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Abstract

Individual differences in the timing of developmental processes are often of interest in longitudinal 

studies, yet common statistical approaches to modeling change cannot directly estimate the timing 

of when change occurs. The time-to-criterion framework was recently developed to incorporate 

the timing of a prespecified criterion value; however, this framework has difficulty accommodating 

contexts where the criterion value differs across people or when the criterion value is not known 

a priori, such as when the interest is in individual differences in when change starts or stops. This 

paper combines aspects of reparameterized quadratic models and multiphase models to provide 

information on the timing of change. We first consider the more common situation of modeling 

decelerating change to an offset point, defined as the point in time at which change ceases. 

For increasing trajectories, the offset occurs when the criterion attains its maximum (“inverted 

J-shaped” trajectories). For decreasing trajectories, offset instead occurs at the minimum. Our 

model allows for individual differences in both the timing of offset and ultimate level of the 

outcome. The same model, reparameterized slightly, captures accelerating change from a point 

of onset (“J-shaped” trajectories). We then extend the framework to accommodate “S-shaped” 

curves where both the onset and offset of change are within the observation window. We provide 

demonstrations that span neuroscience, educational psychology, developmental psychology, and 

cognitive science, illustrating the applicability of the modeling framework to a variety of research 

questions about individual differences in the timing of change.

Longitudinal data and growth modeling are widespread within psychology and behavioral 

sciences (Hox et al., 2017; Singer & Willett, 2003). In longitudinal studies concerned with 

developmental processes, research questions frequently relate to the timing of when change 

starts (the change onset) or when change stops (the change offset). As an example from 

neuroscience, the thickening of the prefrontal cortex is an important maturational process 

occurring during infancy and there is interest in the change offset rather than solely the level 

of thickness ultimately attained because the timing of sensitive periods has implications that 

extend across the lifespan (Goldman-Rakic, 1987). In research on language development 

in young children, there is an interest in the change onset that demarcates when children 
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start to build their vocabularies, not just the number of words they know (Fenson et al., 

1994). And in educational contexts, content mastery is important but so is the change offset, 

which captures how quickly mastery is acquired to ensure that students continue to progress 

(Dumas et al., 2019). Despite this interest in questions related to change onsets and change 

offsets, statistical models for longitudinal data have difficulty incorporating information 

related to timing.

In the last 20 years, there has been a growing emphasis on selecting and parameterizing 

growth models so that the coefficients correspond to quantities with useful substantive 

interpretations (Codd & Cudeck, 2014; McNeish et al., 2019). For instance, common 

nonlinear models within the family of curves described by Richards (1959) capture growth 

toward an asymptote, with a primary goal being to predict the ultimate level of the outcome 

variable. The asymptote of the growth trajectory is included as an explicit parameter and 

can be directly estimated; however, the trajectory never quite meets the asymptote, only 

becoming ever closer as time advances. This property makes asymptotic models less useful 

for questions related to the change offsets such as when studying individual differences in 

the timing of maturity or mastery in a given domain. That is, researchers often are not only 

interested in the ultimate level that people reach but also in how fast they get there (Cohen, 

2008; Feng et al., 2019). In using an asymptotic model, one must impose a threshold for 

declaring growth completed, such as 99% to asymptote or 99.9% to asymptote. Such a 

solution is unsatisfying both for its arbitrariness and for the fact that the quantity of interest 

– the change offset – is not an explicit parameter of the model.

Johnson and Hancock (2019) introduced the time-to-criterion framework to address research 

questions specifically about timing. Drawing from Preacher and Hancock (2015), Johnson 

and Hancock (2019) show how to reparameterize linear and nonlinear growth models such 

that the timing of a particular value (i.e., the criterion) along the growth trajectory is 

directly estimable. The time-to-criterion framework is a notable step forward for researchers 

interested in timing, but it requires that researchers select the criterion of interest a priori. 

This encompasses situations where there is a predefined benchmark for proficiency such as 

on standardized educational assessments or a known clinical cut-off. It excludes contexts 

when the criterion value is unknown ahead of time or where the criterion value varies 

across people. Using the previous example of prefrontal cortex thickening, the eventual 

maximum thickness is both unknown a priori and differs across individuals, a situation not 

accommodated by time-to-criterion models.

To extend research questions about timing to accommodate change offsets or change onsets, 

this paper outlines how growth models can move from a time-to-criterion framework to 

time-at-offset or time-at-onset framework. Specifically, we outline a nonlinear time-at-offset 

model parameterization that includes person-specific parameters for both the ultimate 

maximum level achieved as well as the time at which this level was achieved (i.e., the 

change offset). The same approach − with minor differences in model parameterization − 

can provide a time-at-onset model such there are explicit person-specific change onsets 

that follow a flat initial level. Additionally, for instances in which both change onset and 

change offset are present within the observation window, combining the time-at-offset and 
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time-at-onset models produces a model for S-shaped, sigmoidal growth that allows for 

person-specific coefficients that relate to both aspects of timing.

To outline the structure of the paper, we begin with a short overview of existing growth 

models and how they struggle to flexibly incorporate aspects of timing, change offsets 

and change onsets in particular. Then we review reparameterizations discussed by Cudeck 

and du Toit (2002) and multiphase models discussed by Cudeck and Klebe (2002), 

elements of which we combine to provide a model for evaluating time-at-offset and time-at-

onset. After presenting these models, we provide four empirical examples from different 

disciplines to demonstrate its utility and versatility for questions that span the behavioral 

sciences. The first example focuses on the aforementioned example of the maturation 

of the cortex. The second example is a randomized intervention study concerning early 

childhood mathematics. The third example demonstrates a time-at-onset model with data on 

vocabulary acquisition in infancy. Finally, we model S-shaped, sigmoidal growth curves in a 

strategy learning task, with variability in both individual change onsets and change offsets. 

We conclude with a discussion of limitations and future directions.

Brief Overview of Growth Modeling

Linear Growth Models

In multilevel notation (Raudenbush & Bryk, 2002), a basic unconditional linear growth 

model can be written as

yti = β0i + β1iTimeti + eti
β0i = γ00 + u0i
β1i = γ10 + u1i

(1)

The first expression is a typical regression model where the outcome y for the ith person at 

the tth time is equal to an intercept (β0i) plus the linear slope (β1i) times the tth value of Time 
plus a residual (eti) for the ith person at time t. The difference between a standard single-

level regression and a growth model is that the regression coefficients (β) have i subscripts, 

meaning that they vary across people (Laird & Ware, 1982). Correspondingly, each person 

has a unique intercept and slope which produces person-specific growth trajectories.

These person-specific coefficients are directly modeled in the second and third expressions 

in Equation 1 and are equal to the average across all people (the fixed effect represented 

by γ) plus a person-specific random effect (represented by u) which captures the deviation 

of the ith person’s coefficient from the average. These random effects are not explicitly 

estimated but instead are assumed to come from a multivariate normal distribution with a 

mean vector of zero and an estimated covariance matrix: ui ~ MVN (0, T).

Polynomial Models for Nonlinear Growth

Growth in behavioral sciences is often nonlinear (Grimm et al., 2011) and the model in 

Equation 1 can be modified to include a quadratic term for Time to reflect nonlinearity 

such that the first expression becomes yti = β0i + β1iTimeti + β2iTimeti
2 + eti. The popularity of this 

second-order polynomial model is that it can model nonlinear relations with models that 
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remain linear in the parameters (Bollen, 1989; Grimm & Ram, 2009). That is, the right side 

of the regression equation is nonlinear in the variables by including polynomial terms for 

Time but it remains linear in the parameters such that parameters enter the model in a strictly 

additive fashion and take the form coefficient × Time + coefficient × Time2… Because the 

model remains linear in the parameters, it can be fit easily within standard linear model 

software (Cudeck & du Toit, 2002). Though easy to estimate, polynomial growth models 

suffer from two major drawbacks, (a) coefficients are difficult to interpret (Grimm et al., 

2011) and (b) the implied growth trajectory is unbounded, which rarely matches theories of 

development (Bollen & Curran, 2006, Ch. 4; Grimm & Ram, 2009).

To expand on these drawbacks, first, a second-degree polynomial growth model with Time 
and Time2 as predictors yields coefficients capturing the instantaneous growth rate at Time 

= 0 and half the acceleration of the curve (Bollen & Curran, 2006). The sign associated 

with these coefficients can be useful for discussing concavity, but it is hard to characterize 

the shape of the growth trajectory in these terms. Further, the effects of predictors of 

between-person differences in trajectories are difficult to interpret substantively because the 

coefficients do not have an intuitive scale. Finally, the model neglects important milestones 

in growth trajectories (Cudeck, 1996) – what is the maximum value of the curve? Does 

the growth trajectory have an asymptote or does it change concavity? At which time does 

the maximum take place? Despite the relevance of such questions, answers are difficult to 

discern in polynomial growth models.

Second-order polynomial models are also symmetric and parabolic (i.e., U-shaped), which 

implies that the outcome will decline as quickly as it grew (Grimm & Ram, 2009). The 

idea of a second-order polynomial model is often to locally approximate nonlinearity of a 

J-shaped or inverted J-shaped curve. This can produce a serviceable local approximation 

for many monotonic nonlinear growth functions but tends to be unrealistic for defining 

growth broadly or for generalizing the model to the same phenomena at different times of 

observations (Blozis, 2004; Pinheiro & Bates, 2000). That is, a polynomial specification 

necessarily requires that the curve eventually change directions with the rate of decline 

equal to the rate of ascent, which rarely matches developmental theories of growth. Even for 

models covering a large portion of the lifespan with outcomes that can decline like memory, 

the descent is rarely symmetric and as expedient as the initial ascent.

Despite these drawbacks, polynomial models remain widespread. Historically, the use of 

these models was motivated by the computational challenges of fitting models that are truly 

nonlinear in their parameters (Blozis & Cudeck, 1999). However, advances in computing 

have largely mitigated these obstacles and models that are nonlinear in the parameters are 

a compelling alternative, providing results that more closely match theoretical hypotheses 

about change over time (Cudeck & Harring, 2007; Ram & Grimm, 2007).

Nonlinear Mixed Effect Models

Nonlinear mixed effect models relax the requirement that the model be linear in the 

parameters. This means that parameters and random effects can enter the model nonlinearly 

in exponents, fractions, or as products with other parameters, which allows for unique 

parameterizations that directly estimate quantities of substantive interest. For instance, 
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the negative exponential model is a popular nonlinear model for decelerating monotonic 

trajectories (Grimm et al., 2011). The regression equation for the model can be written as 

yti = αi + (δi − αi)(1 − exp (ϕiTime)) + eti where αi is the person-specific intercept, δi 

is the person-specific upper asymptote representing the expected value as Time →∞, and 

ϕi is a person-specific proportional rate of decay in growth that dictates how quickly the 

data grow from intercept to asymptote. When these models are applied in behavioral science 

settings, the asymptote and maximum performance are typically the main focus and translate 

directly to substantive questions (McNeish & Dumas, 2017). However, the rate parameter 

tends to correspond less closely to quantities that are meaningful to psychologists and does 

not encode any information about timing.

Some nonlinear growth models improve upon this by directly including parameters 

corresponding to the timing of particular milestones in the curve. For instance, the 

Michaelis-Menten model directly estimates the point in time when the outcome is halfway 

between the intercept and the asymptote such that yti = αi + [(δi − αi) × Time](φi +Time)−1 

+ eti for φi the person-specific midpoint parameter. So, if the midpoint estimate were 4, that 

would mean that the outcome y is halfway between the intercept and the asymptote when 

Time = 4. On this metric, the estimate conveys direct information of substantive relevance 

and effects of covariates have clear interpretations. Nonetheless, the Michaelis-Menten 

model is inflexible with respect to the criterion associated with this timing – the model 

always estimates the timing of the midpoint point between intercept and asymptote. To the 

extent that the interest in timing deviates from the midpoint, the timing information provided 

by the Michaelis-Menten model becomes less useful.

Time-to-Criterion Models

Johnson and Hancock (2019) describe an approach for explicitly parameterizing timing of a 

particular criterion as a parameter in the model. In this time-to-criterion framework, the first 

step is to respecify the functional form of the intended model in terms of the prespecified 

criterion. Using Michaelis-Menten as an example, one would solve for a predetermined and 

substantively interesting criterion value c by substituting c for the outcome yti such that c 
=αi + [(δi − αi) × ωi](φi + ωi)−1. Whereas Time was a previously a variable, it now becomes 

ωi and is an estimable parameter representing the specific value of Time that yields the 

desired criterion value c from this function. The equation can be rearranged to solve for ωi 

such that ωi = [φi (c − αi)](δi − c)−1.

We can then substitute ωi back into the original Michaelis-Menten equation to estimate it 

directly. Unfortunately, one of the original three parameters (αi, δi, φi) must be sacrificed to 

create room for the new parameter ωi (ωi is redundant with these three parameters so all 

four cannot be estimated simultaneously). The midpoint parameter becomes a less useful 

developmental reference when ωi is also in the model, so solving for φi yields φi = [(δi 

− c) ωi](c − αi)−1. This expression is then substituted into the original Michaelis-Menten 

Equation such that yti = αi + δi − αi × Time
δi − c ωi
c − αi

+ Time
. In essence, the time-to-criterion model trades 

the ability to estimate the midpoint φi for the ability to estimate the more substantively 

meaningful timing of a researcher-selected criteria ωi.
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The time-to-criterion framework is a useful and clever method for directly estimating the 

time at which a prespecified criterion occurs; however, some limitations remain. First, the 

process requires that the criterion be known a priori. Though realistic in settings where 

there are explicit cutoffs delineating certain pathologies or levels of achievement, an a priori 

criterion may be less clear-cut in other circumstances. For instance, if the criterion is a 

person’s maximum value, this is estimated from the data in most cases. Further, the criterion 

does not have an i subscript and is constant for all people, which is violated for a criterion 

like maximum development that typically exhibits between-person variability. The next 

sections discuss how this idea can be generalized to cover a wider set of research questions 

involving timing of maximum or minimum values in growth trajectories by combining 

elements of existing models.

Reparameterizing Polynomial Models

The first building block of our proposed model is an idea advanced by Cudeck and 

du Toit (2002), who noted that polynomial models can often be reparameterized to 

improve interpretation. They focused on a reparameterized version of the quadratic model 

that yields coefficients with more substantively meaningful interpretations. Rather than 

include coefficients to capture the instantaneous rate of change at Time = 0 and half 

the acceleration as in a polynomial model that is linear in the parameters and includes 

higher-order polynomials of time as predictors, Cudeck and du Toit (2002) use a nonlinear 

parameterization that includes coefficients representing the maximum value of the curve and 

the time at which the maximum occurs (i.e., the vertex coordinates of a parabolic curve). 

Specifically, the reparameterized quadratic can be written as

yti = β1i − β1i − β0i
Timeti

β2i
− 1

2
+ eti

β0i = γ00 + u0i
β1i = γ10 + u1i
β2i = γ20 + u2i

(2)

In this reparameterized model, the intercept (β0i) remains the expected value of y for person 

i at Time = 0, but β1i represents the maximum or minimum expected value of y for person 

i, and β2i captures the time at which this maximum or minimum value occurs. As before, 

each of the β coefficients is then broken down into a fixed effect (γ) and a person-specific 

random effect (u) so that they can vary across people. A conceptual visual representation of 

the model with a maximum value is shown in Figure 1.

Though the Cudeck and du Toit (2002) reparameterized model improves the interpretation 

of the quadratic growth model by defining the trajectory with more substantively meaningful 

parameters, a lingering problem of the model is that it remains a symmetric and unbounded 

parabola with a U or inverted U shape. For many processes, we expect that – once 

reached – the maximum or minimum will be maintained rather than growth reversing 

course immediately after. These shortcomings, however, can be addressed by combining the 

reparameterized quadratic model with multiphase growth models.
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Multiphase Growth Models

As described by Cudeck and Klebe (2002), multiphase models allow for different forms 

of growth in different phases of the observation window. Such models provide flexibility 

for capturing complex patterns of change using relatively simple functions (Naumova et 

al., 2001). For instance, in one phase the function might consist solely of an intercept 

(polynomial of degree zero) whereas in the next phase there might be both an intercept and 

a slope (polynomial of degree one). Together, these functions would imply an individual 

trajectory that is initially flat but then – upon hitting the phase transition – shows a linear 

increase (or decrease). In the special case where growth is characterized by a straight line 

in each phase, such models are sometimes referred to as piecewise linear growth models. 

More broadly, they are spline models, where different functions govern growth for different 

phases of time and the functions are tied together at the phase transitions (typically called 

knot points) to form one continuous trajectory (Chou et al., 2004). Knot points can either 

be fixed to particular values corresponding to known transitions (e.g., the transition to high 

school) or empirically estimated from the data if a transition is expected but its exact timing 

is unknown (Hall et al., 2001). Knot points can also be modeled as random effects and differ 

in value from person to person (Harring et al., 2006).

Of particular interest for our purposes here is the quadratic-linear model described by 

Cudeck and Klebe (2002). In this two-phase model, growth is quadratic in the first phase up 

to the knot point and then growth proceeds linearly thereafter. Further, the model is specified 

in a way that ensures that the transition from the quadratic to the linear phases is smooth and 

that there is no singular point or “elbow” in the trajectory function and the overall trajectory 

is continuously differentiable. A smooth transition is ensured by parameterizing the model 

so that the first derivatives of the separate phases are the same at the knot point.

This two-phase quadratic-linear model with equality of first derivatives at the knot point can 

be written as

yti = β0i + β1iTimeti + β2i Timeti − β3i
2 + eti if T imeti ≤ β3i

β0i + β1iTimeti + eti if T imeti > β3i

(3)

and

β0i = γ00 + u0i
β1i = γ10 + u1i
β2i = γ20 + u2i
β3i = γ30 + u3i

(4)

Equation 3 shows the trajectory function of the outcome variable y for person i at 

time t consists of two parts, the first being quadratic (with the conventional polynomial 

parameterization that is linear in the parameters) and the second being linear. The first part 

governs the trajectory up to the knot point β3i and the second part takes over thereafter. The 

β0i and β1i parameters are featured in both phases to ensure equality of the first derivatives. 

Equation 4 decomposes each growth parameter into its average value (the fixed effect γ) and 
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person-specific deviations (the random effect, u). Figure 2 displays a hypothetical plot of 

this two-phase quadratic-linear model using β1i =.05 and β2i =−.15 as hypothetical values.

Previous studies have considered the standard quadratic-linear multiphase model as a 

method to incorporate timing of developmental turning points into growth models (e.g., 

McArdle & Wang, 2008; Wang & McArdle, 2008); however, this idea does not necessarily 

capture the timing of when change starts or stops. For instance, the function displayed in 

Figure 2 increases indefinitely. The next section outlines how the multiphase quadratic-linear 

model can be combined with reparameterized quadratic models discussed in the previous 

section to capture change offsets such that the knot point directly corresponds with the 

maximum or minimum of the outcome variable. Subsequently, we extend to the approach to 

also capture variability in change onsets.

The Time-at-Offset Model

Our proposed time-at-offset model combines multiphase models of Cudeck and Klebe 

(2002) with the reparameterized quadratic model of Cudeck and du Toit (2002). The first 

phase is specified as quadratic and the second phase is specified as flat horizontal line 

(instead of linear growth). Rather than use the conventionally parameterized polynomial 

quadratic in the first phase, we substitute the Cudeck and du Toit (2002) reparameterization 

of the quadratic. After this substitution, we have a growth parameter that represents the 

time at which the maximum or minimum value of y occurs within the first phase. This 

same parameter serves as an estimate of the knot point. Therefore, the phase transition 

occurs precisely when individuals reach their maximum value such that the change offset 

is an explicitly estimated parameter in the model. Following the change offset, the second 

phase is a horizontal line equal to the maximum or minimum, implying that this value is 

maintained. The overall trajectory is smooth and continuously differentiable because the first 

derivative of the quadratic continuously moves to zero at the maximum and then remains at 

zero from that point forward. Figure 3 provides hypothetical plots of trajectories that would 

follow the time-at-offset model with the left panel showing growth towards a maximum 

(e.g., arithmetic skills in primary school children, brain development) and the right panel 

showing decay towards a minimum (e.g., reaction time over repeated trials, speech errors in 

young children).

Mathematically, the time-at-offset model can be written as

yti = β1i − β1i − β0i
Timeti

β2i
− 1

2
+ eti if T imeti ≤ β2i

β1i + eti if T imeti > β2i
β0i = γ00 + u0i
β1i = γ10 + u1i
β2i = γ20 + u2i

(5)

Here the intercept (β0i) is the expected value of y for person i at Time = 0, β1i is the 

maximum or minimum value of y for person i, and β2i is the time at which the maximum or 

minimum occurs and serves as transition point between phases (i.e., the change offset).
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The first benefit of this parameterization is that the resulting trajectory closely follows 

decelerating monotonic trajectories like the negative exponential or Michaelis-Menten. The 

flat second phase resembles an asymptote but has the added advantage in that the maximum 

is a point that people actually reach rather being an unattainable theoretical upper limit. 

This removes ambiguity about how close to the asymptote is considered close enough 

for the growth to be considered to have ceased. It also allows questions about timing of 

end-point behavior to be addressed rather than relegating timing to the halfway point as in 

Michaelis-Menten. The second benefit is that the model retains the useful interpretations of 

the Cudeck and du Toit (2002) reparameterization without requiring a symmetric, U-shaped 

trajectory. In this way, the model more closely maps onto developmental phenomena where 

maximal or minimal values are maintained rather than rapidly changing directions after 

having been achieved. Third, the dual role of β2i as both a focal parameter and the knot point 

reduces the number of random effects in the model, which reduces the complexity of the 

estimation. Because β2i serves “double-duty”, researchers also do not need to sacrifice any 

other parameters to enable direct estimation of parameters related to timing as is required in 

time-to-criterion models.

To demonstrate the generality and usefulness of this modeling approach, we provide two 

empirical illustrations below where time-at-offset is of primary research interest, something 

that existing models struggle to address. The first example features two-level data (repeated 

measures nested in people) and the second example features three-level data (repeated 

measures nested in people who are nested in schools). Afterwards, we show how we can use 

the same approach to model individual differences in change onset points and switching the 

focus to individual differences in where change processes begin rather than end. Then we 

extend the model to simultaneously include individual differences in both change onset and 

change offset points for S-shaped, sigmoidal growth processes.1

Example 1: Prefrontal Cortex Thickening

Background

Decades of work on plasticity in development indicates that the brain is particularly 

sensitive to environmental inputs during early development. Human and animal models 

have extensively documented that sensory input received during early sensitive periods (i.e., 

between 0 and 4 years) fundamentally changes children’s ability to perceive and respond 

to their environment for the rest of their lives (Goldman-Rakic, 1987; Rakic et al., 1986, 

Wiesel & Hubel, 1965). Notably, in vivo animal and post-mortem human studies indicate 

that the timing of sensitive periods differs for neural regions involved in primary sensory 

versus higher order cognitive function, primarily due to the differences in timing of peak 

synaptic density across cortex (Bourgeois et al., 1994; Huttenlocher, 1990; Petanjek et al., 

2011). Until recently, dense sampling of neural structure in humans in vivo during infancy 

using neuroimaging was impossible.

1SAS code and output are provided for all examples on the first author’s Open Science Framework page for this paper, https://osf.io/
ha8mv/
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Recent technological advances have made it possible to measure cortical thickness in vivo 

in humans multiple times over the first year of life (Li et al., 2019). Critically, extant 

literature has not explicitly linked early brain development – especially in regions such as 

the prefrontal cortex, which are larger and more complex in humans compared to animals 

– with later cognitive ability. Thus, such formative work is essential in order to advance 

the promise of neuroimaging as a meaningful tool in the study of developmental plasticity 

in humans. Using cortical thickness data measured from in vivo neuroimaging during early 

development, the proposed model captures timing of offset in growth (cortical thickness 

maturation) as an explicit parameter. The model is thus ideally suited for evaluating how 

the timing at which areas of the cortex reach maximum thickness in early development may 

be related to later cognitive abilities. Specifically, we hypothesized that more protracted 

frontal lobe growth during early development would be related to higher cognitive ability in 

childhood.

Data

The data come from a longitudinal study of brain development including 51 children who 

were assessed first at 2 weeks of age, then at 3, 6, 9, 12, 18, and 24 months, and then at 3, 

4, 5, and 6 years. The methods for acquisition and analysis of this data were developed by 

Lin and colleagues, and have been published extensively (Li et al., 2014; Shi et al., 2010, 

2011). Given variation in assessment times, for analysis purposes age is computed based on 

the actual number of days elapsed from birth to when the assessment was made, divided by 

365 to make the units years of age. At each time point, T1-weighted and T2-weighted sMRI 

scans were acquired. Sequences were optimized for imaging neural structure in infants and 

young children (see Li et al., 2014). Each structural scan was preprocessed and analyzed to 

quantify gray matter cortical thickness and surface area (Shi et al., 2010, 2011). Thickness 

was measured in 68 cortical regions of interest defined using a standard atlas (Desikan et al., 

2006). The current analysis focused specifically on the thickness of the frontal lobe, defined 

as the average of thickness within 24 regions of interest located within the right and left 

frontal lobe. Measures of frontal lobe thickness were available for 50 of 51 children, ranging 

from 3 to 11 observations with a median of 7 observations per child. Between 5 and 6 years 

of age (mean = 5.35), a subset of the sample (N=33) also completed the Differential Ability 

Scales-II (DAS; Elliott, 2007), a standardized assessment similar to an IQ test designed to 

measure ability in verbal and non-verbal domains. The current analyses focus on the verbal 

scale, or DAS-II-V.

Model and Results

A spaghetti plot of the data, shown in Figure 4, suggests that the proposed model would be 

appropriate for capturing changes in frontal lobe thickness. As can be seen in the top panel, 

gains in thickness are very rapid early in infancy, with decelerating growth observed until 

approximately year one, after which levels appear steady. To see this pattern more clearly, 

the bottom panel zooms in on just the first two years, showing that there appears to be a 

smooth deceleration in growth through the first year. The model proposed in Equation 5 

captures precisely this type of trajectory, with the initial quadratic piece capturing smooth 

deceleration in change and the second flat piece capturing level at the termination of growth. 
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Further, it permits an evaluation of individual differences in starting level, final level, and 

change offset for frontal lobe thickness.

We fit two models to the data. The first model included only the repeated measures 

on frontal lobe thickness, whereas the second model extended this to a multivariate 

specification to include DAS-II-V. Both models were fit in SAS 9.4 with the NLMIXED 

procedure, using maximum likelihood estimation via non-adaptive Gaussian quadrature 

with 7 quadrature points. In each case, the random effects covariance matrix was modeled 

by estimating the standard deviations and correlations of the random effects to reduce 

estimation challenges associated with numerically small variances of different magnitudes. 

Estimation on a standard desktop computer took approximately 9 seconds for Model 1 and 

25 seconds for Model 2.

Results from Model 1 (of the form given in Equation 5) are presented in Table 1. The 

average trajectory was characterized by a predicted frontal lobe thickness at birth of 2.15 

mm (SD =.12 mm), a maximum attained thickness level of 2.78 mm (SD =.19 mm), and 

change offset at 1.12 years of age (SD =.08 years, or approximately 1 month of age). 

Timing of offset was negatively correlated with both thickness at birth (r = −.41, p =.34) 

and thickness at maturation (r = −0.68, p <.05), though only the latter correlation was 

statistically significant. Thickness at birth was positively correlated with ultimate levels 

at maturation (r = .47, p <.01), but this may simply reflect the common association of 

these two trajectory features with timing of offset. Indeed, the partial correlation between 

thickness at birth and thickness at maturation, controlling for timing of offset, was only.28 

and not statistically significant (p = .51). The predicted individual trajectories, displayed in 

Figure 5 for a representative subset of individuals, showed close fit to the observed repeated 

measures.

In Model 2, we included DAS-II-V as an additional outcome, using the approach described 

by MacCallum et al (1997) to fit a multivariate multilevel model. For estimation purposes, 

the model was parameterized with DAS-II-V regressed on the random effects characterizing 

frontal lobe growth. For interpretation, however, the slopes from this regression were 

transformed into the implied bivariate correlations between the frontal lobe growth 

coefficients and DAS-II-V scores. Parameter estimates for the frontal lobe growth process 

changed little from Model 1 and are thus not reported. DAS-II-V was negatively correlated 

with frontal lobe thickness at birth (r = −.34, p =.24), virtually uncorrelated with frontal 

lobe thickness at maturation (r = −.06, p =.88), and positively correlated with age of offset 

in frontal lobe growth (r =.49, p =.35). Although none of these correlations was statically 

significant, the tendency for later change offsets to be correlated with higher DAS-II-V 

scores was consistent with the hypothesis that more protracted growth would be related to 

higher cognitive ability. This result is intriguing but further research is clearly needed to 

make more definitive conclusions.

In sum, this example demonstrated that the model fit well to individual trajectories 

of structural brain development in frontal lobe thickness and provided parameters with 

appealing interpretations that could be used to obtain direct tests of the hypotheses of 

interest.
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Example 2: Early Childhood Mathematics

Background

Findings on the longitudinal effects of preschool mathematics interventions have been mixed 

in that effects are typically found immediately following the intervention but fade over the 

course of elementary school (Natriello et al., 1990). In the absence of intervention effects 

that persist throughout elementary school, there is debate about the policy ramifications 

of implementing interventions on a large scale (Bailey et al., 2018). Dumas et al. (2019) 

applied nonlinear dynamic measurement growth models to data from a clustered randomized 

trial in children followed from preschool to Grade 5 and similarly found that the difference 

between the intervention and control groups diminishes over time. To probe aspects 

of timing, they applied a Michaelis-Menten model which estimated the time at which 

the outcome had developed to the midpoint between the intercept and asymptote. The 

intervention group was found to reach the midpoint of their growth trajectory faster than 

the control group, and the effect was particularly pronounced for black and Latinx students, 

groups that have been historically under-resourced in mathematics education.

The more interesting question, however, is whether early intervention can help students 

reach their ultimate level of mastery faster because reaching the midpoint more quickly does 

not guarantee that mastery will also be achieved more quickly. The Michaelis-Menten model 

applied by Dumas et al. (2019) is derived from pharmacokinetics where the midpoint of a 

curve has ramifications for the optimization of chemical reactions, but in education research, 

the change offset is far more interesting. Because there is between-student variability in 

ultimate mastery, this situation is not amenable to a single fixed criterion across all students 

as in the time-to-criterion framework. Consequently, we will fit our proposed time-at-offset 

model to investigate differences in change offsets between intervention and control groups.

Data

Data for this example come from the TRIAD project (Clements et al., 2013; Clements 

& Sarama, 2007), the intent of which was to improve mathematics knowledge of 

students in preschool and early primary school using the Building Blocks curriculum and 

teacher professional development. The study was a clustered randomized trial where the 

intervention was applied in preschool and then students were followed through Grade 

5, being longitudinally assessed by the vertically scaled Research-based Early Math 

Assessment (Clements et al., 2008). Measurements occurred twice in preschool (pre- and 

post-intervention) then once each in kindergarten, Grade 1, Grade 2, Grade 4, and Grade 

5. The data contain 1,305 students clustered within 42 schools. Overall attrition was 36% 

and was about equal for the intervention group (40%) and the control group (33%). At all 

grade levels, none of the baseline demographic differences between the intervention and 

control group (i.e., free/reduced price lunch, gender, disability status) were greater than 0.25 

standard deviations (in absolute value), which aligns with the reasonable threshold employed 

by US Institute for Educational Science’s What Works Clearinghouse (Clements et al., 

2019).
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Model and Results

The model is more complex than previously shown because these data have a three-level 

structure: repeated measures are nested within people who are nested within schools. The 

three-level time-at-offset model interested in a Level-3 intervention effect can be written as,

Matℎtij = β1ij − β1ij − β0ij
Timetij

β2ij
− 1

2
+ etij if Timetij ≤ β2ij

β1ij + etij if Timetij > β2ij
β0ij = π00j + u0ij
β1ij = π10j + u1ij
β2ij = π20j + u2ij
π00j = γ000 + γ001Interventionj + r00j
π10j = γ100 + γ101Interventionj + r10j
π20j = γ200 + γ201Interventionj + r20j

rj ∼ MV N
0
0
0

,
v00

v10 v11

v20 v21 v22

uij ∼ MV N
0
0
0

,
τ00

τ10 τ11

τ20 τ21 τ22

eij ∼ MV N 0, σ2I

(6)

Equation 6 shows that Math scores follow a multiphase model. The first phase is a 

reparameterized quadratic that has an intercept (β0ij), maximum value (β1ij), and change 

offset (β2ij) capturing the point in time at which the maximum value occurs. The change 

offset also functions as the knot point, after which the growth trajectory is characterized by 

a horizontal line at the maximum value. Each of the three growth parameters are allowed 

to vary across people via the u random effects and across schools via the r random effects. 

Each growth parameter is then predicted by the intervention group status of the jth school. 

Both the person-level and school-level random effects are specified to have an unstructured 

covariance matrix, meaning that all random effects freely covary with all other random 

effects at the same level. Consistent with identifiability in multilevel models, random effects 

across levels are assumed to be independent. The within-person residual variance is modeled 

to be constant across time.

The model in Equation 6 was fit in SAS 9.4 using the NLMIXED procedure. Maximum 

likelihood estimation via Gaussian quadrature with 5 quadrature points and double dogleg 

optimization was used. To improve numerical stability, we used a Cholesky decomposition 

for the random effect covariance matrix at each level (Kohli et al., 2019). The estimation of 

the model was rather intensive, requiring about 15 hours of CPU time; however, we were 

able to greatly reduce real-time computation time by hyperthreading the estimation across 8 

cores so that estimation took only about 2 hours.

Results from the model are shown in Table 2 and the growth trajectories of the control group 

and intervention group are compared in Figure 6. In this context, the change offset is a 

substantively interesting parameter because it represents the time at which ultimate mastery 

of basic mathematics occurs (Time = 0 represents the start of pre-school). The intervention 

effect on the intercept was negligible (γ001 = 0.01, t(23) = 0.17, p =.87), as expected 
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because the study was a cluster randomized trial and the first wave of data collection 

occurred prior to the intervention. As noted in the early childhood mathematics literature, 

the intervention effect on the maximum value is also negligible and non-significant (γ101 

=−0.19, t(23) =−1.56, p =.13), indicating that groups are essentially equal at the conclusion 

of the observation window in Grade 5. Some have considered this equality across groups at 

the conclusion of the study as evidence that the intervention is not worthwhile. However, 

the timing at which growth trajectories level off may be more relevant, especially in the 

elementary school context. That is, if groups have the same maximum values but the 

intervention group arrives there quicker, that can have a host of psychosocial and educational 

benefits (e.g., Ahmed et al., 2013; Becker & Neumann, 2018). Indeed, the intervention 

effect on the change offset parameter is quite large (γ201 =−0.74, t(23) =−5.51, p <.01) 

showing that the practical importance of the intervention is to accelerate mastery. The offset 

parameter is on the scale of Time, so this effect indicates that the intervention group reaches 

their maximum 9 months – a full school year – before the control group.

This example shows the benefit of our proposed time-at-offset model when the timing of 

maximal development is equally or more important than the level of maximal development 

itself. Previous analyses of these data have questioned the effectiveness of the intervention 

based on the equivalence of the groups’ developmental endpoints (Kang et al., 2018), but 

such a perspective overlooks the importance of timing in learning processes.

Time-at-Onset Model

Examples 1 and 2 demonstrated time-at-offset models where the growth trajectory 

decelerates towards a maximum value and the change offset represents the point where 

growth ceases and becomes flat thereafter. In other contexts, one might be concerned with 

the timing at which a change process begins. A similar model can be applied to address this 

concern, but the order of the phases is reversed such that growth is initially flat until some 

change onset point, after which growth accelerates. This type of development occurs, for 

example, in early childhood studies when the interest is related to timing of development 

milestones like learning to talk or walk. In such contexts, the number of words known or 

the number steps per day would be maintained at or near zero for each child until the 

milestone is reached (i.e., the change onset), after which point rapidly accelerating growth 

begins. Alternatively, one might be interested in the timing of a process of decline. For 

example, the interest could be timing of cognitive decline in patients eventually diagnosed 

with dementia (e.g., Rusmaully et al., 2017). In this case, the first phase would be a 

relatively stable maximum value while people function typically and the change onset would 

represent the timing at which cognitive decline begins. Figure 7 provides hypothetical plots 

of trajectories that would follow the time-at-onset model with the left panel showing an 

increasing trajectory (e.g., learning to walk or talk) and the right panel showing a decreasing 

trajectory (e.g., cognitive decline or attention during a task).

Mathematically, the time-at-onset model is similar to the time-at-offset model discussed 

earlier but with the phases reversed such that

McNeish et al. Page 14

Psychol Methods. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yti =
β1i + eti if T imeti ≤ β2i

β1i − β1i − β0i
Timeti

β2i
− 1

2
+ eti if T imeti > β2i

β0i = γ00 + u0i
β1i = γ10 + u1i
β2i = γ20 + u2i

(7)

whereβ1i is the value of the flat minimum or maximum line prior to the change onset 

and β2i is the onset. To be maximally interpretable, Time should be coded such that zero 

corresponds to an endpoint of interest such as the last measurement occasion. Doing so will 

make the intercept term β0i an estimate of the level of the individual’s trajectory at that 

end point (e.g., expected level of y achieved at the last observation point). The next section 

provides an example of a time-at-onset model using data on vocabulary development in 

toddlers.

Example 3: Vocabulary Development

Background & Data

A time-at-onset model will be applied to data originally from Huttenlocher, Haight, Bryk, 

Seltzer, and Lyons (1991), which can also be found in Chapter 6 of Raudenbush and Bryk 

(2002). In this data, the vocabulary size is measured repeatedly for 22 children between the 

ages of 14 months and 26 months. Because the data were originally used for a study with 

a different purpose, the data consist of 2 groups of 11 children, each with 6 boys and 5 

girls. The children in Group 1 were observed every 2 months for 5 hours while the children 

in Group 2 were observed every 4 months for 3 hours. As a result, children in Group 1 

are observed more frequently and were 26 months old at their last measurement occasion 

whereas children in Group 2 were observed less often and were 24 months old at their last 

measurement occasion. Given these differences, the children in Group 1 tended to have a 

higher level of vocabulary as well as greater variability than those in Group 2, particularly at 

later ages on the raw outcome.

Toddlers begin to produce their first words around 12 months of age and vocabulary grows 

at an increasing rate thereafter. However, there are individual differences in the timing of 

this milestone and research questions can revolve around variables that affect the timing 

of the vocabulary change onset (Bauer, Reznick & Goldfield, 2002; Rescorla et al., 2000). 

The original analysis in Huttenlocher et al. (1991) fit a quadratic polynomial growth model 

that did not include fixed or random effects for the intercept or linear slope but did include 

fixed and random effects for the quadratic slope with Time centered at 12 months. This 

functional form creates a growth trajectory that is equal to zero at Time = 0 but then 

increases quickly thereafter. It is indeed effective for rendering a curve that fits through the 

data points; however, the only coefficient in the model captures growth acceleration. The 

model coveys no information about individual differences in the timing at which growth 

begins. The time-at-onset model we fit in the next subsection will explicitly estimate the 

timing of the onset and its variability across children in addition to testing if exposure more 

speech by the mother influences this timing.
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Model & Results

We fit the time-at-onset model to the Huttenlocher et al. (1991) vocabulary data with the 

number of words the child knew as the outcome variable and Age (in months) as the time 

variable. To address differences across groups, we rescaled the outcome by dividing the raw 

outcome (Vocabulary Size) by the observation hours in each group (5 in Group 1; 3 in Group 

2) so that the new outcome is the number of new words produced per hour of observation. 

We then divided Words per Study Hour by 10 for so that parameters in the model would 

have similar scaling. Age was centered around the last observed age in Group 2 (24 months), 

so that zero would correspond to the last measurement occasion common to both groups. 

The intercept then corresponds to an estimate of expected words per study hour at 24 months 

of age. The flat minimum line in the first phase was fixed to 0 with no random effect 

because the change onset represents when vocabulary development begins. The amount of 

speech (number of words) produced by the mother at 16-months was included as a predictor 

of the change onset and the endpoint and was divided by 100 and grand-mean centered.2 Sex 

was also included as a predictor. We initially fit a model that included Group as a predictor 

of the change onset and endpoint as well as of the random effect variances and residual 

variances. However, after rescaling the outcome, all but one of the effects of Group was 

non-significant and thus these were dropped from the model. The final fitted model for this 

example is,

Vocabti =
0 if T imeti ≤ β2i

β0i
Ageti − 24

β2i
− 1

2
if T imeti > β2i

β0i = γ00 + γ01Femalei + γ02 MomSpeecℎi − MomSpeecℎ + u0i

β2i = γ20 + γ21Femalei + γ22 MomSpeecℎi − MomSpeecℎ + u2i

ui MV N 0
0 , τ00i

τ20i τ22

ei MV N 0, σti
2I

σti
2 = exp ω0 + ω1 × Ageti − 24

τ00i = exp ω2 + ω3 × Groupi

τ20i = ρ × τ00iτ22
1/2

(8)

Both the endpoint (β0i) and change onset (β2i) have random effects, which are correlated. 

A variation on the location-scale model proposed by Hedeker et al. (2008) was used to 

model heteroscedasticity in both the residual variance and endpoint random effect variance. 

The residual variance is modeled with a log-linear model to preclude negative values 

with centered Age as the predictor to more parsimoniously allow the residual variance 

to change as a function Age rather than individually estimating the residual variance 

of each measurement occasion. The random effect variance of the endpoint was also 

modeled with a log-linear model with Group as the predictor to account for between-group 

heteroskedasticity as this was the only parameter that continued to exhibit Group differences 

2Although the time point at which mothers’ speech was measured post-dates the earliest observations of infant vocabulary, we assume 
that this measure reflects stable individual differences in mothers’ talkativeness and infants’ exposure to words. Unlike the outcome 
variable, there were essentially no group differences in mean or variance for Mother Speech (Group 1 Mean = 3412, Group 2 Mean = 
3259, Group 1 SD = 1725, Group 2 SD = 1737).
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after the outcome was rescaled. The random effect correlation was an explicit parameter, 

meaning that the random effect correlation was constant across Groups but the random effect 

covariance could differ. The model was fit in SAS 9.4 with the NLMIXED procedure with 

maximum likelihood via adaptive Gaussian quadrature with 30 quadrature points and double 

dogleg optimization, which converged in 43 seconds.

Parameter estimates are provided in Table 3. The average onset of vocabulary growth was 

estimated to be −11.38 for boys, which translates to 12.62 months when converted to the 

original scale for Age by adding 24. The change onset for girls was slightly later at 12.99 

months, but sex differences for the timing of onset were not significant (t(20) =−0.82, p 
=.42). Individual differences in the timing of onset between children was estimated to have 

a variance of 0.48, meaning that the 95% interval for person-specific change onsets in 

boys is (11.26, 13.98) and (11.63, 14.35) for girls, assuming normality. A one-sided t-test 

for the between-person onset variance was not significant (t(20) =1.67, p =.06). This test 

is conservative, so we proceeded to test the significance of a variance component with a 

more appropriate 50:50 mixture of χ1
2 and χ2

2 (because the variance component is part of 

an unstructured covariance structure; Case 5 in Self & Liang, 1987; Case 2 in Verbeke & 

Molenberghs, 2012, p. 111). When applying this test using the deviance of a model with 

a change onset random effect (−2LL =154.5) and without the change onset random effect 

(−2LL =164.0), the change onset variance is significant 50:50χ1, 2
2 = 9.5, p = .01 .

The average endpoint for Words per Study Hour (multiplying by 10 to put it back in the raw 

frequency scale) was 52.0 for males and 93.2 for females and this difference was statistically 

significant (t(20) = 3.64, p <.01). The between-person variability in the endpoint was the 

only parameter that continued to exhibit Group differences after the outcome was rescaled. 

In Group 1, the estimated between-person variance was 1707 (after multiplying by 100 to 

put it back in the raw frequency scale), which was statistically significant when assessed 

with a one-sided t-test (t(20) = 2.22, p =.02). In Group 2, the estimated between-person 

variance was 317 (on the raw frequency scale), which was also statistically significant 

when assessed with a one-sided t-test (t(20) =1.83, p =.04). The differences between the 

Group endpoint variances is also significant (t(20) =16.43, p <.01).The estimated correlation 

between the endpoint and change onset random effects was 0.41, which was not significant 

(t(20) =1.26, p =.22).

Mother’s Speech was a significant predictor of the outcome at 24 months (t(20) = 2.29, 

p =.03), meaning more talkative mothers tended to have children with larger vocabularies. 

Mother’s Speech did not predict the change onset (t(20) = 0.27, p =.79), meaning that 

the timing of the child’s vocabulary development was not impacted by exposure to more 

words from the mother. Figure 8 shows a gradient plot of the model-implied trajectories 

with line color determined by the value of Mother’s Speech. The top panel shows the 

entire observation window and the bottom panel shows a detail where the horizontal axis is 

near the change onset to highlight variability across people. In the top panel, the effect of 

Mother’s Speech can be seen by a higher density of darker green lines for trajectories with 

the larger endpoints. In the bottom panel, there is no discernible difference between the line 

colors and change onsets.
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Combining Change Onset and Change Offset for Sigmoidal Growth Processes

To this point, we have focused on change offset or change onset in J- or inverted J-shaped 

growth processes, but the multiphase approach can be further extended to sigmoidal growth 

processes as well. Sigmoidal processes have an “S” shape such that the process starts off 

relatively flat, then rapidly accelerates until the curve hits an inflection point, at which 

point the process decelerates as it approaches an asymptote (Browne & Du Toit, 1991). In 

psychology, logistic and Gompertz curves are commonly employed functions that follow 

this shape (Grimm & Ram, 2009). However, these functions are asymptotic and do not 

provide information on when the onset and offset of change occur. In this section, we 

discuss how to simultaneously estimate both change onset and offset in a single model with 

a multiphase double-quadratic model. We then apply this model to a cognitive psychology 

example that examines how quickly young children learn strategy for a novel game.

The Multiphase Double-Quadratic Model

The top panel of Figure 9 shows a sigmoidal curve. Here we can see that the first half of 

the curve looks much like the time-at-onset model and the second half (the mirror image of 

the first) looks much like the time-at-offset model. Combining these two models together, 

the bottom panel of Figure 9 shows how the S shape can be captured via a spline of two 

horizontal lines (the minimum or the maximum) and two quadratic curves. Prior to the 

change onset, the trajectory is a horizontal line at the minimum value. At the change onset, 

the change is initially accelerating. In the model, the change onset is parameterized as the 

vertex of a convex quadratic curve which governs change until the inflection point. At the 

inflection point, change enters a new phase of deceleration governed by a concave quadratic 

curve which continues until the change offset. The change offset is parameterized as the 

vertex of the concave quadratic curve. Beyond the change offset, the function again follows 

a horizontal line, now at the maximum value.

The multiphase double-quadratic model corresponding to the bottom panel of Figure 8 can 

be written as

yti =

β1i + eti if Time ≤ β2i

β1i − β1i − ϒ i
Timeti

β2i − κi
− 1

2
+ eti  if β2i < Time ≤ κi

β3i − β3i − ϒ i
Timeti

β4i − κi
− 1

2
+ eti  if κi < Time ≤ β4i

β3i + eti  if Time > β4i
β1i = γ10 + u1i
β2i = γ20 + u2i
β3i = γ30 + u3i
β4i = γ40 + u4i
ui MV N 0, T
ei MV N 0, σ2I

(9)

Where β1i is the minimum value for person i, β2i is the change onset for person i, β3i is 

the maximum value for person i, and β4i is the change offset for person i. Each of these 

coefficients can include random effects to allow it to vary across people and the covariance 
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matrix of the random effects is specified in T. The model shows that the outcome variable 

y is modeled by four different phases. The first phase occurs when Time is less than the 

person-specific change onset (β2i) and change is captured by a person-specific horizonal 

line at the minimum value (β1i). The second phase occurs when Time is between the 

person-specific change onset and the timing of the person-specific inflection point (κi). In 

this second phase, change is modeled with a convex quadratic curve using Cudeck and du 

Toit’s parameterization such that vertex is defined by the minimum value (β1i) and the time 

of the change onset (β2i) so that there is a smooth continuous transition from the first phase 

to the second. The third phase occurs when Time is between the person-specific timing of 

the inflection point (κi) and the person-specific change offset (β4i). Change in this phase is 

modeled with a concave quadratic curve using Cudeck and du Toit’s parameterization with 

a vertex defined by the maximum value (β3i) and the time of the change offset (β4i), again 

to foster a smooth continuous transition from the third phase to the fourth phase. The fourth 

phase occurs when Time is greater than the person-specific change offset (β4i) and change is 

captured by a person-specific horizonal line at the maximum value (β3i).

We assume the person-specific inflection point marking the transition from the second to 

third phase occurs at the midpoint of growth, removing the need to estimate this parameter 

and making it equal to κi = 0.50(β2i + β4i). The model in Equation 9 also contains ϒi, 

which is the person-specific value of the outcome variable at the inflection point (i.e., it 

corresponds to the vertical axis element of the ordered pair defining the inflection point). 

This parameter is shared in the equations for the second and third phase because it is 

vital that both quadratic curves intersect at the same point to ensure a smooth transition 

between the phases (κi is also shared in both equations because it is the horizontal element 

of the ordered pair defining the inflection point). For symmetric sigmoidal curves like the 

logistic curve, ϒi = 0.50(β1i + β3i) (Goshu & Koya, 2013). The next section provides 

a demonstration of how this model can be used to provide information on individual 

differences in the timing of onset and offset of a sigmoidal change process.

Example 4: Strategy Learning Task

Background & Data

The multiphase double-quadratic model is applied to data originally from Tivnan (1980) 

which can also be found in Chapter 5 of Singer and Willett (2003). In this data, 17 children 

ages 6 to 8 years old play a simplified version of chess called Fox and Geese. The game 

has two players, the experimenter and one child. The experimenter has a single game piece 

that can move in all directions on a chessboard (the fox) and the child has four game pieces 

that can only move forward (the geese). The goal of the game is to trap the other player so 

that they are unable to legally move their piece during their turn. Children complete up to 27 

trials and the number of moves made by the child in each game is recorded where a larger 

number of moves indicates greater skill. The game is useful for studying cognitive skills 

because (a) there is an optimal strategy, (b) the strategy is not obvious without playing, and 

(c) the optimal strategy becomes more apparent with trial and error.

Similar to other cognitive tasks that require practice (e.g., second language acquisition), 

growth across trials of the Fox and Geese game is sigmoidal such that growth is flat in 
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the beginning while children become acquainted with the game, steep in the middle as 

children start to refine and optimize their strategy, then flat again once their strategy has 

been fully refined. While the maximum value conveys some information about the quality 

of the strategy implemented by each child (e.g., not all children discover the optimal 

strategy), the timing of two events is also useful: how long it takes for children to begin 

to implement a strategy (learning onset) and how long it takes children to arrive at their 

best strategy (learning offset). The multiphase double-quadratic model can provide person-

specific estimates of the timing of these events in addition to a person-specific maximum 

value.

Model & Results

We fit the multiphase double-quadratic model to these data with Number of Moves as the 

outcome variable and Trial Number as the time variable. The model was estimated in SAS 

in the NLMIXED procedure with maximum likelihood via Gaussian quadrature and double 

dogleg optimization using 15 quadrature points, which took 3 minutes to converge to a 

solution. The model is the same as Equation 9 except that we did not include a random 

effect for the intercept (i.e., u1i is not present in the β1i equation) because there was little 

variation around the outcome during the first trial. This reflects that, without experience, 

children were uniformly unable to make many moves. Random effects were included for the 

maximum, the change onset, and the change offset with all random effects being permitted 

to covary with each other.

Parameter estimates are provided in Table 4. The fixed effect for the minimum is 4.50 

moves and children maintained this value until about Trial 9 (the change onset), on average. 

From Trial 9 (the change onset) until Trial 24 (the change offset), children grew from the 

minimum moves of 4.50 to the average maximum number of moves of 11.30. There is 

large between-child variation in the maximum value (τ33 =19.98, implying a SD of 4.47 

moves) and the change onset (τ22 = 45.56, implying a SD of 6.75 trials). To a lesser degree, 

there was also between-child variability in the change offset (τ44 = 9.06, implying a SD 

of 3.01 trials). Though not explicitly part of the model, we can also calculate the average 

number of trials in which learning occurs by β4i − β2i, which had a mean of 15.58 with a 

standard deviation of 6.60. These results suggest that children vary widely in the number of 

elapsed trials before a strategy is implemented and vary in the ultimate number of moves 

their strategy permits, but there is less variation in how many trials have elapsed when the 

maximum number of moves is reached.

The random effect correlations suggest that children with later change onsets have higher 

maximums, perhaps because they spend more time exploring strategies that do not work in 

early trials in order to better locate a more optimal strategy whereas children with earlier 

change onsets might find an adequate – but not optimal – strategy early on and stick to it. 

The correlation between the change offset and the maximum was highly negative, suggesting 

that change offset occurs earlier for those who find an optimal strategy and can make the 

game last many moves.

Figure 10 shows four representative model-implied trajectories plots against the observed 

data to demonstrate patterns from the parameter estimates. For instance, Child 7 appeared 
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to choose a strategy quickly (change onset at Trial 3) and spent 20 trials refining it (one 

of the longest in the study) but did not capitalize on the uncovering a strategy quickly and 

ultimately had an estimated maximum of 11 moves which was near the sample average. 

Conversely, Child 14 appeared to explore more at the beginning of the study and had a late 

change onset (Trial 13) but spent only 7 trials refining their strategy with a change offset at 

Trial 20 in route to reach an above-average estimated maximum of 17 moves. Child 8 started 

refining their strategy rather early and had fast change offset (Trial 20) with a below-average 

12 trial refinement period as well as the highest estimated maximum among all children (18 

moves). Child 9 also had a fast change offset (Trial 20) but had an early change onset (Trial 

5) and had a long refinement period before reaching one of the higher estimated maximums 

in the sample at 16 moves.

Strategy for Variance Component Inference

Tables 1–4 include inferential tests for variance components, the proper handling of which 

needs additional clarification. Testing whether coefficients have variability across people 

requires special care in mixed effect models, especially because a main focus lies in 

individual differences. When testing variance components, a noted issue is that the null 

hypothesis – whether the variance is equal to zero – falls on the lower boundary of the 

parameter space because variances typically are not permitted to be negative (Molenberghs 

& Verbeke, 2007). This boundary problem violates regularity conditions of traditional 

inferential tests and produces inaccurate p-values (Self & Liang, 1987). A one-sided 

t-test is an imperfect but simple method to avoid the negative region of rejection that 

is beyond the boundary (Lin, 1997; SAS Institute, 2018, p. 6641). However, t-tests tend 

to be too conservative and have low power compared to more theoretically appropriate 

tests like mixture chi-square tests (also known as modified likelihood ratio tests) for 

bounded parameters (Berkhoff & Snijders, 2001; Stoel, Garre, Dolan, & van den Wittenboer, 

2006). Mixture chi-square tests compute p-values for variance components by combining 

probabilities from two separate chi-square distributions with different degrees of freedom to 

create one overall p-value (Stram & Lee, 1994).

Mixture chi-square tests are generally preferable, given their more theoretically appropriate 

nature, but they do possess some drawbacks. First, mixture chi-square tests compare 

likelihoods from two nested models and therefore require fitting the model multiple 

times to obtain the likelihood from each; once with the variance component(s) of interest 

included (as well as associated covariances) and once with these parameters excluded. The 

models we discuss include random effects that enter the model nonlinearly, which can 

lengthen estimation time relative to traditional linear mixed effect models. In cases where 

computational times are much longer, it may be impractical to refit the model multiple 

times, especially when testing multiple variance components (SAS Institute, 2018, p. 3774). 

Second, for models with three or more variance components, there may not necessarily be a 

proper order for testing and potentially removing variance components. For instance, in the 

offset model for Example 1, there are three possible models with two variance components 

and three models with one variance component. Likelihood ratio tests with polynomial 

growth models typically do not encounter this problem because the variance component 

associated the highest order polynomial of Time would generally be removed first.
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To balance these issues, the strategy we employed here and recommend in practice is to 

begin by inspecting the one-sided t-tests for the variance components. This test is imperfect, 

but it is consistently conservative. If the one-sided t-test is significant, there is no need 

proceed with a mixture chi-square test because the conclusion of such a test would not 

change if a more conservative test already has reported a significant difference. If the 

one-sided t-test is not significant, however, then we proceed with the mixture chi-square 

test to obtain more accurate inference for that particular variance component. This strategy 

will yield the same conclusions as if we conducted the mixture chi-square test for all 

variance components, but alleviates potential computational burdens of having to refit 

slightly different versions of the model multiple times in order to acquire and compare 

the likelihoods. It also helps to guide uncertainties about ordering of model comparisons 

by illuminating which variance components should be retained in the model. Inference for 

variance components presented in Tables 1–4 and in-text clarify which test was used to reach 

the stated conclusion.

A related issue is whether to remove variance components that are triggering a nonpositive 

definite covariance matrix. Given that the focus of the models is individual differences, it 

may be dissatisfying to remove variance components from the model due to the estimates 

being inadmissible or other convergence issues. Though we did not experience this in our 

examples, recent literature has noted that reparameterizing the random effect covariance 

matrix can help reduce the incidence of nonpositive definiteness. Cholesky decompositions 

have traditionally been the recommended approach (Pourahmadi, 1999), though recent 

research specific to mixed effect models has found that reparameterizing the random effect 

covariance matrix with a factor analytic structure can be more effective at combating 

nonpositive definiteness when there are several random effects present (McNeish & Bauer, 

2021).

Discussion

Although piecewise models can be used to gauge the timing of transitions in a 

developmental process trajectory, these transitions are not tied to specific outcome values 

corresponding to developmental milestones, such as the beginning or end of the growth 

process or the attainment of minimum or maximum values. The recently developed time-to-

criterion framework is well positioned to model the timing of developmental milestones 

that are fixed and known, such as when modeling growth to a known benchmark. However, 

these models cannot accommodate milestone values that are unknown a priori or that 

vary over persons, such as a person’s maximum development. In particular, no previously 

developed models of which we are aware provide detailed information on the person-

specific timing of the onset or offset of change. The approach we propose incorporates a 

reparameterized quadratic function within a multiphase growth model that includes person-

specific parameters indicating the timing of the minimum or maximum value. This allows 

researchers to assess variability in the timing across people and to include predictors in the 

model to determine what factors are associated with earlier or later timing. It also permits 

researchers to include random effect covariances to determine whether earlier or later timing 

is related to higher or lower maximum or minimum development.
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There are many possible extensions and future directions to consider for our proposed 

framework. First, we assume that maximum and minimum values are representative of 

reality rather than artificial floors or ceilings created by limitations of measurement. 

Nonlinear models in psychology sometimes use scale scores may have artificial bounds 

(e.g., Marceau et al., 2011) such that minimum and maximum values may reflect 

properties of a measurement scale rather than the maximum of minimum of the underlying 

characteristic being studied. Statistically, this is not necessarily problematic because the 

maximum or minimum parameters in the model can be fixed to specific values or 

random effects can be removed to prevent estimated values above the scale boundaries. 

If the truncation due to scale boundaries is large, then a problem may be encountered if 

distributional assumptions of the model are affected. Interpretation may be affected in some 

cases if there is a theoretically meaningful difference between when people reach their 

actual maximum on the underlying construct and when they max out the scale. There is a 

literature on accommodating ceiling and floor effects in longitudinal models that could be 

incorporated in our framework in the event that scale boundaries present an issue (Feng et 

al., 2019; Twisk & Rijmen, 2009; Wang et al., 2008).

Second, we focused on the mixed effect framework given its ability to preserve person-

specific interpretations of coefficients in nonlinear models where random effects cannot 

be integrated out of the likelihood (Blozis & Harring, 2016). A similar approach could 

be implemented in the structural equation modeling framework, which could have benefits 

for research questions involving missing covariates, multiple outcomes, distal outcomes, 

or latent classes (Harring, Strazzeri, & Blozis, 2020; McNeish & Matta, 2018). Most 

structural equation modeling software cannot accommodate models with nonlinear random 

effects directly, but the model can be linearized by imposing constraints on the first partial 

derivatives of the growth trajectory. This approach is referred to as a structured latent 

curve model and can be used to fit nonlinear models in standard structural equation model 

software designed for linear models (Blozis, 2004; Browne, 1993). A structured latent 

curve model will yield coefficients with a population-averaged interpretation rather than a 

subject-specific interpretation provided by mixed effect models (Harring & Blozis, 2016). 

Population-averaged coefficients are designed to minimize error between the marginal 

growth curve and the mean profile whereas the subject-specific coefficients attempt to 

minimize error between in the person-specific curves. Additionally, the person-specific 

trajectories will not necessarily follow the prescribed mean trajectory in a structured latent 

curve model (Blozis & Harring, 2017, p. 799), which could result in inconsistent behavior 

such as decreases after the maximum in a time-at-offset model. There is no difference 

between the two interpretations in linear models because the random effects integrate out 

of the likelihood function, but differences will exist in nonlinear models (Zeger, Liang, & 

Albert, 1988).

Concluding Remarks

Traditional growth models focus primarily on the shape of the growth trajectory, between-

person variability, and predictors that explain differences in growth trajectories. Trajectory 

shapes can be characterized using a variety of functions, ideally governed by substantively 

interesting parameters that are amenable to testing theoretically motivated hypotheses. 
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The timing of when a change process begins or ends is theoretically interesting in many 

developmental contexts but few models include parameters that capture this information 

directly. Our time-at-onset and time-at-onset models expand the limited literature on this 

topic by providing models for person-specific timing related to maximum and minimum 

values. Although there are clearly many interesting areas left to explore regarding how best 

to model the timing of developmental change processes, our proposed modeling framework 

offers new opportunities to investigate questions about timing across a variety of research 

contexts in the behavioral, health, and social sciences.
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Figure 1. 
Visual representation of Cudeck and du Toit (2002) model. The model has three parameters 

to explicitly estimate the intercept (not labeled), the maximum value, and the timing of the 

maximum value.
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Figure 2. 
Visual representation of hypothetical two-phase quadratic-linear model from Cudeck and 

Klebe (2002) with equality of first derivatives across phases. The model changes function 

form at the knot point, but the equality of the first derivatives leads to a smooth transition 

between the phases.
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Figure 3. 
Hypothetical plot of a time-at-offset process growing towards a maximum value (left) and 

a time-at-offset process decaying towards a minimum value (right). Prior to the change 

offset, the growth trajectory follows a quadratic function. Once reaching the change offset, 

which is defined as the extremum of the quadratic function, the growth trajectory becomes a 

horizontal line at the maximum or minimum value of the quadratic function.
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Figure 4. 
Top panel displays observed values for repeated measures of thickness of the prefrontal 

cortex over the entire span of the study (age scaled in years). The bottom panel considers 

only observations within approximately the first two years (age scaled in months) to magnify 

the rapidly decelerating changes occurring within this period.
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Figure 5. 
Observed repeated measures (circles) and implied trajectories for six representative children.
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Figure 6. 
Comparison of the Intervention and Control group for the Building Blocks data. The 

intercepts and maximum values are not different across groups, but the offset of the 

intervention occurs 9 months before the offset of the control group.
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Figure 7. 
Hypothetical plot of a time-at-onset process that maintains a minimum value until the 

change onset and grows quadratically thereafter (left) and a time-at-onset process that 

maintains a maximum until the change onset and decays thereafter (right). Prior to the 

change onset, the growth trajectory follows a horizontal line at the maximum or minimum 

value. Once reaching the change onset, the growth trajectory follows a quadratic function.

McNeish et al. Page 35

Psychol Methods. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Gradient plot for person-specific model-implied trajectories with color determined by 

Mother’s Vocabulary across the entire observation window (top panel) and a detail of the 

change onsets (bottom panel).
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Figure 9. 
A representative sigmoidal curve (top) and graphical depiction of how sigmoidal curves can 

be split into two horizontal lines (one before the change onset and one after the change 

offset) and two quadratic curves represented by dotted lines (one convex and one concave) 

that intersect at the inflection point. The multiphase double quadratic model breaks a 

sigmoidal curve into 4 phases (pre-onset, onset to inflection, inflection to offset, post-offset) 

to incorporate individually varying change onsets and change offsets
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Figure 10. 
Observed repeated measures (circles) and model-implied trajectories (solid black line) for 

four children. Solid vertical black lines represent the individual timing of the change onset 

and change offsets and grey shading represents the refinement period for each child.
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Table 1

Estimates from model for prefrontal cortex thickness, excluding verbal ability criterion

Parameter Notation Est. SE p

Growth Trajectory Fixed Effects

Intercept γ00 2.15 0.01 <.01

Maximum γ10 2.78 0.01 <.01

Change Offset γ20 1.12 0.04 <.01

Random Effects

Intercept Variance τ00 0.015 <0.01 <.01

Maximum Variance τ11 0.038 <0.01 .01

Change Offset Variance τ22 0.007 <0.01 <.01

Int., Max. Correlation Corr(u0i, u1i) 0.47 0.03 <.01

Int., Offset Correlation Corr(u0i, u2i) −0.41 0.42 .34

Max, Offset Correlation Corr(u1i, u2i) −0.68 0.32 .04

Within-Person Residual Variance

Residual Variance σ2 0.004 <0.01 <.01

Note: p-values are obtained from a t-distribution with the default degrees of freedom computed as number of upper-level units (50 children) minus 
the number of estimated random effects (3), which is 47.
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Table 2

Parameter estimates for modeling intervention effects in the Building Blocks data

Parameter Notation Est. SE p

Growth Trajectory Fixed Effects

Intercept γ000 −2.99 0.07 <.01

Maximum γ100 1.41 0.12 <.01

Change Offset γ200 4.78 0.13 <.01

Intervention Fixed Effects

Intercept on Intervention γ001 0.01 0.07 .86

Maximum on Intervention γ101 −0.19 0.12 .13

Change Offset on Intervention γ201 −0.74 0.13 <.01

School-Level Random Effects

Intercept Variance v00 0.06 0.01 <.01

Maximum Variance v11 0.11 0.05 .01

Change Offset Variance v22 0.16 0.06 <.01

Int., Max. Correlation Corr(r00 j, r10 j) 0.89 0.13 <.01

Int., Offset Correlation Corr(r00 j, r20 j) 0.62 0.19 <.01

Max, Offset Correlation Corr(r10 j, r20 j) 0.41 0.27 .15

Person-Level Random Effects

Intercept Variance τ00 0.41 0.02 <.01

Maximum Variance τ11 0.81 0.04 <.01

Offset Variance τ22 0.92 0.09 <.01

Int., Max. Correlation Corr(u0ij, u1ij) 0.75 0.02 <.01

Int., Offset Correlation Corr(u0ij, u2ij) 0.67 0.04 <.01

Max, Offset Correlation Corr(u1ij, u2ij) 0.78 0.03 <.01

Within-Person Residual Variance

Residual Variance σ2 0.22 0.01 <.01

Note: p-values are obtained from a t-distribution with Donald and Lang (2007) degrees of freedom, which is equal to the number of units at the 
highest level of the hierarchy (42 schools) minus the number of estimated parameters (19), which is 23.
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Table 3

Time-at-onset model estimates for Huttenlocher et al. (1991) vocabulary data

Parameter Notation Est. SE p

Fixed Effects

Onset Fixed Effect γ20 −11.38 0.93 <.01

Onset on Female γ21 0.37 0.45 .42

Onset on Mom Speech γ22 0.00 0.01 .79

Endpoint Fixed Effect γ00 5.20 0.76 <.01

Endpoint on Female γ01 4.12 1.13 <.01

Endpoint on Mom Speech γ02 0.08 0.03 .03

Random Effect Variances

Endpoint Variance, Group 1* exp(ω2) 17.07 7.70 .02

Endpoint Variance, Group 2* exp(ω2 + ω3) 3.16 1.72 .04

Onset Variance** τ22 0.48 0.29 .01

Endpoint, Onset Correlation ρ 0.41 0.33 .22

Residual Variances

Residual Variance, 26 Months exp(ω0 + 2ω1) 11.94 3.78 <.01

Residual Variance, 24 Months exp(ω0) 3.16 1.73 <.01

Residual Variance, 22 Months exp(ω0 − 2ω1) 0.84 0.16 <.01

Residual Variance, 20 Months exp(ω0 − 4ω1) 0.22 0.04 <.01

Residual Variance, 18 Months exp(ω0 − 6ω1) 0.06 0.01 <.01

Residual Variance, 16 Months exp(ω0 − 8ω1) 0.02 <0.01 <.01

Residual Variance, 14 Months exp(ω0 − 10ω1) <0.01 <0.01 <.01

Residual Variance, 12 Months exp(ω0 − 12ω1) <0.01 <0.01 <.01

Note: p-values for fixed effects are obtained from a t-distribution with default degrees of freedom computed as number of upper-level units (22 
children) minus the number of estimated random effects (2), which is 20. Estimates for parameters used to calculate the variance terms are ω0 
=1.15, ω1 = 0.66, ω2 = 2.84, and ω3 =−1.69, all of which were statistically significant.

*
p-values are calculated from a one-sided t-test with 20 degrees of freedom

**
p-value is calculated from a 50:50 mixture of χ2

1
 and χ2

2
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Table 4

Double-quadratic multiphase model estimates for Fox and Geese data

Parameter Notation Est. SE p

Growth Trajectory Fixed Effects

Minimum γ10 4.50 0.21 <.01

Change Onset γ20 8.66 2.26 <.01

Maximum γ30 11.30 0.39 <.01

Change Offset γ40 24.02 1.51 <.01

Random Effects

Change Onset Variance τ22 45.50 17.86 <.01

Maximum Variance τ33 19.94 2.32 <.01

Change Offset Variance τ44 9.09 6.59 .01

Max., Onset Correlation Corr(u2i, u3i) 0.42 0.18 .03

Onset, Offset Correlation Corr(u2i, u4i) −0.14 0.16 .41

Max., Offset Correlation Corr(u3i, u4i) −0.89 <0.01 <.01

Within-Person Residual Variance

Residual Variance σ2 10.79 0.86 <.01

Note: p-values are obtained from a t-distribution with the default degrees of freedom computed as number of upper-level units (17 children) minus 
the number of estimated random effects (3), which is 14.
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