. Pharm. 2020, 589, 119843.

[120] M. T. Mabrouk, K. Chiem, E. Rujas, W.-C. Huang, D. Jahagirdar,
B. Quinn, M. Surendran Nair, R. H. Nissly, V. S. Cavener,
N. R. Boyle, T. A. Sornberger, S. V. Kuchipudi, J. Ortega,
J.-P. Julien, L. Martinez-Sobrido, |J. Lovell, Sci. Adv. 2021, 7,
eabj1476.

[121] M. Alberer, U. Gnad-Vogt, H. S. Hong, K. T. Mehr, L. Backert,
G. Finak, R. Gottardo, M. A. Bica, A. Garofano, S. D. Koch,
M. Fotin-Mleczek, I. Hoerr, R. Clemens, F. Von Sonnenburg,
Lancet 2017, 390, 1511.

[122] E. Korkmaz, S. C. Balmert, T. L. Sumpter, C. D. Carey, G. Erdos,
L. D. Falo, Adv. Drug Delivery Rev. 2021, 171, 164.

[123] Y. Yin, W. Su, J. Zhang, W. Huang, X. Li, H. Ma, M. Tan, H. Song,
G. Cao, S. Yu, D. Yu, J. H. Jeong, X. Zhao, H. Li, G. Nie, H. Wang,
ACS Nano 2021, 15, 14347.

[124] E. Kim, G. Erdos, S. Huang, T. W. Kenniston, S. C. Balmert,
C. D. Carey, V. S. Raj, M. W. Epperly, W. B. Klimstra, B. L. Haagmans,
E. Korkmaz, L. D. Falo, A. Gambotto, EBioMedicine 2020, 55, 102743.

[125] P. Tebas, S. Yang, |. D. Boyer, E. L. Reuschel, A. Patel,
A. Christensen-Quick, V. M. Andrade, M. P. Morrow, K. Kraynyak,
J. Agnes, M. Purwar, A. Sylvester, J. Pawlicki, E. Gillespie, |. Maricic,
F. I. Zaidi, K. Y. Kim, Y. Dia, D. Frase, P. Pezzoli, K. Schultheis,
T. R. F Smith, S. J. Ramos, T. Mcmullan, K. Buttigieg,
M. W. Carroll, J. Ervin, M. C. Diehl, E. Blackwood, M. P. Mammen,
et al., EClinicalMedicine 2021, 31, 100689.

[126] K. Modjarrad, C. C. Roberts, K. T. Mills, A. R. Castellano,
K. Paolino, K. Muthumani, E. L. Reuschel, M. L. Robb, T. Racine,
M.-D. Oh, C. Lamarre, F. |. Zaidi, ). Boyer, S. B. Kudchodkar,
M. Jeong, J. M. Darden, Y. K. Park, P. T. Scott, C. Remigio,
A. P. Parikh, M. C. Wise, A. Patel, E. K. Duperret, K. Y. Kim,
H. Choi, S. White, M. Bagarazzi, J. M. May, D. Kane, H. Lee, et al.,
Lancet Infect. Dis. 2019, 19, 1013.

[127] P. Tebas, K. A. Kraynyak, A. Patel, J. N. Maslow, M. P. Morrow,
A. ). Sylvester, D. Knoblock, E. Gillespie, D. Amante, T. Racine,
T. Mcmullan, M. Jeong, C. C. Roberts, Y. K. Park, . Boyer,
K. E. Broderick, G. P. Kobinger, M. Bagarazzi, D. B. Weiner,
N. Y. Sardesai, S. M. White, J. Infect. Dis. 2019, 220, 400.

[128] P. Tebas, C. C. Roberts, K. Muthumani, E. L. Reuschel,
S. B. Kudchodkar, F. I. Zaidi, S. White, A. S. Khan, T. Racine,
H. Choi, ). Boyer, Y. K. Park, S. Trottier, C. Remigio, D. Krieger,
S. E. Spruill, M. Bagarazzi, G. P. Kobinger, D. B. Weiner,
J. N. Maslow, N. Engl. J. Med. 2021, 385, e35.

[129] K. Badizadegan, ). L. Goodson, P. A. Rota, K. M. Thompson, Expert
Rev. Vaccines 2020, 19, 175.

[130] E. Korkmaz, S. C. Balmert, C. D. Carey, G. Erdos, L. D. Falo, Expert
Opin. Drug Delivery 2021, 18, 151.

[131] F. E. Lund, T. D. Randall, Science 2021, 373, 397.

[132] W. F. Tonnis, G. F. Kersten, H. W. Frijlink, W. L. J. Hinrichs,
A. H. De Boer, ).-P. Amorij, J. Aerosol Med. Pulm. Drug Delivery
2012, 25, 249.

[133] A. O. Hassan, N. M.
B. K. Smith, I. B.

Kafai, I.
Harvey, R.

P. Dmitriev, J. M. Fox,
E. Chen, E. S. Winkler,

© 2022 Wiley-VCH GmbH


https://doi.org/10.1101/2021.08.04.21261507
https://apps.who.int/iris/handle/10665/339561

ADVANCED
SONCF NS MATERTALS

www.advancedsciencenews.com www.advmat.de
A. W. Wessel, J. B. Case, E. Kashentseva, B. T. Mccune, Y. Wang, W. Si, T. Sun, X. Wang, L. Hou, W. Chen, Lancet Infect.
A. L. Bailey, H. Zhao, L. A. Vanblargan, Y.-N. Dai, M. Ma, Dis. 2021, 21, 1654,
L. J. Adams, S. Shrihari, J. E. Danis, L. E. Gralinski, Y. . Hou, [135] D. I. Staquicini, F. H. F. Tang, C. Markosian, V. J. Yao,
A. Schifer, A. S. Kim, S. P. Keeler, D. Weiskopf, R. S. Baric, F. I. Staquicini, E. Dodero-Rojas, V. G. Contessoto, D. Davis,
M. ). Holtzman, D. H. Fremont, D. T. Curiel, et al., Cell 2020, 183, P. O’brien, N. Habib, T. L. Smith, N. Bruiners, R. L. Sidman,
169. M. L. Gennaro, E. C. Lattime, S. K. Libutti, P. C. Whitford,

[134] S. Wu, ). Huang, Z. Zhang, |. Wu, ). Zhang, H. Hu, T. Zhu, S. K. Burley, J. N. Onuchic, W. Arap, R. Pasqualini, Proc. Natl.
J. Zhang, L. Luo, P. Fan, B. Wang, C. Chen, Y. Chen, X. Song, Acad. Sci. USA 2021, 118, €2105739118.

Moustafa T. Mabrouk is a doctoral student in the Department of Biomedical Engineering at the
State University of New York at Buffalo. He received his M.S. degree in biomedical engineering
from the same program and a Pharm.B. from Alexandria University in Egypt. His current research
focuses on the use of nanoscale approaches for vaccines for immunotherapy and infectious
diseases.

Wei-Chiao Huan received a B.S. degree from National Dong Hwa University and an M.S. degree
in biomedical engineering from National Tsing Hua University, both in Taiwan. She has over
seven years of working experience with various liposomal formulations for biomedical applica-
tions. During her Ph.D. research in biomedical engineering at the State University of New York
at Buffalo, she focused on vaccine development, antigen—liposome conjugation, and preclinical
animal studies for vaccine development for infectious disease research. Her present work

is focused on the further development and translation of next-generation liposomal vaccine
adjuvants.

Luis Martinez-Sobrido is a Professor in the Division of Disease Intervention and Prevention at
Texas Biomedical Research Institute. His Ph.D. research focused on the study of viral replication
and transcription of respiratory syncytial virus under the guidance of Dr. Jose Antonio Melero at
the Instituto de Salud Carlos Il in Madrid, Spain. He conducted post-doctoral research on the
molecular biology of influenza viruses under the supervision of Dr. Adolfo Garcia-Sastre at the
Icahn School of Medicine at Mount Sinai in New York, USA. His research interests have been
focused on the molecular biology, immunology, and pathogenesis of negative-stranded and
positive-stranded RNA and DNA viruses.

Adv. Mater. 2022, 34, 2107781 2107781 (16 of 17) © 2022 Wiley-VCH GmbH



ADVANCED
SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

Adv. Mater. 2022, 34, 2107781

www.advmat.de

Jonathan Lovell is a SUNY Empire Innovation Associate Professor of Biomedical Engineering
at the State University of New York at Buffalo. He obtained his M.S. and Ph.D. degrees from
McMaster University and University of Toronto, respectively. His research primary involves

the development and application of innovative formulations for drug and vaccine delivery. To

date, he has supervised over ten doctoral students and has co-authored over 150 peer-reviewed
publications.

2107781 (17 of 17) © 2022 Wiley-VCH GmbH



