Skip to main content
. 2022 Mar 28;28(3):732–738. doi: 10.1016/j.radi.2022.03.011

Table 5.

Comparison of the proposed method with other DL-based methods.

Study Type of Images Number of Samples Method Used Accuracy (%)
Apostolopoulos et al.28 Chest X-ray 1428 VGG-19 93.48
Wang et al.29 Chest X-ray 13,645 COVID-Net 92.40
Sethy et al.30 Chest X-ray 50 ResNet 50 + SVM 95.38
Hemdan et al.31 Chest X-ray 50 COVIDX-Net 90.00
Narin et al.33 Chest X-ray 100 Deep CNN ResNet-50 98.00
Song et al.35 Chest CT 1485 DRE-Net 86.00
Wang et al.48 Chest CT 453 M-Inception 82.90
Zheng et al.49 Chest CT 542 UNet + 3D Deep Network 90.80
Xu et al.50 Chest CT 443 ResNet + Location Attention 86.60
Ozturk et al.12 Chest X-ray 625 DarkCovidNet 98.08
1125 89.33
Proposed Method Chest X-ray 625 DenseNet169 + XGBoost 98.24
1125 89.70