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A novel prognostic signature in osteosarcoma characterised
from the perspective of unfolded protein response

Dear Editor,

Osteosarcoma (OS) is the most common primary malig-
nant tumour of bone with variable molecular biology and
prognosis. This makes better patient stratification and pre-
cision treatment an urgent clinical need.! Activation of the
unfolded protein response (UPR) is a hallmark of cancer
cells facing endoplasmic reticulum (ER) stress,>* yet its
clinical relevance in OS remains to be explored. By compre-
hensive interrogation of OS datasets established by us and
others,*” the present study consolidates UPR activation as
a critical molecular feature of OS and refines a prognos-
tic gene signature from this perspective with translational
potential.

In this study (see Figure S1A for workflow), we assem-
bled 5 independent OS cohorts (GSE99671, GSE126209,
GSE21257, TARGET and Zhengzhou datasets), plus
the TCGA sarcoma dataset. Three datasets (GSE99671,
GSE126209 and Zhengzhou) with paired tumour and
normal tissues were analysed for deregulated genes;
two of them with relatively large sample size were fur-
ther selected for pathway enrichment. Three datasets
(GSE21257, TARGET and TCGA) with solely tumours
and survival information for patient classification and
prognostic model construction (Table S1).

We first interrogated GSE99671 with paired tumour
and normal samples, and identified 1581 differentially
expressed genes (DEGs) [llog2 (fold change)l > .5 and
adjust p value < .05] (Figure S1B). To our interest, several
pathways related to ER function, such as response to ER
stress and protein processing in ER, ranked top according
to Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses (Figure 1A and B). Enrich-
ment of UPR and MYC targets was verified by Hallmark
Gene Set Enrichement Analysis (GSEA) (Figures 1C and
S1C), mirroring the recently established co-activation of
UPR and MYC in multiple cancers.*®

Meanwhile, transcriptomic analyses on 24 matched
tumour and normal tissues collected in our hospital (here-
after referred to as Zhengzhou cohort) enriched similar

Hallmark pathways such as protein secretion, UPR and
MYC signalling (Figure 1D and E). Consistently, immuno-
histochemistry observed markedly elevated level of GRP78,
and nuclear localisation of canonical UPR transcription
factors XBP1s, ATF4, and ATF6 in tumour foci compared
to normal tissues (Figure 1F). By overlapping a repertoire
of previously described UPR-related genes*”’ (Table S2)
with DEGs in the GSE99671, GSE126209 and Zhengzhou
cohorts, we acquired 14 genes with significantly aberrant
expression in OS (Figures S1D and S2A), defined as the OS-
specific UPR gene signature.

Based on this signature, we constructed a set of scor-
ing system’ to quantify the UPR activity of each tumour
(termed as UPR score) and conducted unsupervised con-
sensus clustering'” to classify different molecular features
and prognosis. Interestingly, patients from GSE21257 were
clustered into two subtypes with notable difference in
global gene expression, such as genesets related to ER biol-
ogy and UPR, as well as in overall and progression-free sur-
vival (Figures 2 and S2B-E). Likewise, this protocol led to
optimal bifurcation of patients in both the TARGET OS and
TCGA sarcoma datasets (Figures 2C and D and S2F and G).

From a translational standpoint, we were further inter-
ested in developing a prognostic signature consisting of a
handful of genes with higher power. Based on the clas-
sification strategy above, we applied Kaplan-Meier sur-
vival analyses coupled with univariate Cox regression to
GSE21257 and TARGET cohorts and identified 21 can-
didate DEGs (Table S3). Using GSE21257 as discovery
dataset, LASSO Cox regression based on overall survival
and patient status established a linear model as follows:
risk score = 2" (0.4528 X expression level of NOP58 —
0.2303 X expression level of ALOX5AP + 0.2209 X expres-
sion level of MYC + 0.0828 X expression level of LGR4
+ 0.0209 x expression level of GADD45GIP1) (Figure
S3A). Subsequent survival analyses confirmed that the
overall and progression-free survival of the high-risk sub-
group was significantly shorter than the low-risk subgroup
(Figure 3A). Receiver Operator Characteristic (ROC) curve
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FIGURE 1 UPRisactivated in multiple human OS cohorts. (A), (B) Top 10 most enriched GO terms (A) and KEGG pathways (B) of the
upregulated DEGs. (C), (D) GSEA analyses of the GSE99671 (C) and Zhengzhou (D) cohorts. (E) GSEA plot of the Hallmark protein secretion
and UPR pathways. (F) Representative images of hematoxylin and eosin (HE) and immunohistochemical staining of GRP78, XBP1s, ATF4,
and ATF6 in OS foci and matched normal tissues from the Zhengzhou cohort. Scale bars, 100 um
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FIGURE 2

Classification of two molecular subtypes of OS patients. (A) Consensus matrix heatmaps (k = 2) of UPR gene signature in
GSE21257 cohort. (B) The bubble pattern displays the ER function-related biological processes significantly enriched in GSE21257 cohort. (C),
(D) Kaplan-Meier curves of overall survival (C) and progression-free survival (D) for the two clusters
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FIGURE 3 Identification and validation of the OS prognostic gene signature. (A) Kaplan-Meier curves for overall (left) and
progression-free (right) survival divided by risk score in the GSE21257 discovery set. (B) Distribution of risk scores and survival status, as well
as expression profile of the five-gene panel in the GSE21257 cohort. (C) Representative immunohistochemical images of NOP58 (left) or
ALOXS5AP (right) in OS foci and normal tissues from the Zhengzhou cohort. Scale bars, 100 um. (D) NOP58 was stained and scored in an OS
tissue microarray consisting of 70 tumours. Representative images in tumours of different TNM stages (left) and distribution of NOP58 score

across different TNM and clinical stages (right) are shown. (E) Similar analyses was conducted for ALOX5AP. Scale bars, 100 um (upper
panel) and 30 um (lower panel). The Kruskal-Wallis test by ranks
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FIGURE 4 Immunological landscape of the two risk subgroups. (A) Differences in pathway activities scored per sample by GSVA
between high-risk and low-risk subgroups. Shown are ¢ values from a linear model. V1, version 1; V2, version 2. (B) The distribution of stromal
score, immune score, tumour purity, and stemness score between the two risk subgroups in the TARGET cohort. (C) Subgroup comparison of
infiltrating levels of 22 immune cell types in the TARGET cohort. Wilcoxon’s rank-sum tests. (D) Diagram of the different activities of the
immune checkpoint pathway between the two risk subgroups. (E) Sensitivity prediction of different subgroups to the two immune checkpoint
inhibitors in the TARGET cohort. No response, noR; response, R. (F) Schematic summary of molecular and prognostic features for subtypes
categorised in this study
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analyses indicated that the 1-, 6-, and 12-year area under
curve (AUC) values were .83, .83 and .82, respectively, for
overall survival, while .83, .80 and .86 for progression-
free survival (Figure S3B). Of these five genes, the expres-
sion of NOP58, MYC, LGR4, and GADD45GIP1 was sig-
nificantly higher in the high-risk subgroup, whereas that
of ALOX5AP was conversely profiled (Figure 3B). Impor-
tantly, the level of NOP58 and ALOX5AP, and their corre-
lation with OS pathology was validated in independent tis-
sue microarrays (Figure 3C-E; Table S4). Subsequent anal-
yses of TARGET OS and TCGA sarcoma cohorts as val-
idation datasets similarly subtyped patients with distinct
status of risk scores, UPR activity, molecular charateristics
and survival outcomes (Figures S3C-G and S4A).

Additionally, we observed significant enrichment of
multiple immune-relevant gene signatures according to
pathway enrichment analyses (Figures 4A and S4B-D). In
fact, all the high-risk subgroups across different datasets
uniformly showed lower stromal and immune scores, but
higher tumour purity and stemness compared to the low-
risk subgroups (Figures 4B and S5A-D). Dissection of
immune infiltration by CIBERSORT uncovered signifi-
cantly higher proportion of CD8" T cells, monocytes and
M2 macrophages, and lower proportion of memory rest-
ing CD4* T cells and MO macrophages in the low-risk
subgroup (Figures 4C and S5E and F). Interestingly, the
level of several immune checkpoints was markedly higher
in the low-risk, including PD-L2, CD86, TNFRSF14, CD4
and LAG3 (Figures 4D and S6A-C). Submap analyses
confirmed that the low-risk subtype was more likely to
respond to anti-PD1 therapy (Figures 4E and S6D and E),
which warrants future investigation.

In conclusion, our study underlines that UPR activa-
tion is a common molecular feature of OS, and offers a
novel prognostic gene signature refined from this perspec-
tive with translational value (Figure 4F).
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