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Abstract

Variation in AKT1 has been associated with schizophrenia, bipolar disease and type II diabetes. 

The aim of the present study was to investigate the potential role of variability within AKT1 as 

a risk factor for Parkinson’s disease (PD). We performed a case-control association analysis of 

AKT1 in a Greek cohort of PD using four tagging SNPs and five constructed haplotypes. To assess 

the structure of this locus in different populations we have performed linkage disequilibrium (LD) 

analysis using these variants [dunning]. In multilocus analysis, the frequency of a four-SNP1/2/3/4 

haplotype was significantly higher in controls in comparison with PD patients (χ2 = 19.76, p = 

0.00009, OR= 0.11 C.I. = 0.03–0.35). The association remained significant even after Bonferroni 

correction for the number of haplotypes (p = 0.0002). So, this certain haplotype was significantly 

associated with reduced risk of the disease. The data presented here suggest the involvement 

of AKT1 in protection of PD through many possible mechanisms involving different signaling 

pathways that could be potential therapeutic targets in the future.
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The murine thymoma viral oncogene homologue AKT1, also termed protein kinase B, 

is a serine/threonine protein kinase homologue to protein kinase A and C. AKT1 is a 

downstream target of the insulin-signaling pathway with both anti-apoptotic and peripheral 

metabolic effects [16]; in addition, AKT1 has been implicated as a mediator of the 

phosphoinositide signal transduction system and its activation generates phosphorylation 

of many cellular proteins that are involved in processes of metabolism, apoptosis and 

proliferation of neuronal cells [13,16]. Variation in AKT1 has been associated with 

schizophrenia [11,19], bipolar disease [22] and type II diabetes [18].
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The aim of the present study was to investigate the potential role of variability within AKT1 
as a risk factor for Parkinson’s disease (PD). We genotyped four SNPs (SNP1–4) in AKT1 
and studied the association of this variability at the single locus and haplotype level in a 

series of patients from Central Greece with PD. Here we provide initial data that suggest an 

association between AKT1 haplotypes and risk for disease.

Two hundred and eighty one PD patients (121 women, 160men) and 220 healthy controls 

(96 women, 124men) age-, gender- and ethnicity-matched were included in the Greek 

cohort. All patients were residents of Thessaly (Central Greece) and were identified 

prospectively during a 3-year period (2001–2004) in the outpatient clinic for movement 

disorders in Larissa University Hospital and were followed up for at least 1 year and up 

to 3 years. PD patients were on average 69.8 ± 8.7 (range: 44–95) years old at time of 

initial examination, while their mean age-at-onset of disease was 63.3 ± 9.6 (range: 30–88). 

Healthy controls had a mean age of 68.3 ± 12.8 (range: 32–93). The diagnosis of PD was 

based on established criteria [9]. All patients were sporadic based on pedigree analysis. 

Patients with onset at or before 30 years were also excluded. Age-at-onset was defined as the 

age at which the patient noticed the first symptom indicative of PD. Controls were normal 

subjects living in the same geographical area as the patients who visited our outpatient clinic 

and finally were found free of any neurological disease (PD included). After approval from 

Hospital Scientific Committee and informed consent, blood samples were drawn for DNA 

extraction from patients and controls. Certified neurologists who were blind to genotyping 

results performed all clinical assessments (such as PD diagnosis, age at onset, etc.).

SNPs used in the present study were selected from 39 SNPs across the AKT1 locus from 

a data dump of Caucasian data available through the international HapMap project web 

page (http://www.hapmap.org). A total of four tagging SNPs (tSNP) were identified using 

the genetic programme Tagger (http://www.broad.mit.edu/mpg/tagger/) covering almost 8 kb 

across AKT1 (Table 1). The selected SNPs captured 85% of the genetic variation across the 

gene. One apparent block of linkage disequilibrium (LD) was identified containing the first 

three tagging tSNPs (Table 2).

Taqman ® Assays-by-Design SM SNP Genotyping (Applied Biosystems) based assays were 

employed for allelic discrimination of the four SNPs. Thermal cycling and end-point PCR 

analysis was performed on an ABI PRISM® 7900 Sequence Detection System and analysed 

with SDS software (Applied Biosystems).

Data was stored and manipulated for genetic analysis using the database GERON 

genotyping.

GERON genotyping was used to perform x2 tests of association. Haplotype construction was 

performed using the Shesis program.

Pair-wise D’, r2, and Hardy-Weinberg equilibrium measurements were made using the 

program Arlequin 3.01.

Based on x-test, we applied a Bonferroni correction of x2 and this was considered 

significant.
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The genotype frequencies of all SNPs were at or near Hardy–Weinberg equilibrium. The 

selected SNPs captured a minimum of 85% of the genetic variation across the gene which 

is a common allelic variation that can be captured with this methodology. All studied SNPs 

showed a minor allele frequency of more than 5% for their minor alleles, which improves 

their comparability to common disease-susceptibility polymorphisms [4] and the power to 

detect LD [21]. Pair-wise LD is shown in Table 2. LD revealed a strong LD between SNPs 

1, 2, 3 (p-values < 0.01 in all comparisons). We found no association between each SNP 

and PD (Table 3). The global tests of association taking into account all alleles were not 

significant. In multilocus analysis, the frequency of a four-SNP1/2/3/4 T T G G haplotype 

was significantly higher in controls (5.2%) in comparison with PD patients (0.6%) (χ2 

= 19.76, p = 0.00009, OR= 0.11 C.I. = 0.03–0.35). The association remained significant 

even after Bonferroni correction for the number of haplotypes (p = 0.0002). The four-SNP 

haplotypes and their frequencies (if the frequency >2%) are shown in Table 4.

Recent studies showed that the neuroprotection of β-synuclein against neurotoxins such as 

rotenone requires the activation of the Akt signaling pathway, a molecule centrally involved 

in neuronal survival and plasticity [7]. More specifically β-synuclein overexpression is 

associated with increased akt phosphorylation and this Kinase co-precipitates only with 

b-synuclein in the brains of tg mice. In the present study, we found that in multilocus 

analysis of AKT1, four SNP haplotype T-T-G-G was significantly associated with reduced 

risk of the disease.

Another study that shows very clearly the involvement of Akt in PD is by Seo J.H. et al. 

[20]. In this study, there is evidence that a-synuclein could have a protective effect against 

neurotoxicity mediated by activation of the pro-survival PI13K/Akt pathway followed by 

Bcl-2 family anti-apoptotic expression.

Akt phosphorylates and regulates a variety of proteins that have been implicated in cell 

survival, including the proapoptotic proteins Bad and caspase-9, protein kinases such as 

GSK3 and transcription factors [6,12]. All these Akt targets mediade cell survival. The 

central role of Akt that makes it a convergence point for diverse survival signals maybe 

could explain a possible role in the pathogenesis of PD.

Additional support for involvement of Akt in PD came from several studies that show that 

this is a candidate gene for schizophrenia [8,11]. From these studies it was concluded that 

modulation of the AKT/GSK3b signalling pathway might play a role in dopamine related 

disorders [5]. Numakawa et al. reported also a significantly suppressed phosphorylation 

of AKT in primary cortical neuronal cultures after silencing of another gene, named, 

dysbindin [17]. A dopamine-induced dysbalance of basal ganglia neurocircuitries may be 

an important pathophysiological component in PD and schizophrenia [14]. There is a link 

between these two different entities and a lot of genes have been studied in both diseases 

with controversial results. Polymorphisms in PHOX2M, a gene for a transcription factor that 

plays an important role in the development of catecholaminergic neurons and regulates the 

expression of both tyrosine hydroxylase and dopamine β-hydroxylase genes have been also 

associated with both PD and schizophrenia [10]. Other genes, like Nurr1 [2], adenosine A2 

receptor and calcitoni/alpha-CGRP have presented conflicting associations [1].
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A major finding that supports the protective role of certain haplotypes in this gene against 

PD is that a specific haplotype in AKT1 is relatively resistant to apoptosis through p53 

pathway [6] P53 signaling mediates apoptosis in dopaminergic cells [15] and has been 

implicated in the death of neurons observed in experimental models of PD [3] supporting 

the importance of the previous finding. The set of SNPs that were studied [6] were different 

from the SNPs that we used in the present study but they support our basic finding. Maybe 

these SNPs that we have studied are in LD with a functional SNP that has not been detected 

yet. The need for screening more SNPs and performing functional studies is obvious.

The data presented here suggest the involvement of AKT1 in protection of PD through 

many possible mechanisms involving different signaling pathways that could be potential 

therapeutic targets in the future.
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Table 2

Pair-wise linkage disequilibrium measurements using D’ and r2

*
p-value < 0.01.

**
p-value < 0.001.
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Table 3

Allele frequencies and p-values of single-locus association in the study

Controls Cases x 2 p-value Odds ratio (C.I: 95%)

rs2494743

 Genotype T/T 164 206

T/C 46 63

C/C 5 12 1.54 0.46

 Allele T 374 475

C 56 87 1.19 0.27 1.22 (0.85–1.75)

rs2498788

 Genotype C/C 168 231

C/T 47 46

T/T 3 0 6.01 0.049

 Allele C 383 508

T 53 46 4.02 0.044 1.52 (1.0–2.32)

rs2494746

 Genotype G/G 156 203

G/C 51 65

C/C 4 11 1.70 0.42

 Allele G 471 363

C 87 59 0.49 0.48 1.13 (0.79–1.62)

Rs1130214

 Genotype G/G 120 154

G/T 77 100

T/T 17 22 0.003 0.99

 Allele G 317 408

T 111 144 0.002 0.95 0.99 (0.74–1.32)

Odds ratios and their 95% confidence intervals are presented for the minor allele versus the major allele for all ht SNPs.
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