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Abstract

Allostery in proteins plays an important role in regulating protein activities and influencing 

many biological processes such as gene expression, enzyme catalysis, and cell signaling. The 

process of allostery takes place when a signal detected at a site on a protein is transmitted via a 

mechanical pathway to a functional site and, thus, influences its activity. The pathway of allosteric 

communication consists of amino acids that form a network with covalent and non-covalent bonds. 

By mutating residues in this allosteric network, protein engineers have successfully established 

novel allosteric pathways to achieve desired properties in the target protein. In this review, we 

highlight the most recent and state-of-the-art techniques for allosteric communication engineering. 

We also discuss the challenges that need to be overcome and future directions for engineering 

protein allostery.

Introduction

Allostery is a common phenomenon in biological macromolecules, where distant parts of 

a molecule are energetically coupled to produce a functional response [1–3]. The original 

view of allostery is based on conformational change of the functional site of a protein 

when perturbation is introduced at a distal site (allosteric site) [4–6]. Cooper and Dryden 

[7] further proposed a dynamics-based model of allostery, in which the active and inactive 

states are structurally similar but the dynamics of the active site is changed. Their model 

extends the original theory of allostery as it shifts the model of two distinguishable states to 

probabilistic description of ensembles that represent these states. Using the ensemble-based 
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theory, allostery can be formulated regarding the conformational free energies of each 

domain in a protein and the negative or positive coupling interactions between them [8,9]. 

In addition to the above-mentioned mechanisms of allostery, Banerjee-Ghosh et al. [10] 

reported a novel allosteric mechanism based on charge. They demonstrated that charge 

injection at the distal site redistributed the charge within the antibody, which affected its 

interaction with the antigen [10].

Allosteric communication plays a pivotal role in various essential biological processes 

including gene regulation, cell signaling, and metabolism [11]. Genetic mutations that 

disrupt allosteric communications within a protein may lead to a loss of function and, 

in some cases, to disease. For instance, mutations in the S-loop of human glutathione 

synthetase that affect allosteric communication disrupt normal biological processes, 

resulting in hemolytic anemia, metabolic acidosis, premature death, and neurological 

disorders [12]. Presenilin 1 catalyzes the cleavage of transmembrane proteins including 

the amyloid precursor protein [13]. Genetic mutations in presenilin 1 that alter allosteric 

communication can alter the cleavage pattern and lead to aberrant β-amyloid peptides 

that have been linked to Alzheimer’s disease [13]. Therefore, understanding allosteric 

communications and the change in protein function caused by perturbations is critical for 

clarifying disease etiology and developing effective therapeutics.

Understanding of allosteric communication makes it feasible to design and engineer 

novel allosteric networks to serve desired purposes. In the past two years, scientists have 

developed innovative methods to engineer allosteric networks to improve enzyme activity, 

confer biosensors with novel ligand binding, and construct complex regulatory systems 

for synthetic biology [14]. In this review, we summarize recent advances in the design 

and engineering of allosteric communications by addressing the following three topics: 

(i) the experimental and computational approaches that we can use to elucidate allosteric 

communication networks, (ii) how do we use this information to engineer hybrid long-

range allosteric routes, (iii) the general methods developed to design alternative allosteric 

communications.

The state-of-the-art methods developed to map allosteric communication pathways

To rationally design and engineer allosteric communications, a prerequisite is to decode the 

signal transduction pathways and critical residues within the pathway for individual proteins. 

In the past two years, we have seen great advances in experimental, computational, and 

integrative methods to meet this challenge.

Site-directed mutagenesis is a commonly used experimental approach to identify essential 

residues for allosteric communication [15]. Mutations that disrupt allosteric signaling 

pathways can affect protein structure and function, which can be distinguished from mutated 

residues that are not important for allosteric signaling. Based on this, Leander et al. [15] 

used deep mutational scanning, a systematic mutagenesis method, to study the functional 

landscape of allostery. Solution NMR is another popular experimental method applied 

to identify residues on the allosteric communication pathway. Residues with changes in 

chemical shift when the signaling pathway is perturbed are potential targets. Rennella et 

al. [16] applied methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR 
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to investigate an extensive allosteric communication pathway initiating from the end of 

the barrel-like structure to the catalytic center of the proteasome. This methodology can 

be used to dissect allosteric communication pathways in homo-oligomeric complexes with 

high molecular weight [16]. Solution NMR has been combined with other experimental 

methods to enhance the discovery of allosteric communications. Through the combination 

of NMR and surface plasmon resonance, Kohler et al. [17] demonstrated that ligands with 

subtle changes in structure share the same allosteric pathways, while ligands with distinct 

pharmacophores rewire the allosteric communication network.

Compared to experimental methods, computational approaches used to investigate allosteric 

communications can be more time-efficient and cost-effective. Molecular dynamics (MD) 

simulations are powerful tools for studying allosteric communications in biological systems 

[18], such as CRISPR-Cas9 [19], tyrosine phosphatase [20], HBV Capsid [21], β-lactamases 

[22], and G protein-coupled receptor (GPCR) [23]. Besides MD simulations, another 

group of computational methods based on spectral graph or information theory has been 

developed [24]. In this method, the three-dimensional structure of a protein is converted to 

a network whereby each node represents an amino acid and the edge indicates a covalent 

or non-covalent bond between residues [25]. Combining this network modeling approach 

with physics and perturbation propagation algorithm, Wang et al. developed Ohm [26], 

a comprehensive and user-friendly platform for allosteric communication analysis. This 

innovative approach relies solely on protein structure and minimizes the calculation time, 

which is more rapid and cost-effective than MD simulations. Westerlund et al. [27] extended 

the framework of residue interacting network to include lipids and small molecules, which 

takes into account the effect of lipids on membrane protein allostery. Alfayate et al. 

[28] established a torsional network model to analyze dynamic couplings between amino 

acids in a protein. The dynamic couplings dissect a protein into different domains with 

correlated motion and the couplings between these domains can be applied to identify 

potential allosteric sites [28]. The Berezovsky group developed a structure-based statistical 

mechanical model of allostery to study allosteric communication between regulatory and 

functional sites [29]. Based on this model, they created the AlloMAPS database that 

can be used to analyze the causality and energetics of allosteric signaling, access the 

allosteric effects of perturbations, and evaluate the modulatory effects of new allosteric 

mutations and sites [29]. Recently, Schupfner et al. [30] developed an ancestral sequence 

reconstruction method that resurrects the highly probable sequences of extinct proteins 

based on a phylogenetic tree and multiple sequence alignment of modern proteins. Using 

this method and further sequence comparison, they identified four residues that contributed 

to the allosteric signal transduction within the tryptophan synthase complex.

Using experimental and computational methods, integrative methods have been developed 

that combine the two to illustrate allosteric communications. Subramanian et al. [31] 

revealed critical residues in the allosteric signal transduction pathway by deep mutagenesis 

and MD simulations. Ni et al. [32] applied MD simulations, Markov state models, and site-

directed mutagenesis to identify a novel cryptic allosteric site of nicotinamide dinucleotide 

(NAD+)-dependent protein lysine deacetylase sirtuin 6. Sztain et al. [33] combined solution 

NMR spectroscopy and MD to decode the communication mechanism between acyl carrier 

protein and its corresponding partner enzyme. They elucidated an allosteric communication 
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network in which the binding of the substrate within the four-helical bundle of the 

acyl carrier protein causes conformational changes to the exterior, and thus determined 

its interaction with a specific partner enzyme [33]. Using solution NMR and Gaussian-

accelerated MD simulations, East et al. [34] discovered a signal transduction pathway within 

the CRISPR-Cas9 HNH domain that propagates from the region interacting with the RuvC 

nuclease to the DNA recognition site.

Construction of hybrid and long-range allosteric networks

The allosteric pathways identified in two different proteins can be rationally linked to 

form a long-range allosteric pathway. In this hybrid system, perturbation introduced (signal 

detected) at the ligand-binding site of protein A can be propagated to the functional site 

of protein B and then affect its activity. By engineering the hybrid allosteric network, we 

can generate diverse combinations of signal detection and functional outputs, where various 

signals can be used to manipulate different functions. This application is significant as it 

provides more options for synthetic biologists and makes regulation more sophisticated.

Modular design is a general strategy to create hybrid proteins and allosteric communication 

pathways [14]. It divides a system into smaller intact parts called modules that can be 

exchanged and fused with other modules to create a hybrid system. By coupling various 

allosteric modules and connecting different allosteric communication pathways, we can 

establish a synthetic allosteric communication network (Figure 1a). A candidate that has 

been exploited for modular design is the transcriptional repressor LacI, which consists 

of a DNA binding domain that interacts with specific promoters and a ligand sensing 

module that detects environmental signals. The ligand interaction at the environmental 

sensing module allosterically regulates the DNA binding with the promoter. However, not all 

possible combinations of DNA and ligand-binding domains will generate hybrid repressors 

that are functional. To address this problem and facilitate the rewiring of allosteric networks, 

Dimas et al. [35] developed a computational model based on coevolution theory. They 

propose that a mutation in the ligand binding region is coupled with a specific mutation 

in the DNA binding domain if these two domains are structurally or functionally related. 

Using direct coupling analysis, this model identifies strong coupling pairs that can result in 

functional hybrid repressors [35]. The generalizability of this modular design strategy has 

been validated by several studies and described in this review [14]. Recently, Chen et al. 

[36] designed de novo protein modules that can be fused to create a heterodimer (e.g. A-B) 

endowed with interaction cooperativity. Specifically, the interaction of subunit A (within the 

heterodimer A-B) with monomer A’ induces the binding between subunit B and monomer 

B’, which might be attributed to the hybrid allosteric network constructed by fusing A and 

B. This ground-breaking research demonstrated the possibility to engineer de novo allosteric 

communication pathways in proteins.

Modular design is limited to proteins with multiple distinct domains (building blocks) that 

can be separated and functional. Over the last decade, a more universal approach has been 

developed to engineer long-range allosteric networks in most proteins of interest [37–40]. In 

this method, a chemical or light-sensitive sensor domain is inserted at an allosteric site of the 

target protein using molecular cloning techniques [41,42]. Through the connected allosteric 
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pathway, the signal detected by the sensor domain can be propagated to the functional site 

of the target protein and thus influence its function (Figure 1b). Gil et al. [41] designed 

opto-nanobodies by inserting a photoswitchable light-oxygen-voltage (LOV) domain at a 

solvent-exposed loop of the nanobodies. The LOV domain recognizes blue light and leads 

to structural perturbations that are further transmitted to the binding surface of nanobodies 

and then interfere with the recognition of a target protein. The reversible control of binding 

between nanobody and its target has many applications such as modulating intracellular 

signaling and controlling protein binding in cells. Recently, the Dokholyan’s group [43] 

engineered a complex allosteric communication network by inserting two sensor domains, a 

rapamycin responsive uniRapR domain and a blue light sensitive LOV2 domain in the focal 

adhesion kinase (FAK) (Figure 1c). By connecting allosteric pathways between the sensor 

domains and FAK, they built a ‘two-input logic OR gate’, where the inputs rapamycin 

and blue light independently control the kinase activity of FAK. This innovative work 

demonstrated that two allosteric communication networks can exist in one protein design to 

control its activity without crosstalk.

Engineering of alternative allosteric communication pathways

Allosteric communications are highly adaptable during evolution as one mutation that 

interrupts the original signaling pathway can be functionally compensated by another or 

a few mutations that create an alternative allosteric communication [15]. The cutting-edge 

methods used to confer potential allosteric networks include directed evolution and rational 

design.

Directed evolution utilizes the principle of natural selection by imposing stringent rules to 

screen targets with desired functions from a library of randomly mutated proteins (Figure 

2a) [44]. Directed evolution does not require structural information of proteins of interest. 

However, a high-throughput screening methodology is necessary for efficient protein design. 

Using a cell growth-based assay, D’Amico et al. [45] identified a mutant involved in the 

allosteric network that enhances tryptophan synthase function. Substitution of this residue 

in the alpha subunit of tryptophan synthase allosterically affects the opening of the indole 

channel and stimulates the activity of the beta subunit [45]. The Wilson lab extensively 

engineered the allosteric communications in the LacI system based on directed evolution 

[14,46]. For example, to confer alternate ligand binding in the PurR scaffold, Rondon et 

al. [47] blocked the original allosteric communication pathway and introduced additional 

mutations through error-prone PCR in order to reconstruct alternate allosteric routes with 

alternative ligand recognition [47].

The rational design of allosteric communication requires a thorough understanding of 

the target protein in terms of structure, function, and the signal transition pathway. 

To preserve allosteric regulation during evolution, allosteric networks are expected to 

be conserved and residues on these networks have coevolved [48]. Based on statistical 

coupling analysis, Jiao et al. [48] identified coevolved residues that may form important 

communication networks in the enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate 

synthase. Through site-directed mutagenesis of a critical node within this network, they 

successfully blocked allosteric communication and constitutively activated the enzyme 
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function [48]. To rationally engineer allosteric communications, Campitelli et al. [49] 

calculated the effects of residue substitution on flexibilities of the functional surface (the 

DNA-binding domain in LacI repressor), and the dynamic coupling between the mutation 

site and the DNA-binding domain. Based on the change in flexibility and dynamic coupling, 

they successfully rewired the allosteric signaling pathways to adjust DNA binding affinity 

by substituting non-conserved residues in the linker region of the LacI repressor [49]. To 

engineer allosteric functions, Chen et al. [50] developed a general approach to reprogram 

allosteric communications in membrane receptors, such as GPCRs (Figure 2b). First, this 

method predicts GPCR conformations in the active (ligand-bound) and inactive (ligand-

free) states using homology modeling. Allosteric sites and communication pathways are 

identified through MD simulations. Then residues that mediate allosteric signaling in the 

transmembrane region are mutated in silico to all possible 20 amino acids. Mutations that 

shift conformational stability or structural coupling between allosteric sites are selected. For 

instance, proteins with enhanced constitutive activity can be designed by mutating residues 

that stabilize the active state rather than the inactive ligand-free state [50].

Conclusions

Genetic variants that disrupt allosteric communication can be detrimental, while rationally 

designed or directed evolved allosteric networks provide many opportunities for protein 

engineering and synthetic biology. Over the past two years, we have seen great strides 

in the identification of allosteric communications in various biological systems and the 

development of new approaches to the design and engineering of allosteric networks. 

However, a more general and effective design method, as well as the de novo design of 

allosteric communications, are still challenges to be addressed in the future. We highlight 

computationally-guided methods as they are effective means of designing and engineering 

allosteric communications, surpassing sequence-based deep mutagenesis in terms of 

efficiency, speed, and success rate. One major limitation to consider when designing 

allosteric communications is preserving the structural integrity of the target protein. 

Evolutionary conserved residues can be important in maintaining structural integrity, while 

non-conserved residues in the allosteric network may be targeted to reprogram allosteric 

communications.
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Figure 1. 
Construction of hybrid and long-range allosteric pathways. (a) Schematic representation 

of the modular design strategy. Synthetic allosteric communications are established by 

connecting signaling pathways from different modules. (b) Design long-range allosteric 

networks to control the functions of proteins of interest (POI) using chemical or light 

responsive sensor domains. Black dots represent critical residues in the allosteric pathway 

and white lines indicate covalent or non-covalent interactions.
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Figure 2. 
Directed evolution and rational design of alternative allosteric communication pathways. 

(a) The process of directed evolution in engineering alternative allosteric communications. 

(b) The rational design steps in designing alternate allosteric communication pathways in 

GPCRs. Black dots and white lines represent essential residues and interactions within the 

allosteric network. Red dots indicate mutated residues.
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