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Introduction

Cardiovascular diseases (CVDs) are increasing prevalence 
in the worldwide with an estimated 17.9 million deaths 
representing 32% of all world’s deaths in 2019 (data from 
World Health Organization), and atherosclerosis is the 
manifest contributor to CVDs, marked by these major clin-
ical entities including ischemic heart disease (IHD), 
ischemic stroke, and peripheral arterial disease (PAD). 
According to the Global Burden of Disease, of the total 
deaths, 16.2% and 11.6% were due to IHD and stroke 
respectively. Under this circumstance, vast researches 
have got started to resolve atherosclerotic conditions.

Atherosclerosis, chronic inflammation of the vessel wall, 
is a progressive pathophysiological process, characterized 
by lipids depositing initiation and innate/adaptive immune 
responses. Responding to disturbed flow, phenotypic trans-
formation of endothelial cells from rest phenotype into 
proatherogenic phenotype, which commonly is described as 
the starting point of atherosclerosis and introduces exces-
sive oxidative system activation, prothrombotic effects, 

foam cells formation, inflammatory releasing and sensitized 
SMCs, as shown in Figure 1. Extensive studies have proved 
that targeting these pro-atherosclerotic processes can effec-
tively postpone the growth of plaque and even make it 
regression. In the following description, therapeutic targets 
in the progression of atherosclerosis will be introduced.

After initiating atherogenesis by disturbed flow, most 
arterial wall cells (covering ECs, SMCs, and macrophages 
expressing NOX) participate in producing oxidants, like 
ROS. Lipoproteins highly accumulate in tunica intima in 
two main pathways, including increased permeability for 
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lipoproteins and rising lipoprotein affinity receptors,1 such 
as LDL receptors for LDL uptake and LOX-1 correspond-
ing to the passing of oxLDL. Meanwhile, dysfunctional 
endothelium up-regulates adhesion molecules (P-selectin, 
ICAM-1, and ICAM-1) and chemokines MCP-1(CCL2),2 
CCL5 and CX3CL1 for highly attracting circulating mono-
cytes into the vascular media.3 Besides MCP-1, oxidized 
LDL itself is a direct chemoattractant for monocytes.4 
Subsequently, infiltrating monocytes differentiate into 
inflammatory macrophages (M1 macrophages) and MCSF 
released by injured EC drives this transformation.4 M1 
macrophages display increased scavenge receptors (SR-
A1, CD36, and LOX-1) on cytomembrane for taking in 
oxLDL, unregulated enzymes in the cell (ACAT1 turning 
oxLDL into cholesterol esters, hydrolase, and lipase for 
disassemble cholesterol esters to fatty acids and free cho-
lesterol), downregulated inversus cholesterol transporter 
(ABCA1, ABCG, and SR-BI), which makes a dent in cho-
lesterol efflux, enhancement of lipids afflux and accumu-
lation of oxLDL, cholesterol and cholesterol esters, giving 
rise to foam cells formation. Furthermore, proinflamma-
tory macrophages and foam cells secrete signaling mole-
cules including inflammatory factors, ROS as well as 
growth factors (PDGF), stimulating SMCs migration and 
proliferation, accelerating the growth of plaque in arterial 
walls. SMCs imbibe oxLDL by elevated LOX-1 on the 
surface and change into lipid-laden foam cells.5 Platelets 
answering the imperfect endothelium and succedent 
thrombosis are associated with the all stages of 

atherosclerotic process. Thrombosis-promoting molecules 
exposed from ECM in damaged endothelial system inter-
play with platelets, and trigger them. Accordingly, acti-
vated platelets generate active signals covering CD40L6 
and CCL5, CXCL4(PF-4), CXCL12(SDF-1) and CXCL8 
(IL-8), etc. to prompt atheroma development by exacerbat-
ing inflammatory reaction.7 Importantly, attracting other 
platelets and immune/inflammation cells (monocytes, 
macrophages, and B cells) aggravates inflammatory pro-
cesses and thrombi by expressing signaling molecules 
CD40L.6,8 And frequently, CD40L also triggers endothe-
lial inflammation via CD40 on ECs.8

Generally, atherosclerotic disease has a blocked vessel 
lumen. As known, stenosis can be divided into several 
grades, namely less than 50%, 50%, 70%, and exceeding 
70%.9 In angiography-guided therapies, the patients with 
more than 70% diameter luminal narrowing would accept 
interventional treatment. While, vessel lumen with 50%–
70% narrowing would be treated with intervention or only 
medical therapy, which decided by operator’s assess-
ment.10 According to the collection of scientific studies 
and clinical practices/trials, systemic administrations 
evoked by nanoparticles and interventional strategies 
induced by stent and balloon have positive impacts on 
treating atherosclerotic plaque. Worked as vehicles for 
drugs, nanoparticles encapsulating therapeutic agents with 
improved blood half-life selectively get to lesional sites 
and release agents for treating, and tethering of locating 
moieties to particles can give this system better 

Figure 1.  The main progresses of atheromatous plaques.
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performance of active targeting.11 Stent opens blocked 
blood vessel and maintains its luminal structure, but results 
in restenosis. Seeing that balloon also makes blood vessel 
unobstructed, balloon, especially drug eluting balloon, is 
mainly applied to solve in-stent restenosis and small artery 
disease with de nove lesion.12,13 The safety and effective-
ness of balloon angioplasty and stenting procedures have 
been approved beyond doubt, although there are postop-
erative complications and limitations, seen in the later 
parts. Noteworthily, some efforts to ameliorate these minus 
factors, primarily adding payloads, proved to be of avail. 
In this review, nanoparticles, stents, and balloons were 
described as site-specific drug delivery platforms, shown 
as Figure 2.

Taken together both pathological circumstance and 
positioning-delivery strategies, the objective of this review 
is to achieve a very brief summary about the tried and true 

therapeutic methods connecting specifical targets and 
positioning-delivery strategies in atherosclerosis, mainly 
aiming at treatment targets in program of inflammation, 
lipid metabolism, coagulation, apoptosis as well as lesion-
populating cells, and local-fixed transportation formula-
tions including stent, balloon, and nanoparticles.

Focusing on several pivotal cells

Inflamed endothelial cells

Considering activated endothelium in atheromatous plaque, 
available active targets may be centered on expressed adhe-
sion molecules, receptors as well as impaired function, such 
as P selectins, ICAM 1, VCAM 1, αVβ3 integrin, and 
LOX-1 major receptors for LDL uptake by ECs,14 biosyn-
thesis of NO, MCP-1 secretion. Overexpressed P and E 

Figure 2.  The stenosis severity-guided delivery strategies.
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selectins, ICAM 1, VCAM 1 induced by inflammatory 
stimuli, mediating leukocytes adhering to lesional region, 
are the hallmark of atherosclerosis. Sterilizing these adhe-
sive molecules plays a positive role in prevention of plaque 
progression. Sager et al.15 proposed that small interfering 
RNA (siRNA) targeting P and E selectins, ICAM1, ICAM2, 
and VCAM1 would combat leukocyte recruitment into 
plaque and lesional inflammation. Alicaforsen, an antisense 
phosphorothioate oligonucleotide, another antagonist of 
ICAM-1, selectively inactivates ICAM-1 mRNA coinciding 
with lessened membrane-bound protein ICAM-1.16 
Meanwhile, active atherosclerotic plaques excessively 
expressed P-selectin embodying bioactivity of plaques and 
getting prominent during thrombus formation.17 Powerful 
blocking-up in P-selectin actions inhibited the inflammatory 
and thrombotic events, which incidentally decreased neoin-
timal hyperplasia after balloon injury.18 Seeing that high 
affinity and specificity of fucoidan for P selectins exceeding 
PSGL-1, stronger fucoidan-P selectins interaction blocking 
P selectins activities may abolish selectin-dependent recruit-
ment of leukocytes.19,20 The main ligands of P-selectin on 
sensitized ECs and platelets incorporate innate PSGL-1 on 
the membrane of leukocytes and other recognition effector 
Sialyl Lewis X, synthetic Sialyl Lewis × mimics, 
inclacumab, sulfated oligosaccharides as well as polysac-
charides (such as fucoidan, heparin and dextran sulfate), 
reacting with P-selectin.19,20 Beyond anticoagulation, hepa-
rin is also seen as a direct modulator of adhesion mediated 
by P-selectin. Sevuparin, a heparin-derived polysaccharide, 
keeps potent anti-P-selectin activities (anti-adhesive fea-
ture) without the anticoagulation properties.21 CX3CL1/
CX3CR1 process also exerts a possible therapeutic target, 
since CX3CL1 on inflamed ECs mediates monocytes 
recruitment onto the pathological vessel wall via CX3CR1 
of monocytes and this interaction of CX3CL1 and its recep-
tor also stimulates SMC migration, platelet activation and 
neo-angiogenesis.22 Disruption of CX3CL1/CX3CR1 inter-
action with CX3CL1-Fc prevented monocyte-endothelial 
cell reacting and reduced atherosclerosis formation.23 More 
than targeted therapies, growing proof validated that adhe-
sion molecules could serve as location targets. Peptide 
ligands decoration for binding to ICAM-1, such as fibrino-
gen-derived peptide (NNQKIVNLKEKVAQLEA) and the 
sequence VHPKQHR, yielded a specific and high-affinity 
system directing to inflamed endothelial surface in athero-
sclerotic lesions.24,25 For orientating atheroma, superfluous 
VCAM-1 can straight tether ligand-modified objects to 
lesional site, and these ligands included specific antibody or 
some peptides, like anti-VCAM-1 antibody, anti-VCAM-1 
nanobody, and VHSPNKK.26–28 The ligand with VHSPNKK 
sequence also blocked leukocyte-endothelium interactions.28 
Activated or growing cells under pathological conditions 
(such as differentiated macrophages and angiogenic 
endothelial cells) reveals high density αVβ3 integrin, but 
the counterpart is minimal in quiescent cells of normal 

vascular tissues,29 and RGD or RGD derivatives could 
achieve ligation to αVβ3-positive cells in atherosclerosis.30 
Beyond expressing adhesion molecules for capturing mono-
cytes, TGF-β stimulation through TGFβR1/2 in endothe-
lium drives inflammatory phenotype of EC, which enhances 
atherogenesis.31 Inhibition of endothelial TGF-β-TGFβRs 
signaling might be effective in arresting progression of 
building plaque by reducing vascular inflammation.32

Regulating phenotype-switched SMCs

In atherosclerosis, SMC proliferation is held responsible 
for plaque growth. And, in the past decades, the phenotypic 
heterogeneity theory of SMCs, also called as phenotypic 
switching from a contractile/quiescent phenotype support-
ing the arterial structure toward a synthetic one with 
increased migration, replication, and protein synthesis 
activities, has been expounded partly. Conventionally, this 
process is believed to have a bearing on atherosclerosis. 
Dapperly, VSMC plasticity also contains the transformed 
phenotypes of resembling foam cells, macrophage-like 
cells, and MSC-like cells.33

Theoretically, reversing or inhibiting those pro-trans-
formation programs (as seen in Figure 3) would hold back 
phenotypic changes and put switched SMCs into reverse. 
In one example, Vengrenyuk and his team34 validated that 
maintaining the producing of myocardin could conduce to 
contractile phenotypic SMCs after cholesterol loading. As 
a key enhancer in regulating phenotypic transition of 
SMCs, KLF4 bears on atherosclerotic plaque pathogene-
sis. Knocking down KLF4 in SMCs specifically cuts down 
lesion size, while heightens plaque stability.35 Furthermore, 
alternative targets miR-143 and miR-145 accelerate myo-
cardin expression for keeping SMCs in a contractile state 
and also affect a network of transcription factors relating 
to Klf4, myocardin, and Elk-1, which generate repressed 
proliferation of SMCs.34,36,37 And, the inhibiting effect of 
miR-145 for SMC modulating is also due to regulating the 
L-type calcium channel expression partly.38 Intriguingly, 
normal SMCs with a quiescent, differentiated state express 
calcium ion channels. In parallel with cell proliferation, 
L-type calcium channel (LTCC) will die away and the 
recurring of LTCCα1C (a LTCC subunit) is followed by 
reappearance of contractile phenotype markers in an ear-
lier investigation.39 In this study, the authors stated that 
activated RhoA, ERK1/2, and p38 MAPK pathways 
inspired inhibited LTCCα1C production under PDGF 
stimulation and fluvastatin upregulated LTCCα1C expres-
sion via inactivating those pathways for retaining a more 
differentiated VSMC phenotype. Indeed, it had been cor-
roborated that increased miR-133 could coax modulated 
SMCs back to quiescence for regulating VSMC growth via 
suppressing the expression of transcription factor Sp-1.40 
Furthermore, KLF5 also takes an important part in regulat-
ing SMC phenotype and inhibition of this factor (e.g. by 
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synthetic retinoid Am80) could achieve suppressed smooth 
muscle phenotypic modulation.41 Dramatically, STAT3 
(activator of transcription 3) protein also contributes to 
SMC phenotypic switch by interacting with myocardin.42 
Naturally, PERK-STAT3-MRTFA signaling axis could 
serve as a target.43 A PERK inhibitor GSK2606414 
obstructed STAT3 while triggering SRF by dampening 
down PERK activity in smooth muscle cells, which sup-
pressed SMC’s phenotypic change.43 In another case, 
crocin effectively prevented VSMCs proliferation and 
phenotypic switch induced by PDGF-BB through STAT3 
pathway.44 In SMC phenotype switching, abrogating of 
glycolytic enzyme PKM2 (pyruvate kinase muscle 2) 
obtained inhibiting effects of SMC proliferation, migra-
tion, phenotypic switching and neointimal hyperplasia, 
accompanied with decreased ERK (extracellular signal-
regulated kinase), mTOR (mammalian target of rapamy-
cin), and STAT3 signaling.45 To recapitulate briefly, any 
signal molecule for promoted activation of contractile dif-
ferentiation and inhibited synthetic/dedifferentiated path-
way, including SRF, myocardin and myocardin related 
transcription factor (MRTFs), or SRF/CArG-box complex 
and KLF4, might work as a mediator in modulated SMCs.46

Diverse circumstance stimuli (e.g. platelet-derived 
growth factor-BB/DD, oxidized phospholipids, choles-
terol, and inflammatory factors-TNFα and IL-1β) could 
evoke transition of SMCs phenotype toward synthetic type 
with loss of contractile markers involving SMα-actin, 
SM22 α, SMMHC, and others, mainly via KLF4 and 
MEK-ERK1/2-Elk-1 pathway.34,47–51 For details, in MEK-
ERK1/2-Elk-1 pathway, phosphorylated Elk-1 replaced 
myocardin from SRF, which reduced differentiation 
marker genes.48 And, the mechanisms of KLF4 mediated 
SMC phenotypic modulation have been described as 

several types, including KLF4 direct integrating to SMC 
marker gene promoters; blocking SRF/CArG-box binding; 
lessoning myocardin production and HDACs recruiting.49

Apoptotic cells and efferocytosis of MAs in 
atherosclerosis

Regulating apoptosis procedures of plaque-residing cells.  Rup-
ture-prone plaque is typically actuated by cell death (may 
be a marker of plaque instability), fundamentally mac-
rophages (in necrotic core) and smooth muscle cells (in 
fibrous cap) apoptosis germinating necrotic core change in 
size and fibrous cap thinning respectively.52 Apoptosis 
accompanies the whole process of atherosclerosis. As a 
momentous feature of atherosclerosis, decided by cell type 
and plaque stage, apoptosis of cell exerts profitable and 
deleterious effects. Importantly, foam cell apoptosis con-
tributes to the formation of the acellular lipid core and 
endothelial apoptosis is directly seen at post-stenotic area 
with low shear stress.53 EC apoptosis is a contributor of 
initiating plaque development, involving in EC dysfunc-
tion, increased endothelium permeability, thrombosis and 
instable plaque.54 Depending on cell types, the stimulus for 
apoptosis (different dead pathway) as well as cell at differ-
ent pathological stages, apoptosis regulation needs to be 
considered in detail. The brief apoptotic pathways of sev-
eral pivotal cells are shown in Figure 4. In the early stages 
of atherosclerosis, increased macrophage apoptosis dimin-
ished lesion cellularity and decreased lesion progression,55 
but in advanced plaque, decreased macrophage apoptosis 
reduced necrotic core formation and lesion size, promoted 
plaque stability.56 Generally, induction of VSMC apopto-
sis could be beneficial for lessening cellular accumulation 
and following stenosis. However, after vessel injury 

Figure 3.  The main external stimulus-mediated phenotypic modulation of SMCs.
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including after angioplasty and stenting, protection against 
apoptosis aids to reduce neointima formation.57 In the 
whole, conceived therapeutic strategies may selectively 
facilitate apoptosis of macrophages and SMCs in early 
lesional vessel and preclude death of macrophages at late 
stage, SMC after injury and EC in all expanding of plaque.

Centering on MicroRNAs (miRNAs) has found that 
miRNAs affect apoptosis of vascular cells conducing to 
the pathogenesis of atherosclerosis. Impediment of EC 
apoptosis has attracted for designing novel means against 
atherosclerosis, and the following all may be potential 
therapeutic targets for atherosclerosis: miR-210 upregula-
tion repressed PDK1 favoring endothelial apoptosis58; 
miR-26a with anti-apoptotic effect downregulating TRPC3 
or TRPC6 overexpression alleviating the development of 
atherosclerosis59,60; MicroRNA-122 promoting endothe-
lial cell apoptosis by targeted XIAP inhibition61; MiR-365 

potentiating ox-LDL-induced ECs apoptosis paralleling 
damaged Bcl-2 expression62; MiR-429-mediated down 
regulation of Bcl-2 giving impetus to atherosclerosis-asso-
ciated endothelial cell apoptosis63; MicroRNA-142-3p 
also monitoring endothelial cell apoptosis.64 Absorbed in 
regulatory roles of micro RNA in apoptosis, Chen et al.65 
proposed that inciting expression of miR-26a by tanshinol 
could attenuate the endothelial cells apoptosis for endothe-
lial protection and dwindling formation of atherosclerosis. 
Additionally, Liang et al.66 unfolded that direct inhibition 
of p38 via MiR-124 overexpression restrained macrophage 
apoptosis accompanied by climbing anti-inflammatory 
cytokines and dropping pro-inflammatory factors. Pointing 
toward another example, Tian et al.67 also drew a conclu-
sion that inhibiting Fas/FasL pathway by D4F (apolipopro-
tein A-I mimetic peptide) prevented macrophages from 
ox-LDL-induced apoptosis. For breaking TNFα-TNFR-1 

Figure 4.  Apoptosis and efferocytosis of vascular wall cells (endothelial cells, smooth muscle cells and macrophages) in 
atherosclerosis.
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signal transmission, Cho’s group68 subdued TNFR-1 
expression by trafficking small interfering RNA to win 
anti-apoptotic effects of EC with higher ratio of anti-apop-
totic factor (Bcl-xL) to pro-apoptotic factor (Bax) as well 
as apparently stronger HUVEC proliferation and capillary 
formation caused by angiogenic factors (KDR/Flk-1 and 
eNOS). Another critical mitogen-activated protein kinase 
(MAPK) signaling pathway provides pro-apoptotic signals 
through JNK or p38 activation or pro-survival signals 
through ERK1/2, ERK5 activation.69–71 ERK5 engaging in 
PKB/Akt survival pathway protects cell from apoptosis.72 
Raising ERK5 in macrophages (such as by statins) upregu-
lated macrophage efferocytosis halting plaque formation.73 
All in all, given regulating apoptosis, besides suppression 
of death signal (by anti-oxidants74) and signal transmis-
sion, elevating Bcl-2/Bax ratio for decreased cytochrome c 
excretion, apoptosome formation, sensitizing PI3K-Akt 
signals with diminished Bax/Bad and caspase 3, or raising 
IAPs expression also have been regard as beneficial 
adjustments.

Apoptosis mainly embraces mitochondria dependent 
apoptosis (Bcl protein family, anti-apoptosis Bcl-2/
Bcl-XL/A1, and pro-apoptosis protein Bax/Bad/trBid) 
and receptor-mediated apoptosis. TNF receptors family 
(TNFR1, Fas) binding death ligands (TNFα, Fas ligand) 
sensitize caspase 8 and caspase 3 sequentially, and pro-
duced caspase 3 is the onset of apoptosis and sensitive 
caspase 8 turns Bid into trBid localizing to mitochondria 
for enhancing mitochondrial dependent apoptosis. Once 
mitochondria responds to death signals, pro-apoptosis 
members (Bax/Bad/trBid) are conducive to mitochon-
drial cytochrome c release, forming apoptosome with 
APAF-1 and pro-caspase 9 to activate caspase 9 and cas-
pase 3 in order. Bcl-2/Bcl-XL/A1, IAPs (inhibitors of 
apoptosis proteins) including XIAP (X-chromosome 
linked IAP), cIAP1, cIAP2, NAIP (neuronal apoptosis 
inhibitor protein), active PI3K/Akt signal, and some sur-
vival factors help cell live. Apoptotic cells display pro-
phagocytic signals, especially phosphatidylserine (PS), 
for clearance of phagocytes. Adequate efferocytosis is 
imperative to defend against atherosclerosis, producing 
inflammation-counteracted TGFβ and IL-10. But, 
impaired efferocytosis (increased cell death, sufficient 
numbers of phagocytes, and damaged engulfment mech-
anisms) in atheroma, including overloaded macrophages 
forming foam cells, oxidized LDL and phospholipids 
insensitizing phagocytic receptors (SR-BI) or bridging 
molecules (MFGI8), hampered devouring molecules 
expression (SR-BI or LRP1), HMGB1 binding αvβ3 and 
PS, shedding of MERTK and LRP1 as well as TNFα/
TNFR1 pathway evoking CD47 (a do not eat me signal-
ing, repulsing phagocytes) boosting, causes defective 
clearance and conversion of apoptotic into necrotic cells, 
emerging proatherogenic factors (IL-1β, IL-6, TNFα, 
HMGB1) and secondary necrosis55,71,75–77.

Enhancing effective efferocytosis.  Efferocytosis, referring to 
scavenging/engulfment of apoptotic cells by phagocytic 
cells like macrophages, activates anti-inflammatory, and 
proresolving signaling pathways that are crucial for the res-
olution of inflammation and effective efferocytosis of apop-
totic can suppress inflammation and growth of necrotic 
core.78 Efficient efferocytosis by macrophages takes a piv-
otal part in limiting the progression of atherosclerotic 
plaque. Three prerequisites depicted in Figure 4, apoptotic 
cell ligands (mainly PS), efferocytotic receptors (MERTK, 
LRP1, TG2, SRBI and integrin αvβ5, αvβ3), and bridging 
molecules (MFGE8, Protein S, Gas6, and complement 
C1q), collectively determine the clearance of apoptotic cell 
in vascular lesion.55,71,75 Increased cell death, sufficient 
number of phagocytes and blocked digestion pathway 
induced by oxLDL competition inhibition, shielded PS, 
occupied linker molecules, decreased efferocytotic recep-
tors, along with augmented CD 47-rejection phagocytosis 
via discerning SIRPα engender impaired efferocytosis79 in 
atherosclerosis, playing a major role in extending lesion. 
Strengthening efficient efferocytosis is a promising and piv-
otal way to limit the progression and vulnerability of athero-
sclerotic plaque. During atherogenesis, progressively 
upregulated CD47 co-localizes to necrotic core, and special 
blocking-up anti-phagocytic CD47 signaling could restore 
eliminating of diseased and apoptotic SMCs or macrophages 
to prevent atherosclerosis.80,81 Targeting CD47-SIRPα axis 
by miR-378a that depletes  SIRPα level could hoist the 
phagocytic activity of oxLDL-stimulated macrophages.82 
SHP-1, a downstream effector molecule of CD47-SIRPα 
signaling, suppressed phagocytic function, and PEG-func-
tionalized single-walled carbon nanotubes (SWNTs) with 
monocyte/macrophage-selectivity loaded by SHP-1 inhibi-
tors (NSC-87877) accumulated within lesional macrophages 
and renewed lesional phagocytosis, linked to lowered the 
plaque burden and inflammatory gene levels.83 TPI-1 
(tyrosine phosphatase inhibitor 1, toward SHP-1 inhibition)-
carrying SWNTs also could reactivate macrophage effero-
cytosis.84 Huang et al.85 also gave a description that 
increased SHP-1 expression during carotid atherosclerotic 
plaque progression possessed a position by macrophage 
polarization-mediated efferocytosis and deleting SHP-1 
function could shift macrophages toward an anti-inflamma-
tory phenotype preferring to promote efferocytosis. Atten-
tionally, CD47 linking ligand TSP1 reinforces ROS release 
and abates eNOS activation and NO production. Conse-
quently, inhibiting CD47 may ameliorate atheroma, as a 
consequence of elevated NO levels and decreased oxidative 
stress.86 Another instrumental thing may be an increase of 
“eat me” signals of dying cells and PS functions as a thera-
peutic target to heighten phagocytosis of apoptotic cells. 
Schutters et al.87 employed RGD-introduced annexin A5 
interacting with αvβ3/5 on the phagocytes to target 
expressed phosphatidylserine (PS) for enhanced engulfment 
of apoptotic cells and IL-10 secretion.
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Aiming at critical pathological 
proceeding

Targeting of lipid metabolism process

Targets in forward direction.  The phagocytosis of oxidized 
low density lipoprotein is implicated in endothelial dys-
function, inflammation, formation of foam cells, migration 
and proliferation of smooth muscle cells, platelets activa-
tion, cell apoptosis, and atherosclerotic plaque instabil-
ity.88 Oxidized low density lipoprotein transits through 
endothelium in connect with LOX-1, and under the patho-
logic pathway of atherogenesis, undue presence of scaven-
ger receptors on induced-atherogenesis cells (mainly 
LOX-1, CD36, SR-A1 on macrophages and LOX-1 on 
SMCs) is a significant cause of foam cell production. Rest-
ing platelets constitutively express CD36, mediating 
OxLDL binding to platelets, and activated platelets exhibit 
LOX-1.89 Thus, scavenger receptors appear to be an avail-
able target of curing and arriving in plaque sites.

LOX-1, a cell-surface receptor for oxidized LDL 
(Ox-LDL), is dramatically associated with atherosclerosis. 
Its expression of human carotid arteries in advanced athero-
sclerotic plaques has been observed in intimal smooth mus-
cle cells, as well as macrophages, endothelial cells, and 
active platelets.90 LOX-1 is also colocalized with the apop-
totic cells highly in lesional site.91 Ishino et al.92 deemed 
LOX-1 was expressed in the macrophage-rich lipid core 
area. And they also took advantage of anti-LOX-1 antibody 
to direct LOX-1 receptor for imaging of vulnerable plaque,93 
indicating the effectiveness of targeting LOX-1 for plaque 
homing. Analogously, targeting LOX-1 can realize con-
trolled delivery of therapeutic agents into arterial plaques. 
Saito et al.94 found that LOX1-targeted liposome loading 
fasudil notably prevented intimal hypertrophy and matrix 
metalloproteinase-9 expression. And anti-LOX1 antibody 
bound liposomes reached carotid artery lesions with effect.

As a therapeutic target, given that remarkable increase 
of LOX-1 in the neointima after balloon injury has been 
reported, the loss-function of LOX-1 has obvious inhibi-
tory effects on intimal hyperplasia, oxidative stress, leuko-
cyte infiltration by anti-LOX-1 antibody administration.95 
Gene silencer also has been recognized as a feasible means 
to LOX-1 deficiency, and PIP (pyrrole-imidazole polyam-
ide) is an optional molecule for inhibiting the expression 
of LOX-1, monocyte chemoattractant protein-1, intercel-
lular adhesion molecule-1, matrix metalloproteinase-9, 
and thickening neointimal.96 Kaimin et al.97 designed PIP 
targeting LOX-1 eluting stents and unmasked that the stent 
could dwindle the area of neointima and in-stent restenosis 
(ISR) without impairing re-endothelialization. Fan et al.98 
revealed that casein kinase 2-interacting protein-1 (CKIP-
1) minified LOX-1 transcription on account of interplay-
ing with proteasome activator REGγ for promoted 
degradation of transcriptional factor Oct-1. CKIP-1 har-
bors a protective role during foam cell formation and 

atherosclerosis.99 Attractively, use of scavenger receptor 
inhibitors (for example, CD36 inhibitors AP5055/
AP5258100 and micellar nanolipoblockers (NLBs) func-
tionalized with anionic carboxylate group for SR-A101) or 
molecules competing with oxLDLs for binding to SRs 
(such as long-chain fatty acids102) can prevent scavenger 
receptors-dependent oxLDL uptake, which is a promising 
avenue of the treatment and prevention of atherosclerotic 
development. Considering Ox-LDL metabolic process, 
well-directedly suppressed ACAT1 expression or pro-
moted transfer-out proteins for cutting down cholesterol 
gathering in macrophages could limit further foam cell for-
mation. Liraglutide could down-regulate ACAT1 with sup-
pressed macrophage foam cell formation, which interdicts 
the development of atherosclerotic plaque.103

Modulating reversing procedure.  Possible mechanisms of 
rapid regression of atheroma plaque relate to efflux of cho-
lesterol from phagocyte, emigration of foam cells out of 
plaque, influx of healthy phagocytes for remove necrotic 
debris, and other components of the plaque.104,105 This part 
would focus on transfer-out of cholesterol. Backward cho-
lesterol transport occupies an important position against 
atherosclerosis development, and cholesterol out from 
foam cells has been identified as one powerful therapeutic 
strategy for meliorating lesion. ABCA 1 is the key reverse 
cholesterol transporter mediating cholesterol exporting 
from cells. Chen et al.106 reported that carvedilol could 
boost cholesterol out and ABCA1 expression for halting 
atherosclerosis possibly through NF-κB. A great deal of 
targets can pose as a primer mover for contributory ABCA1 
expression.

Enabled liver X receptor (LXRs, LXRα and LXRβ forms, 
ligand-activated transcription factors), upon ligands binding, 
augment target genes expression involved in reverse choles-
terol transport (considerable ABCA1 and ABCG1 prompting 
cholesterol excretion) and mitigate proinflammatory gene 
expression (TNFα, IL-1β, and CCL2.107,108 Some endoge-
nous (non-enzymatically generated oxysterols-weak or no 
agonistic activity, and other cholesterol derivatives-24(S)-
hydroxycholesterol, FF-MAS, desmosterol) and exogenous 
(T0901317, GW3965) agonists are widely accepted as LXR 
ligands.107,108 LXRs signaling can be seen as a potent signal 
for cholesterol efflux from foam cells, some reports had elab-
orated this property. Quercetin (one of flavonoids) motivates 
increasing cholesterol efflux from foam cells derived from 
ox-LDL-induced macrophages through PPARγ-LXRα 
(more ABCA1 expression) pathway.109 PPARγ (peroxisome 
proliferator-activated receptor-γ) motivating significantly 
enhances foam/macrophages to expel cholesterol through 
the expression of ABCA1 and LXRα, and functional ABCA1 
expression is necessary for PPARγ-induced cholesterol 
efflux from macrophages. Ren et al.110 uncovered that man-
giferin promoted cholesterol efflux of acetylated LDL-
loaded macrophage via elevated ABCA1 and ABCG1 
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mediated by the activated PPARγ-LXRα pathway and ame-
liorated atherogenesis (decreased plaque size). Libby and 
Plutzky111 summarized that the activation of PPARγ also 
minified biomarkers of inflammation (TNF-α, IL-1β), 
inflammatory associated adhesion molecules, oxLDL-inter-
nalized receptors (LOX-1, scavenger receptor A) as well as 
MMPs expression, which suppressed inflammation and ath-
erosclerosis. Zimmer et al.112 also authenticated CD 
(cyclodextrin)-mediated LXR agonism exhibited the anti-
atherosclerotic and anti-inflammatory effects with aug-
mented removal of cholesterol and regression of plaque. For 
permitting cholesterol out from foam cells or macrophages 
and amending atherosclerosis, Han et al.113 availed Urolithin 
A (UA) to promote cholesterol efflux from formed foam 
cells and attenuate cholesterol accumulation via modulating 
related microRNA-33a (decreased miR-33a but increased 
expression ABCA1 and ABCG1) and ERK/AMPK/
SREBP1ignaling pathways. More specifically, miR-33a 
strongly repressed the levels of ABCA1 to dampen cellular 
cholesterol efflux, inhibition of endogenous miR-33a down-
wards adjusted ABCA1 expression.114 Additionally, inhibit-
ing macrophage miR-34a to up-modulate ABCA1 and 
ABCG1 gives impetus to cholesterol efflux or reverse trans-
port, which gooses atherosclerosis regression. miR-34a inhi-
bition also alters M1 into M2 macrophage polarization via 
liver X receptor, together with shrinking inflammation 
(reduced TNF-α, IL-6, and MCP-1).115 PCSK9 downregu-
lates ABCA1 gene and protein expression for weak choles-
terol efflux and PCSK9 could also serve as a powerful 
therapeutic target.116 As a regulator of LDLR (LDL receptor) 
and LDL-C (LDL cholesterol), the peptide-based anti-
PCSK9 vaccines could obtain long-term therapeutic effect 
against atherosclerosis.117

Inflammation pathway

Classical targets: NLRP3/IL-1β pathway and downstream 
mediators.  Atherosclerosis development is not merely 
caused by accumulating lipid within the arterial wall, also 
a chronic inflammatory disease responsible for vascular 
injury. As a consequence, targeting inflammation itself has 
stimulated novel approaches to reduce cardiovascular 
events and risks induced by atherosclerotic walls. IL-1β is 
a primary form of circulating IL-1 that induces various 
secondary inflammatory cytokines (including IL-6, TNFα) 
synthetizing when answering vascular injury and is manu-
factured in the setting of NLRP3 inflammasome activa-
tion.118 The activation of the NLRP3 inflammasome (more 
likely driven by cholesterol crystal) drives the initiation 
and progression of atherosclerosis fundamentally by pre-
dominant IL-1β effect originating from macrophages.119 
NLRP3 inflammasome activation is discovered mainly in 
macrophages/monocytes and foam cells, sporadically in 
SMCs, ECs, and T cells in plaque site. And NLRP3, ASC 
and caspase 1 as well as IL-1β and IL-18 increase in 

arterial wall.120 A growing elaboration sharpens that, 
owing to PRRs signaling, ox-LDL, ROS and cholesterol/
calcium phosphate crystals phagocytosis (proatherogenic 
mediators), NLRP3 pathway gets activated, which enables 
the next IL-1β and IL-18 release, causing vascular inflam-
mation in the progression of atherosclerosis,121–123 as 
shown in Figure 5. IL-1β acts on cells (abundant SMCs, 
ECs, and macrophages) in the diseased vessel system, then 
alters cell functions including inflammatory transform 
releasing IL-6 and TNF-α, autocrine factors, and self-
active state, resulting in endothelial dysfunction, infiltra-
tive monocytes, MAs inflamed state and SMC proliferation 
(a catastrophic road of atherogenesis).124–126 Taking these 
together, pointing at NLRP3 inflammasome, IL-1β and 
downstream inflammatory mediators (IL-6, TNF-α) may 
obtain positive outcome for impeding atherosclerotic 
extension. In these regards, there are three directions for 
working: smothering of IL-1β emerging by inhibiting 
active NLRP3 inflammasome; incapacitating IL-1β 
through blocking IL-1 receptors binding or nullifying 
IL-1β itself; making generative secondary inflammatory 
factors (IL-6, TNF-α) ineffective for abrogating cells 
inflammatory response.

Combating NLRP3 inflammasome activation by thiore-
doxin-1 significantly mitigates ROS-stimulating NLRP3 gen-
eration, IL-1β secretion and gets atherosclerosis stunted, 
unfolding atheroprotective functions.127 Some other tactics of 
indirect or direct depressing NLRP3 inflammasome have been 
demonstrated to block inflammasome activation for dimin-
ished IL-1β with selectivity and advantage, embodying small-
molecule inhibitors (MCC950,128 β-hydroxybutyrate, 
arglabin) and microRNA(microRNA-223, suppressing 
NLRP3 protein expression),129 and more inhibitors also had 
been summarized by Zahid and their colleagues.130 The new 
therapeutic strategies inhibiting NLRP3 inflammasome acti-
vation are burgeoning. Peng’s group131 unveiled 13-methylb-
erberine opposed NLRP3 inflammasome activation for 
inhibited cell injury induced by H2O2. Melatonin inhibits 
NLRP3 inflammasome and pyroptosis with diminished cas-
pase1, IL-1βand IL 18 production and suppressive NF-κB 
activation.132 Pyroptosis (inflammatory form of cell death), 
observed in monocytes, macrophages, dendritic cells, VSMCs, 
vascular endothelial cells, is dependent on caspase-1 and trig-
gered by activated inflammasomes.133 As a pyroptosis pro-
moter, active enzyme caspase-1 also plays a forceful part in 
aiming inflammation. Caspase-1 retardant, VX-765, remark-
ably reduces VSMCs pyroptosis and IL-1β processing in 
OxLDL circumstance and impedes the growth of atheroscle-
rosis.134 As a pivotal intermediator in inflammatory responses, 
with regulating a myriad of pro-inflammatory genes, the 
transcription factor NF-κB also partakes inflammasome reg-
ulation.135 Growing evidence indicates that interfering with 
NF-κB signaling could mediate vascular inflammation, and 
some nuclear factor kappa B inhibitors have been investi-
gated in different cell models, like resveratrol for endothelial 
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cells, lactucopicrin for macrophages and NLS (NF-kB nuclear 
localization sequence) peptide for SMCs and MAs.136–139

For taking aim at primary and secondary inflammatory 
products, antagonists or therapeutic agents have got 
groundbreaking findings for anti-inflammation or athero-
protection by directly targeting TNF-α with etanercept, 
adalimumab, TNF-specific antibody CDP571, TNF recep-
tor–Fc fusion protein, IL-1β with canakinumab, gevoki-
zumab, LY2189102, IL-6 with tocilizumab, IL-1R with 
anakinra126,140–142 or indirectly inhibiting the production of 
these factors, like silencing tumor necrosis factor alpha 
converting enzyme (TACE, cleaving precursor of TNF-α) 
expression.143 IRAK4, recognized as a result of danger sig-
nal acting on TLR or IL-1 receptors, is an essential signal 
transducer downstream of TLR and IL-1 receptors.144 
IRAK4 of macrophages as a target, is directly reacted by 
FC-99 (benzenediamine derivate), and, as a result, this 
treatment attenuates proinflammatory mediators (TNF-a, 
IL-6, MCP-1) production.145 Extensive inhibitors of IRAK4 
have been reviewed and used, such as N-Acyl-2-
aminobenzimidazole inhibitors, a diarylamide and an unre-
lated imidazo[1,2-a] pyridine series of IRAK4 inhibitors 
and quinazoline based inhibitors.144,146,147 However, target-
ing any inflammatory mediators cannot completely block 
all the inflammatory pathways in atherosclerosis.

The cytokine interleukin-1β (IL-1β) rooting in mac-
rophages is a major driver in pathogenesis of atherosclero-
sis. Priming and activating signals trigger active NLRP3 
inflammasome drawing forth IL-1β and IL-18. ROS, dis-
turbed flow, phagocytic calcium phosphate crystals, and 
cholesterol crystal (CC) or CC from untaken oxLDL posi-
tion themselves as enable signals of NLRP3 inflammas-
ome. And danger signals recognizing receptors (IL-1βwith 
IL-1R, NETs/fibrinogen/ CC with TLRs, oxLDL-depend-
ent CD36/TLR4/TLR6 heterotrimer, as well as 
TNFαengaged TNFR) sever as priming signal to trigger 
NLRP3 inflammasome activation via NF-κB pathway. 
Activated NLRP3 inflammasome elicits capase-1 respon-
sible for cleaving pro-IL-1 β and pro-IL-18 for IL-18 and 
IL-1β generation. For one thing, IL-1β ligating to IL-1R as 
a priming signal irritates added IL-1β production. For 
another, IL-1β acts on cells in plaques (including ECs, 
SMCs, MAs) via IL-1 receptor family, contributing to cells 
sensitization for enhanced pro-inflammatory factors pro-
duction (IL-6, IL-1, and TNFα). Graver ECs dysfunction, 
increased vascular permeability and anabatic expression of 
MCP-1, TF, and adhesion molecules cause pro-coagula-
tion effects, leukocyte infiltration. Autocrine factor PDGF 
of SMCs works on SMC proliferation. Of note, these cells 
biosynthesize ascending matrix metalloproteinase, MMPs 

Figure 5.  The key pro-atherogenic role of NLRP3 inflammasome and IL-1β in initiation and development in atheroma plaque.
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2/9 of ECs for erosion, MMP 3 and MMPs 2/9 of SMCs 
for remodeling and migration respectively, and MMP 
1/8/13 of macrophages for plaque rupture (colla-
genase).119,148,149 For the enzyme caspase-1 (a promoter of 
apoptosis) mentioned earlier, it can trigger pyroptosis (the 
inflammatory cell death), precipitating the development of 
atherosclerosis.124

Some momentous regulators for inflammation
PCSK9.  PCSK9 (the proprotein convertase subtilisin/

kexin type 9), an enzyme, possibly wields its pro-athero-
genic power through inherent pro-inflammatory effects, 
beyond regulation of cholesterol homeostasis.150,151 Uplifted 
PCSK9 secreted by ECs, SMCs as well as macrophages in 
plaque regions is provoked by immoderate oxLDL gather, 
inflammatory milieu,152 a mass of ROS generation. Syn-
thetic PCSK9 has pleiotropic effects on atherogenesis, 
covering modulation of inflammatory, engulfing oxLDL, 
apoptosis/autophagy, and cholesterol efflux, specifi-

cally seen in Figure 6. More importantly, PCSK9 directly 
increases inflammation in atherosclerotic lesion.153 The defi-
ciency of PCSK9 could reduce atherosclerosis markedly.154 
Targeted treatments against PCSK9 overtly lessens inflam-
mation, endothelial dysfunction, and plaque size.154–156 As 
an emerging target for treating atherosclerosis, the thera-
peutic capacity of PCSK9 has been confirmed. Monoclonal 
antibodies, gene silencing, and mimetic peptide (inspired 
by EGF-A binding domain of the LDLR, which interacts 
with PCSK9) are several methods of restraining PCSK9 for 
exhibiting anti-atherosclerosis effects.156–158 Such as, Tang 
et al. found that, in terms of PCSK9 quantity, PCSK9 was 
more clearly observed in the atherosclerotic plaques than 
normal aortic tissues. Gene interference, specifically block-
ing PCSK9 expression, weakened inflammatory factors 
secretion (TNF-α, IL-1β) and plaque area.155 What’s more, 
other researchers also exposed inhibition of PCSK9 could 
inhibit HUVEC apoptosis induced by ox-LDL via Bcl/Bax–
caspase9–caspase3 pathway.159

Figure 6.  The effect of PCSK9 on atherosclerotic progression.116,160,161 Covered by inflammatory conditions, oxLDL and ROS at 
the plaque site, response cells (ECs, SMCs, and MAs) synthesize PCSK9, elevating SR (LOX-1, SRA, CD36) expression for more 
oxLDL intake, lowering ABCA1 and ABCG1 with decrease cholesterol outflow. Under this modulation, lipid-laden cells emerge as 
foam cells. Concomitantly, PCSK9 upregulates adhesion molecules VCAM-1 expression (more monocytes trafficking), and provokes 
macrophages to liberate inflammatory molecules (TNFα and IL-1β) based on TLR4/NF-κB pathway activation.
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Protease-activated receptors (PARs).  Veritably, inflam-
mation and coagulation systems converge at injury and 
plaque tissue, which can be delineated as proinflammatory 
factors bring about active coagulation pathway, in return, 
coagulation considerably contributes to inflammation.162 
Tissue factor (TF, on the membrane or in the plasma) is 
deemed as a cross-talked linker between inflammation 
and coagulation system, and in response to inflammatory 
mediators (TNFα, IL-1β), ROS, LPS or other injurious 
stimuli, heightened TF expression is witnessed.163,164 TF 
activates FVII, forming TF/FVIIa complex which sig-
nals to generate FXa and thrombin, which fix to PARs for 
inflammation through PAR-2 and PAR-1, respectively.164 
Thrombin interacts with PAR-1, -3, and -4 by the great 
affinity (PAR-1 is the major receptor of thrombin), FXa 
is usually sensitive to PAR-1, -2, and -4 (PAR-2 is the 
most prime for FXa and not activatable by thrombin, may 
function as a FVIIa/FXa complex receptor). Veritably, 
PAR1 and PAR2 appeared at MA, EC, SMC and mono-
cytes.165–170 Thrombin and FXa activate a variety of cell 
types including MA, SMC, and EC for actuating cellular 
inflammatory response, which works in arterial injury and 
in neointima of human atherosclerotic lesions. Based on 
the precondition, PAR1 and PAR2 are the charming tar-
gets. Hara et al.171 found that FXa-PAR-2 signaling acti-
vates macrophages and promotes vascular inflammation, 
increasing atherosclerosis involving MCP-1, IL-6 and 
TNF-α production, activation of NF-κB (upregulated 
inflammation through NF-κB pathway). It is trust worthy 
that PAR-2 is a underlying remedial target. Contributing 
PAR route on endothelial cells causes vWF, TF, adhesion 
molecules expression, and P-selectin relocation onto the 
cell surface. Vorapaxar treatment for competitive bind-
ing to PAR-1 (inhibiting thrombin-induced PAR-1 activa-
tion) realized lower coagulation activation, inflammatory 
response and endothelial activation, containing descend-
ing level of TNF-α, IL-6, vWF, and soluble E-selectin.172

GLP-1R/GLP-1 signal.  At present, the localization of GLP-
1R (glucagon-like peptide-1 receptor) in blood vessels is 
on vascular smooth muscle, ECs, platelets, and monocytes/
macrophages. And native GLP-1 (glucagon-like peptide-1, 
thought as anti-atherogenic and anti-inflammatory actions) 
or GLP-1 analogs (liraglutide, semaglutide, exendin-4) as 
GLP-1R agonists heighten GLP-1R expression for modi-
fying cells or tissue function. Overall, GLP-1R signaling 
in multiple pathways impacts abnormal vascular tissue 
possibly relating to enhanced plaque stability, endothe-
lial function and subdued smooth muscle proliferation, 
platelet aggregation, oxidative stress, and inflammation 
with attenuating atherosclerotic development.173–175 Some 
investigators considered that GLP-1Rs deadened plaque 
tissue pullulation and affected atherosclerosis through an 
anti-inflammatory mechanism.176,177 GLP-1R activation in 
endothelial cells blunted eNOS uncoupling and vascular 

inflammation, prevented vascular oxidative stress, and ele-
vated NO bioavailability.175 Furthermore, GLP-1 and its 
analogs prevented the development of aortic atheroscle-
rotic lesions by reducing the monocyte/macrophage infil-
tration and macrophage foam cell formation.103 Shrinkage 
of GLP-1 inactivation and degradation has shown as anti-
inflammatory effects. Dipeptidyl peptidase IV (DPP-IV), 
CD26, a cell-surface, and secreted peptidase with increased 
dipeptidyl peptidase-4 activities in atherosclerosis, is in 
charge of degrading GLP-1.178–182 Dipeptidyl peptidase-
IV (DPP-IV) inhibition has been widely appreciated as 
a possible therapeutic target for atherosclerosis, and its 
anti-atherogenesis could be explained by increased GLP-1 
biological activity for direct vascular protective effects 
with better EC function, impaired monocytes/macrophage 
inflammation.183,184 Matsubara et al.184 concluded that des-
fluoro-sitagliptin (DFS), a DPP-IV inhibitor, augmented 
GLP-1 activity to reduce the releasing of proinflammatory 
mediators and ROS in macrophages, as well as attenuate 
EC dysfunction, exhibiting antiatherogenic effects.

The coagulation system

The rupture of an atherosclerotic plaque primarily triggers 
arterial thrombosis formation. As plaque ruptures, exposed 
collagen and von Willebrand factors(vWF), acting as spe-
cific platelet cell-surface receptors, capture circulating 
platelets to the site via bonding integrin α2β1, GPVI, and 
GPIb on platelets, respectively. And GPIbα mediates 
platelets to adhere to injured and inflamed endothelium. 
After adhering, major platelet integrin αIIbβ3 and GPIbα 
binds other platelets, then leading to rapid growth of the 
thrombus. As a more important role, high concentration of 
tissue factor exiting in lesions generated by atherogenic 
cells, referring to active platelets, monocytes/macrophages, 
inflamed ECs, SMCs, and foam cells, notably initiates the 
extrinsic coagulation pathway. Ultimately, combining 
faulty platelets, stable thrombus rich in fibrin, platelets and 
red cells take shape, which further enlarges ongoing plaque 
size. More concerned, stent implantation for treating nar-
rowing vessel tissue would trigger clotting formation, 
encompassing acute (0–24 h), subacute(24 h to 30 days), 
late (30 days to 1 year), and very late (beyond 1 year-likely 
associated with hypersensitivity reaction, excessive fibrin 
deposition, or neoatherosclerosis) stent thrombosis, shar-
ing similar mechanisms with thrombus formation.185,186 As 
a consequence, concentrating on thrombosis formation 
and platelets is a charming way to AS (atherosclerosis) tar-
geting, therapy, and suppressing plaques growing.

Platelets.  Platelets occupy an important position in devel-
oping thrombus and plaques, looking like Figure 7. And 
targeting it for preventing thrombosis mainly covers spe-
cifically inhibiting the receptors themselves, inactivating 
the promoters of platelets and hindering these promoters to 
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yield. Hypothetically, blocking-up of platelets adhesion to 
bare collagen (via GPVI, α2β1), vWF (via GPIb) after 
plaque fracture and injured/inflamed endothelium (such as 
via GPIbα binding to P-selectin and vWF) could decrease 
vascular occlusion with effect. Currently, anti-GPVI treat-
ment could be a powerful strategy to specifically passivate 
the collagen-GPVI pathway in platelets, reviewed by 
Nieswandt et al.188 Meanwhile, other payloads have been 
employed as efficacious antithrombotic agents, containing 

assorted receptors inhibitors: glycoprotein IIb/IIIa inhibi-
tors-abciximab, eptifibatide, tirofiban, and lamifiban189; 
ADP receptor antagonists-Y2P1 inhibitor A2P5P and 
P2Y12 inhibitors (AR-C69931MX, clopidogrel, ticagrelor, 
and prasugrel190,191); incapacitating thromboxane A2 recep-
tor by thromboxane receptor antagonists, such as ifetroban, 
domitroban, variprost, and others, more details seen in 
Kontogiorgis’s review.192 Peptide (SP-14 with sequence 
SHIHGDYSSPSGAP) is also used to inhibit the binding of 

Figure 7.  The major portion of platelets in growing atherosclerotic plaques and prothrombotic events. There are abundant 
membrane-anchored receptors for adhering to injured/inflamed endothelial layer (GPIbα for P-selectin and vWF, PSGL-1 binding 
to P-selectin, CD40L-CD40 interaction, CX3CR1 for CX3CL1), ruptured lesion (GPVIα and α2β1 for collagen, GPIb for vWF), 
monocytes/macrophages (P-selectin for PSGL-1, CX3CR1 for CX3CL1), and active platelets (GPIbα and αIIbβ3 grasp additional 
platelets). PAR1/PAR4 coupling thrombin and P2Y1/P2Y12 binding ADP quietly potentiate platelet activation. Thrombin binding 
PAR promotes TXA2 and ADP producing, in addition to this, more ADP generating has a lot to do with TXA2-bound TP 
receptors.187
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TXA2 to TP receptor for reducing platelet aggregation.193 
More than blocking receptors, extinguishing platelet auto-
crine factors (ADP, TXA2) production is also a potent strat-
egy for opposing thrombogenesis, and in some cases, 
TXA2 biosynthesis could be blocked powerfully by aspirin 
targeting COX-1194 or thromboxane synthase inhibitors(e.g. 
dazoxiben, dazmagrel, pirmagrel, isbogrel, and ozagrel).192 
TXA2 was produced via cyclooxygenase (COX)-throm-
boxane synthase pathway.192 Later, bifunctional regulators 
with TP receptors blocking and thromboxane synthase inhi-
bition were also exploited, including ribogrel, terbogrel, 
picotamide and BM-351/573, etc.192 Not merely incurring 
platelet aggregation and activation, TXA2 may lead to 
plaque evolution and thrombus in human atherosclerosis, 
and infiltrated monocytes and macrophages in lesion make 
TXA2, which constitutes a significant source of TXA2.195 
Worthily mentioning, synergistic effect of blocking TP 
receptor and selectively suppression of TXA2 may have a 
positive impact on reducing plaque tissue.196 Thrombin is a 
central part of forming fibrinous thrombus and platelet act-
ing, and PAR-1 is the main thrombin receptor on platelets. 
PAR-1 antagonists have properties of antiplatelet and anti-
arterial thrombosis, and vorapaxar is a novel antiplatelet 
agent that selectively inhibits the cellular actions of throm-
bin through antagonism of PAR-1,197 some other PAR-1 
antagonists had been summarized by Chackalamannil.165 A 
newly-found receptor, GLP-1R, may serve as an antiplate-
let-target. For instance, GLP-1 and other GLP-1 receptor 
agonists (liraglutide, exenatide) treatment could hinder 
platelets aggregation and thrombosis induced by collagen 

and thrombin very likely through triggering of GLP-1R 
signaling for increased cAMP level.198,199 Once platelets 
are in active state, PS flips to the outer side of the plasma 
membrane, exerting pro-coagulation activity with initiation 
and propagation of coagulation via formed TF/FVIIa com-
plex and assembly of intrinsic tenase (FVIIIa/FIXa), pro-
thrombinase (FVa/FXa) on PS-exposed platelets.200 Based 
on this feature, outside PS owns both targeting properties 
and therapeutic capacities for platelets-containing thrombi. 
Competitive ligation of PS-binding ligands (such as lactad-
herin and annexin V) to PS inhibits platelet prothrombinase 
and factor Xase activity, effectively restrains FXa, and 
thrombin generation, which leads to delayed thrombosis 
formation.201 According to the avidity of PS and annexin V, 
annexin V acted as a guiding molecules for selective target-
ing of platelet-containing thrombi.202 Annexin V fusing 
curative stuffs, such as Kunitz protease inhibitor (KPI),203 
hirudin,204 are shown to have thrombosis inhibitory activity 
with specifical PS affinity. Jing et al.202 constructed disinte-
grin protein echistatin-annexin V system to obtain an 
antithrombotic effect via competitively binding to αIIbβ3 
integrin resulting in reduced fibrinogen linking and platelet 
aggregation, and to PS molecules for dwindling prothrom-
binase complex and thrombin formation.

Coagulation factor as targets.  Figure 8 represents the extrin-
sic and intrinsic clotting pathways. Antithrombotic modu-
lations come in all shapes and sizes, mainly centering on 
neutralizing thrombogenic molecules through various pro-
teins, antibodies, peptides, aptamers, oligonucleotide, and 

Figure 8.  The extrinsic and intrinsic clotting pathway.226 Ample TF combining coagulation factor FVIIa transforms FIX into FIXa, 
and FX into FXa, is closely linked to extrinsic and intrinsic coagulation pathway, finally meeting at bio-synthesizing thrombin and 
stable fibrin clot formation imbued with platelets and erythrocytes. More than TF-FVIIa pathway, FXII interacts with negatively 
charged surface or molecules, followed by forming FIXa and FXIa resulting from activated FXII (FXIIa), which means intrinsic 
pathway starts.
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other small molecules. Notably, targeting pro-coagulation 
factors gets attractive, including TF, thrombin, FXIIa, 
FXII, FXa, FXIa, kallikrein, and so on. Designedly mak-
ing these coagulation factors invalid has been confirmed 
potently antithrombotic capacities. Concretely, targets and 
their corresponding inhibitors are showed, mainly deline-
ated as: thrombin is a prime target, directly/indirectly 
inhibited by antithrombin activators(heparin), warfarin, 
hirudin and its derivatives (lepirudin, desirudin, bivaliru-
din), dabigatran, argatroban,205 thrombin-specific aptam-
ers (HD1 and NU172),206 thrombalexin (TLN),207 and 
avathrin208; aptamers (RNA11F7t and RNABA4), rivaroxa-
ban, apixaban, edoxaban, ACH-11, are effective for FXa 
blocking.206,209,210 The factor Xa can excite platelets by 
PAR-1 pathway, so tempering FXa with rivaroxaban 
would be antiplatelet effect more than reduced athero-
thrombotic events through PAR-1 derived platelet activa-
tion.211 Sterilizing intrinsic factors FXIIa, FXII, and FXIa 
are also prevention of thrombosis formation by: RNA 
aptamer R4cXII-1 targeting FXIIa and FXII206; Infestin-4 
with FXIIa inhibitory effects212; BF9,213 Boophilin,214 and 
DEF (an mAb to FXIa)215 for inhibiting FXIa as well as 
Ir-CPI (Ixodes ricinus contact phase inhibitor) binding 
both FXIIa and FXIa.216 For preventing undesirable throm-
botic events, some natural anticoagulants have also been 
investigated, including antithrombin, activated protein C 
(APC), tissue factor pathway inhibitor (TFPI), and protein 
S. In some examples, protein S, a regulator in intrinsic 
coagulation pathway, subdues FIXa and Xase complex 
(FIXa–FVIIIa) through tethering to FIXa heparin-binding 
exosite, thereby in keeping with lower FX activation.217 
And, protein S also activates protein C for suppressing FV 
into FVa and FVIII into FVIIIa.206 TFPI, found in endothe-
lial cells and platelets, plays an anticoagulant part in early 
stages of clotting cascade and regulates tissue factor (TF)-
induced coagulation via inactivating FXa and binding to 
FVIIa of TF/factor VIIa complex for inhibiting further FX 
activation.218 As a cell-signaling receptor, TF also keeps a 
direct proinflammatory role for macrophages/SMC and 
promotes migratory and mutagenic effects of SMCs, so 
that TFPI has protective effects against MA/SMC inflam-
mation and SMC migration and proliferation in addition to 
abating thrombus formation.219–221

Coagulation holds a vital position in the onset of ather-
osclerosis, on good grounds, depriving effects of coagula-
tion factors, beyond preventing sequential thrombotic 
events and abolishing subsequent occlusive arterial throm-
bus formation, may also be remarkably effective in imped-
ing atherosclerotic progression or postoperative restenosis. 
Nationally, targeting coagulation factor Xa or thrombin 
has been elucidated as a promising treatment for holding 
back plaque starting and propagation or injury-induced 
neointima formation, and promoting lesion stability and 
plaque regression.210,222,223 Posthuma et al.210 corroborated 
and extended that, except for inhibiting newly-formed 

plaque and increased stability of brittle plaque, FXa inhibi-
tion by rivaroxaban also facilitated regression of pre-exist-
ing atherosclerotic lesion with reduced macrophages, 
enhanced collagen deposition, diminished necrotic core, 
lower expression of PARs, thrombin, FXa, and MMPs. 
Some other researchers had also made it clear that direct 
thrombin inhibition by anticoagulant dabigatran improved 
endothelial function, reduced atherosclerotic lesion size, 
collagen content, and oxidative stress (ROS production),224 
retarded the initiation and progression of lesion and mac-
rophage accumulation in Apolipoprotein E-deficient 
mice.225

Important ROS generation system

Reactive oxygen species (ROS) participates in the modu-
lation of cell functions and biological processes for pro-
moted atherosclerotic progression, shown as oxidative 
modification of lipoproteins, inflammatory response, EC 
dysfunction and SMC proliferation and phenotypic switch-
ing, promoted cell death, etc.227 Scavenging of generated 
ROS and arresting of its emergence have been considered 
potential for counteracting atherosclerosis. ROS-
scavenging polysaccharide β-cyclodextrin (TPCD) nano-
particles with Tempol (a free radical scavenger) and 
phenylboronic acid pinacol ester (PBAP, for eliminating 
hydrogen peroxide effectively) evidently have inhibitory 
effects for atherosclerosis development by elimination of 
overproduced ROS, which led to diminished ROS-induced 
inflammation and apoptosis in macrophages, and inhibited 
foam cell formation.228 And, NADPH oxidases (NOX) and 
renin-angiotensin systems are important sources of ROS in 
the cardiovascular system, shown in Figure 9. NADPH 
oxidases (NOX) system exists in nearly all plaque cell 
types including EC, SMC, MA, monocytes, and plate-
lets.229,230 NADPH oxidase (nicotinamide adenine dinu-
cleotide phosphate oxidase) may serve as a significant 
target. Neutralizing agents targeting NADPH oxidase, 
such as antibody, peptide or siRNA have been demon-
strated to attenuate neointimal formation after arterial 
injury.231 Nanoparticles loaded by siRNA targeting NOX2 
were transferred into balloon injured artery in an athero-
sclerotic rat model, which would prevent neointimal area 
and lumen loss.231 An available Nox inhibitor VAS2870 
could inhibit ROS liberation induced by PDGF in SMCs 
and abolish PDGF-guided SMC migration effectively.232 
The importance of Ang II in ROS formation in renin-angi-
otensin system had been stressed over recent years. 
Blocking Ang II-induced ROS generation involves two 
parts: abolishing of Ang II biosynthesis (Ang II biosynthe-
sis means that angiotensinogen is cleaved by renin to form 
angiotensin I, and subsequently generated angiotensin I is 
converted into Ang II under angiotensin-converting 
enzyme (ACE)233); blocking the interaction between Ang 
II and AT1R. For combating oxidative stress, the 
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synergism of ACE inhibitor and AT1 receptor blocker had 
been observed.234

More than inducing ROS generation for inflamma-
tory expression, synthetic SMC, EC dysfunction as well 
as cell apoptosis, Ang II-AT1R interaction guides apop-
tosis by Fas pathway, synthetic response of SMC by 
JAK2-STAT or JAK2-ERK1/2 pathway,227 and stimu-
lates angiogenic action for enhanced plaque neovessel 
formation,235 which all resulted in aggravated athero-
sclerosis. Wu et al.235 considered that renin inhibitor 
aliskiren, suppressing angiotensin II (Ang II) biosynthe-
sis, reduced the atherosclerotic plaque area and plaque 
neovessel density, even to the extent of decreasing the 
vascular inflammatory action. An absorbing point in 
Ang II is that activation of Ang II is involved in all 
phases of atherosclerosis, presented as stimulating TF 
expression, resultant endothelial dysfunction, promoting 
to form foam cells via regulating LOX-1 expression 
(SMCs) and contributory oxLDL absorption, inducing 
apoptosis of ECs and SMCs.236 Thus, blocking-up in 
Ang II-AT1AR (Angiotensin II Type 1A Receptor) could 
be attainable tactics for disposing of atherosclerosis 
through antagonizing AT1AR or lessoning Ang II.

Strategies of lesion-localizing delivery 
for treating atherosclerosis

Site-specific treatments of atherosclerotic plaque, relating 
to inhibition of restenosis and thrombus formation or mod-
ifying plaque with less prone to rupture/grow and promot-
ing plaque regression, demand therapeutic agents to collect 
to the target lesion and into the vessel wall and cells. The 
section mainly states the tactics of effective loading 
enriched in atherosclerotic lesion, like Figure 10, includ-
ing balloon catheter-driven local delivery, stent-based, and 
nanoparticle models.

Systematic delivery mode by nanoparticles

Bio-recognition based on natural ligand-receptor interac-
tion.  Biomarkers including changed cells (proinflamma-
tory MA, inflamed EC, and switched SMC), biological 
factors and ECM components (collagen, vWF, fibrin) as 
well as deposited clots in plaque have been applied for the 
location of nanoparticles with therapeutic benefit in ather-
osclerosis. Bio-recognition based on natural ligand-recep-
tor interaction may work as a potent formulation and 
resident cells in lesion contribute to this procedure. Cur-
rently, all kinds of ligands for targeting treatments embrace 
antibodies, peptides, aptamers including RNA- or DNA-
based ligands. Growing evidence demonstrates that scav-
enger receptors highly express in atherosclerosis and 

Figure 9.  The NOX-derived ROS pathway and important 
renin-angiotensin system. The mediators of NOX activity and 
expression are involved in excessive proatherogenic factors, 
such as pathological shear stress, TNFα, PDGF, oxLDL, and 
important angiotensin II (Ang II).237 By renin-angiotensin 
pathway, generated Ang II linking to angiotensin type 1 
receptor (AT1R) activates membrane-bound NADPH oxidase 
in ECs, SMCs, and macrophages,227 and it also traffics to AT1R 
on outer mitochondria membranes, inducing mitochondria-
derived ROS.236 Importantly, NOX-derived ROS aggravates 
ROS overproduction by acting on eNOS and xanthine 
dehydrogenase.230

Figure 10.  The schematic representation of the main lesion-
specific delivery formulations.
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targeting these molecules with affinitive ligands (like dec-
adeoxyguanine238 and DNA oligonucleotides239 for SRA 
and anti-LOX1 antibody for LOX-1) could make thera-
peutic drugs get to lesion site.94 Fasudil, a rho-kinase 
inhibitor, is capsulized into liposomes embellished with 
anti-LOX1 antibody and successfully reaches the arterial 
plaque with inhibited intimal hypertrophy.94 Based on leu-
kocytes binding to endothelial ICAM-1 by LFA-1 (lym-
phocyte function-associated antigen-1) integrin, inflamed 
leukocyte-mimetic nanoparticles with LFA-1 I domain 
preferentially reach the site of inflammation.240 Antibod-
ies241 and peptides targeting ICAM-1 (cyclo(1,12)PenIT-
DGEATDSGC peptide242) and VCAM-1 (VHPKQHR243 
and 18F-4V peptide244) also have emerged. More than tar-
geting to inflamed endothelium, a specific sequence with 
VHSPNKK motif also blocks the interaction between leu-
kocyte and endothelial layer.28 Furthermore, targeting the 
underlying basement membrane had become another 
important point, such as KLWVLPK peptide binding to 
collagen.245 Nanoparticles coupling with KLWVLPK pep-
tide for paclitaxel delivery exhibits greater vascular reten-
tion in vivo.245 And this particles system also transports 
IL-10 to atherosclerotic plaques for deactivating mac-
rophages and T cells and resolving acute inflammation.246 
Modery’s group247 had designed RGD and EWVDV pep-
tides-modified liposomes to target active αIIbβ3 and 
P-selectin respectively, and manifested these particles had 
higher selectivity as well as retention to activated platelets. 
The CREKA peptide can mediate nanogels loaded by 
recombinant hirudin to get to fibrous clots, winning anti-
coagulant therapy by binding to fibrin and fibronectin.248 
Based on high affinity of CREKA for fibrin as well as 
abundance of fibrin and H2O2 in thrombi, Kang et al.249 
developed a fibrin-targeted nano-platform composed of 
tirofiban (a glycoprotein IIb/IIIa receptor inhibitor), FBAP 
for H2O2-scavenging, BAP with H2O2-response, and 
proved its antioxidant and antithrombotic activity. 
p32(gClqR), also named as p33, p32, C1qBP, HABP-1, is 
biosynthesized on the surface, in cells and as a secreted 
protein. Sharply inflammatory region and atherosclerotic 
plaque, exist in violently activated cells including active 
platelet (or collagen-induced aggregation), inflamed 
endothelial cells as well as inflammatory answering cells 
(macrophages/monocytes), foam cells and smooth muscle 
cells, highly expressing p32, in return, p32 activation irri-
tates these cells to be active.250,251 Sufficient grounds have 
been available as the affinity interaction of LyP-1 (a 9 resi-
dues peptide, CGNKRTRGC) and p32. LyP-1-carrying 
nanoparticles exposed enhanced affinity to macrophage in 
vitro and converged at carotid lesions in vivo.252 LyP-1-
coated nanoparticles could penetrate the plaque to advan-
tage, substantially accumulate in the plaque interior not at 
the surface of the plaque.253 LyP-1 liposomes loaded by 
GW3965 also locate to atherosclerotic plaques and cut 
down the number of macrophages.254

Biomimetic targeting strategies
Membrane cloaking derived from platelet and mac-

rophage.  Platelets participate in inflammatory response 
and clot formation in atheroma through reacting with 
activated endothelial layer, subendothelial layer (colla-
gen and vWF), or leukocyte.7,255 Considering this intrin-
sic affinity of platelet to plaques, mimicking of platelet 
morphology, size, flexibility, and surface biology has 
been followed with interest.256 In one example, Anselmo’s 
group took nanoparticles and PAH/BSA as template and 
flexible shell separately to imitate the morphology and 
mechanical flexibility of platelets, followed by bearing 
the collagen-binding peptide (CBP; [GPO]7), vWF bind-
ing peptide (VBP, TRYLRIHPQSQVHQI) and integrin 
GPIIb-IIIa linked FMP peptide (GRGDS, linear fibrin-
ogen-mimetic peptide) for limited biological functions, 
and validated that this mimetic particles coupled to acti-
vated natural platelets and injured endothelial sites.256 As 
a novel interfacing approach, the application of cell mem-
brane has many natural advantages based on its multiple 
biological properties and functions, such as immunosup-
pression and selective recognition.257 On treatment and 
checking, platelet membrane cloaking maintains inherent 
platelet properties with immune evasion (originating from 
CD47), suppressed complement system activation (due to 
CD55, CD59), localizing to clotting wall of atheroscle-
rosis or angioplasty-induced denuded/injured vessels (on 
account of GPIb-IX-V, GPIa-IIa, and GPVI).258,259 Hom-
ing efficacy of platelet membrane coating to plaque may 
give the credit to their membrane proteins, such as GPIb 
linking to vWF, GPVI and integrin α2β1 (GPIa/IIa) tying 
to collagen, GPIIb/IIIa, and GPVI fixing to fibrin.260 At 
present, except for detection of the condition,261 growing 
evidence confirmed that platelet membrane modification 
significantly elevates therapeutic effects for atheromatous 
plaque, ascribing to more effective homing capacity to 
the focus.262 Encapsulation rapamycin with platelet mem-
brane-coated nanoparticles effectively homes to plaques 
in atherosclerotic mice modes, and evidently weakens 
the progression of atherosclerosis.262 In another example, 
GSK2606414 (PERK inhibitor)-loaded nanoclusters were 
coated by platelet membrane, which thwarted phenotypic 
modulation of SMC and EC dysfunction, mitigated reste-
nosis, and thrombosis in the rat model of carotid artery 
balloon angioplasty.43 Absorbingly, platelet membrane 
fused by other counterpart of selective cell would carry 
more perfect properties combining various function of 
both source cells.263

Termed macrophage naturally homing to the inflamma-
tory plaque, such as macrophage membrane with high 
expression of α4 integrin reacting with the vascular cell 
adhesion molecule-1 (VCAM-1),264 macrophage mem-
brane embellishment has been applied to target and solve 
atherosclerosis.265 Given that atherosclerosis is character-
ized by inflammation and ROS overproduction, Gao et 
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al.266 prepared macrophage membrane coated ROS-
responsive nanoparticles (NPs) for improved therapeutic 
efficacy in atherosclerosis with reduced inflammation and 
plaque burden, owing to specific targeting of inflammatory 
site as well as tied and sequestered multiped pro-inflamma-
tory substances by membrane antigens (TNFR2, CD36, 
and CCR2).

Lipoprotein modalities (mimicking HDL).  Lipoproteins, 
innate plasma particles transporting lipid, are commonly 
classified as five groups according to their density and size: 
chylomicrons, high-density (HDL), low-density (LDL), 
intermediate-density (IDL), and very low-density lipopro-
tein (VLDL).267 HDL exerts to remove excess cholesterol 
from cells (e.g. foam cells/macrophages in atherosclerotic 
plaques), reduce inflammation, and improve endothelial 
function. HDL has certain key features, including: nano-
diameter with 7- to 13-nm range; a hydrophobic core of 
predominately cholesteryl esters covered by phospholip-
ids monolayer with embedded apolipoproteins, especially 
apolipoprotein (apo) A-I268; bio-functions involving cho-
lesterol carriage, anti-inflammatory effects, antimicrobial 
activity, anticoagulation, and specifically targeting several 
cell surface receptors (such as scavenger receptor B1, 
ATP-binding cassette A1, and ABCG1 for removing the 
excess cholesterol from cells).269–272 Considering HDL’s 
nature with inherent plaque affinity, forming “HDL-like” 
nanoparticles by simulating its structure and elements is 
now contributing to targeting treatments.

Rather than achieving the characteristics of HDL itself, 
recombined HDL with or without decoration is used for a 
novel potent transit system for agents directly entering into 
plaque. HDL is naturally marked by binding to and inter-
acting with macrophage cells and hepatocytes during 
reverse cholesterol transportation, which has an important 
protective effect in atherosclerosis by reverse efflux of 
cholesterol from plaque macrophages.273 In Cormode’s 
study, inorganic nanocrystal replacing the hydrophobic 
core of HDL incorporated phospholipid to come into being 
micelles. Whereafter, for producing HDL-like nanoparti-
cles, apo A-I, the primary protein constituent of HDL and 
providing targeting abilities, had been used as a working 
component. Their research results validated that these arti-
ficially analogous particles to natural HDL possessed the 
capacity of being specifically ingested by macrophages 
with high affinity.274 As a proof-of-principle study, these 
nanocrystal core HDL had lodged in the atherosclerotic 
wall in mice pathological model. In addition, the targeting 
abilities of imitated HDL particles to inflammatory artery 
had been verified in a wide of investigation, and these par-
ticles could be used as a carrier for therapeutic drugs or 
imaging agents. Marrache and Dhar275 developed the bio-
degradable synthetic HDL mimic containing hydrophobic 
core, and a phospholipid bilayer coat decorated with triph-
enylphosphonium (TPP) and apolipoprotein (apo) A-I 

mimetic 4F peptide as a vulnerable plaques targeting agent 
to lodge in atherosclerotic areas, markedly in mitochon-
dria. Lameijer et al.276 used HDL biomimetic particles to 
successfully transport small molecule 68770028 (a CD40-
TRAF6 inhibitor) to plaque, gaining immunotherapy with 
impaired monocyte migration and recruitment and reduced 
plaque macrophage content. 4F peptide-modified nano-
system also was applied to successfully home GW3965 to 
plaque, which reduced plaque burden without increased 
liver toxicity.277 Artificial HDL particles have limited cho-
lesterol efflux ability, tailoring artificial HDL properties by 
HA recognizing overexpressing CD44 receptors in injured 
endothelial, would exhibit anti-atherogenic effects with a 
greater cholesterol efflux capacity and better targeting effi-
ciency.278 Luthi et al.279 unveiled that orienting size and 
surface composition of high-density lipoprotein (HDL) 
biomimics altered the biomimic-mediated the cholesterol 
binding capacities and efflux cholesterol from macrophage 
cells.

Apoptotic mimicry.  “Eat me” signals of apoptotic cell are 
composed of phosphatidylserine (PS), intercellular adhe-
sion molecule-3 (ICAM-3), carbohydrates, and calreticu-
lin, selectively recognized by phagocytes via phagocytic 
receptors.280 On account of phagocytic ligand-induced 
effective recognition and engulfment, apoptotic bionics 
equipped with “eat me” signal molecules could target to 
the inflammatory macrophages in atherosclerosis and PS 
equipment has been widely concerned.281 Naturally occur-
ring membrane molecular alterations is ubiquitous in the 
process of apoptosis. Significantly, phosphatidylserine 
(PS) abandons membrane asymmetry and flips to the 
surface of apoptotic cells, and externalized PS is the best 
representative “eat me” signal for macrophages recogni-
tion to remove dead cells.282 Conversely, PS can pass for 
a “tethering” ligand for macrophages. Zhao et al.283 pre-
pared PS-modified microbubble and proved its targeting 
capability to activated macrophages. Wu et al.284 designed 
the biomimic liposome embellished with cRGDfK and PS 
to delivery pioglitazone (PIO, a PPARγ agonist ) into ath-
erosclerotic macrophages, which kept macrophages weak-
ened the release of IL-1β and TNFα, and strengthened the 
secretion of anti-inflammatory substances (such as 1L-4 
and IL-10) with attenuated progression of atherosclerosis. 
The cRGDfK modification facilitated liposomes to fasten 
onto activated ECs in plaque and penetrate into plaque, 
followed that intra-plaque particles were intendedly dis-
cerned and absorbed by macrophages owing to PS signal. 
Sometimes, PS also articulating other phagocytic ligand, 
such as oxidized cholesterol ester derivative cholesterol-
9-carboxynonanoate, co-mediated inflammatory mac-
rophages targeting.285 Significantly, Hosseini et al.286 gave 
proof that phosphatidylserine liposomes (PSLs) simulating 
apoptotic cells attenuated atherosclerosis by targeting B1a 
cell activation. Another hot spot, the growing evidence has 
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been certificated that specifically targeting PS could also 
act as delivery system for imaging and treating agents, 
and several frequently-used PS affine ligands have been 
used in this policy, including annexin V,87 lactadherin or 
its PS-binding C domains-fused protein,287and some PS-
recognizing peptides PSP1288 and LIKKPF.289

Interventional device-based delivery approaches 
to lesion

Stent as coping style of local delivery.  As an intervention pro-
gram of occlusive atherosclerotic arteries, stent opens ves-
sel via balloon expansion and maintains its original tubular 
shape for remodeling blood flow. From the earliest bare 
metal stents (BMS) to current drug-eluting stents (DES) 
and bioabsorbable stents (BRS), the development of stents 
has been in line with clinical outcomes.290 After stenting, 
vascular injury response (endothelial disruption, over-
growth of SMCs) often favors re-narrowing of treated 
arteries. Surmounting in-stent restenosis is a long-term 
goal in the field of stent technology. Compared with per-
manent one, novel bioabsorbable stents degrade naturally 
with vascular healing, which requires the stent degradation 
rate to match the mechanical properties for supporting 
artery and velocity of mending. Considering this, for BRS, 
regulating degradation rate should be paid close attention. 
In this part, eternal stent would be uniquely reviewed. For 
stent-guided local transport, coatings on stents clearly 
occupy an important position at performance. From the 
earliest bare metal stent to the current coated stent, inves-
tigators have indicated that coated technologies endued 
stent more exceptional service properties, such as gold-
coated NIR stents.291 In efforts to coat metal stents, drug-
eluting designs, bionic tactics with virous functional 
factors have been available.

Drug-eluting designs.  As a drug carrier platform, stent 
systems are expected to achieve high local drug concentra-
tion with low systemic toxicity and long actuation dura-
tion. Therapeutic agents and their loading systems are two 
important research directions. A large number of clinical 
drugs or ones under ongoing trails had been reviewed, 
involving in anti-inflammatory, antiproliferative, and 
immunosuppressive drugs, including sirolimus and its 
analogs (e.g. everolimus, zotarolimus, biolimus A9), 
paclitaxel, dexamethasone, batimastat, 17-beta estradiol, 
actinomycin D, or tacrolimus.292,293 Antiplatelet drugs also 
have been being under investigation. Ticagrelor, a P2Y12 
receptor inhibitor, is coated onto stent. More than affecting 
platelet, the ticagrelor eluting stents preserves endothelial 
recovery and favors suppressive smooth muscle prolif-
eration.294 The drug release profile largely determines the 
overall performance of stents in a variety of evaluation 
models.291 Polymers, synthetic or biological polymers, 
acting as versatile basal layers demanding to provide good 

biocompatibility (blood or tissue), generally are utilized 
to incorporate pharmacologic agents for mediating drug 
release behavior, covering poly(ethylene-co-vinylacetate), 
poly(n-butylmethacrylate), poly(styrene-b-isobutylene-
b-styrene) fluoropolymer, phosphorylcholine, poly(lactic 
acid) (PLA), and poly(lactic-co-glycolic acid) (PLGA).295 
Additionally, biological molecules, hyaluronan (HA) and 
chitosan (CH) polyelectrolyte multilayers296 or phos-
phorylcholine,297 also may be potential candidate polymers 
for local drug delivery. Adequate coating techniques are 
essential to acquire excellent drug loading and releasing. 
Dipping, spray, electrospunning nanofiber298 as well as 
hydrogel299,300 coating have been developed. Nevertheless, 
increasing researchers held the view that polymer coating 
could answer for SMC proliferation, endothelial incom-
petence, proinflammatory responses, and thrombotic 
events.301 In this regard, polymer-free drug-coated stents 
have been seen. Considering drug-binding matrix without 
polymer, some stent developers had exploited nitrogen-
doped titanium oxide (N-TiO2) coatings for drug elution, 
and found that this polymer-free everolimus (EVL)-elut-
ing stent prevented the platelet adhesion and restenosis, 
compared with bare metal stent.302 Some novel smooth 
muscle-sensitive drugs are essential, as drugs against SMC 
proliferation often inhibit EC proliferation and migration 
without distinction, which leads to a detrimental effect on 
successful vascular repair. CTP synthase1 inhibitors and 
PERK inhibitors exhibit cell-specific inhibitory effects 
on VSMC not ECs.43,303 Tang et al.304 demonstrated that 
cyclopentenyl cytosine (CPEC), a CTP synthase inhibitor, 
promoted contractile SMC showing pro-angiogenic prop-
erty, and lessened neointima formation after injury, while 
accelerating re-endothelialization. Of note, CPEC-induced 
SMCs energized proliferative and migratory effects of EC 
via a pro-angiogenic paracrine effect.

Enhancing or restoring the normal function of cells populat-
ing lesion.  The health and continuous endothelium occupy 
an important position in regulating local hemostasis, throm-
bogenesis as well as VSMC proliferation, particularly at 
the injured locus post-stenting. Meddling endothelial cell 
selectively and specifically for promoting ECs repopula-
tion has been presumed to be a rational choice to boost 
vascular repair and cripple neointima formation after stent 
placement.305 Generally, coating stent with biological fac-
tors, such as proteins (antibodies, ECM proteins), cytokines 
and chemokines, gas signal molecule (nitric oxide, NO), or 
adapters (DNA, RNA, and peptides) for joining stent sur-
face with the endothelial wall, has been utilized to make an 
increment in attachment, migration, vitality, and function 
of endothelial cells. As the native microenvironment pro-
vided by ECM, multifarious ECM-derived proteins, active 
peptide sequence, or short fragment of protein have been 
surfaced onto stent for improving endothelial cell, cover-
ing fibronectin (FN)306 or FN+ phosphatidylcholine,307 
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fibrinogen,308 laminin,309 collagen,310 vitronectin,311 and 
their derived peptide: fibronectin fragments RGD, REDV, 
GRGDSP, and PHSRN; YIGSR, PDSGR, LRE, IKLLI, 
and IKVAV enriched in laminin; and DGEA and CAG 
from collagen type I312 and collagen IV313 respectively. 
Furthermore, other types of peptides also have emerged. 
SVVYGLR, synthetic peptide with binding integrins 
such as α4β1 and α9β1 and mimicking VEGF, enhances 
EC adhesion, migration, and maintains ECs prolifera-
tion.314,315 Immobilizing P8RI (a soluble synthetic pep-
tide, like a CD31 agonist) onto stent could favor vascular 
endothelium repair, prevent in-stent stenosis and thrombo-
sis.316 Other than those enhancements, biological factors 
can provide reinforced cues for positive effects in induc-
ing ECs repopulating and function. Chemotactic/growth 
factors including CXCL1,317 SDF-1, VEGF,318 chemokine 
(CC motif) ligand 2 (CCL2) and insulin-like growth 
factor-1 (IGF-1),319 NGF,320 hepatocyte growth factor 
(HGF),321 sphingosine 1-phosphate (S1P),322 erythropoi-
etin or recombinant erythropoietin323 have been applied 
to thrust complete endothelial covering via augmenting 
attachment, proliferation, migration, or nitrogen monoxide 
(NO) production. Noteworthily, NO releasing from ECs 
naturally plays an important role in anti-thrombosis and 
anti-restenosis through inhibiting excessive proliferation 
of smooth muscle cells, propagating wall endothelium, 
and deterring adhesion/aggregation of platelets. Justifi-
ably, covering materials with NO-producing layers has 
caught hold of attention of researchers. At present, NO 
transportation platform mainly includes NO-releasing 
materials (involving NO donors like NONOates, SNAP 
and RSNOs, and NO-releasing peptide like the sequence 
GTAGLIGQ linked with polylysine KKKKK324) and NO-
generating strategies (covering loading of catalyzer sele-
nocystamine, CuII and NOS gene, eNOS and iNOS).325–327 
Fixation of antibody can work as another potent candidate, 
as antibody fragments scFv, single chain fragment variable 
binding to VEGFR2 mediating VEGFR2-positive ECs to 
adhere and reproduce on the stent surface.328 Meanwhile, 
burgeoning gene therapies also serve as the encourage-
ment of migratory and proliferative effects of vascular 
endothelial cells, such as ZNF580 gene,310 DNA encoding 
for human VEGF329 and CD39-encoding mRNA.330

Responding to mechanical injury (e.g. stenting, balloon 
injury) and pathological stimulus (e.g. growth factor 
PDGF, inflammatory cytokines TNFα), activated SMCs 
evinces augmented proliferative and migratory activities 
associating with their de-differentiation, which induced 
the narrowing of vascular lumen or neointima formation in 
stent.331 For SMCs in abnormal state, some efforts have 
been done. In some cases, as inhibiting SMC activity 
potently and stimulating EC proliferation modestly, perle-
can, and a perlecan-inducing compound (e.g. RUS3108, 
inducing perlecan synthesis in SMC) may be used for  
stents to prevent ISR (in-stent restenosis).332 And, through 

regulating SMC phenotypic modulation, diminishing in 
restenosis after stenting is possible. In light of synthetic 
smooth muscle phenotype featured with active RhoA 
expression, Huang et al.333 built RhoA inhibitor-eluting 
stent with rhosin loading, and subsequently demonstrated 
that this RhoA inhibitor down-regulated YAP (Yes-
associated protein) expression in SMC phenotypic modu-
lation, which attenuated neointimal formation. Furtherly, 
selective Sp-1 inhibition with Mithramycin A also abro-
gates partly restenosis via disturbing YAP-mediated SMC 
phenotypic modulation.334 And, sorafenib couples to myo-
cardin by competing with YAP for increased SRF-
myocardin interaction, which modulates SMC phenotypic 
switching and attenuates in-stent restenosis.335 Blocking 
signal transduction of PDGF-PDGFR pathway works as 
another candidate. PDGF receptor (PDGFR) tyrosine 
kinase inhibitor, Sunitinib, targets SMC proliferation, 
necrosis of SMCs and migration, mediating reduced neoin-
timal formation after stenting.336 Stent-based delivery of 
D-65495, a bis(1H-2-indolyl)methanone, another PDGF-
receptor inhibitor, could cause diminished neointima for-
mation.337 Through jamming the G0/G1 cell cycle and 
PDGF receptor β-Akt pathway, statins prevent SMCs from 
the reception of PDGF-BB signal for inhibited the patho-
logical proliferation and migration of SMCs. Rosuvastatin 
inhibits the smooth-muscle-cell phenotypic modulation in 
PDGF-BB-induced synthetic SMC model and stents cov-
ered by heparin and rosuvastatin can reduce the incidence 
of stenosis and late thrombosis.338

As answering environmental stimuli (i.e. ox-LDL), 
macrophages in plaque could convert their polarized forms 
to M1 macrophage, which would release pro-inflamma-
tory factors and reactive oxygen or nitrogen species. 
Inevitably, a corresponding M2 macrophage also have 
been deemed as immunosuppression and eliminating 
inflammation of lesion.339 Given phenotypic tunability of 
macrophages, a novel formulation transforming inflamma-
tory state of plaque macrophages to anti-inflammatory M2 
macrophages might be used to treat atherosclerosis. To 
name a few, Zhao et al.340 constructed nanospindles with 
TiO2 and Ti4Ni2O on NiTi alloy, which manipulated mac-
rophages to produce a favorable immune microenviron-
ment with TGF-β, BMP-2, and VEGF for enhancing the 
functionality of the ECs. Similarly, Xu and co-workers341 
considered that induced M2 macrophage polarization 
could secrete VEGF for promoted endothelialization 
through ERK1/2 and PI3K/AKT pathways.

Capturing new cells or guiding neighboring ECs to injury 
site.  Trapping circulating cells (covering ECs, EPCs, and 
SMCs) from blood flow is an alternative option of win-
ning self-endothelialization. Endothelial progenitor cells 
(EPCs) are generally defined as a group of cells featuring 
differentiation into mature endothelial cells,342 which have 
great application potential to expedite reendothelialization 
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and limit intimal thickening in stent usage. Coupling of 
the stuff possessing excellent ligand accessibility to recep-
tors on EPCs to stent has succeeded in self-endothelialized 
implants, including antibodies and peptides. In one exam-
ple, linked CGRGDS peptide onto materials could harvest 
ECFCs and HBOECs under shear stress, which has the 
ability to grow into successive worked endothelial layer 
in vivo.343 Recently, antibody-immobilized stent has been 
designed to catch EPCs (particularly late stage of EPCs) 
efficiently and specifically. Park et al.344 unwrapped that 
stents integrating anti-CD146 antibody could capture more 
late-EPCs as well as mesenchymal stem cells (MSCs) in 
vitro. More biomarkers of EPCs have emerged in this 
research field, touching upon CD34,345 CD133,346 vascular 
endothelial-cadherin (VE-cadherin),347 CD146,344 endog-
lin,348 vascular endothelial growth factor type 2 receptor 
(VEGFR2),328 CD144, and CD309.349 Fixation of anti-
body for bounding these biomarkers onto materials could 
potently attract these cells to pathological sites. Antibody 
fragments scFv, single chain fragment variable binding to 
VEGFR2 can be utilized to guide attachment and multi-
plying of VEGFR2-positive cells covering circulating 
ECs and EPCs.328 What’s more, specific peptide ligands 
also have been defined, involving integrin-combined pep-
tide ligand, such as αvβ3-integrin-binding peptide cyclic 
Arg-Gly-Asp peptide350 and LXW7 (an octamer disulfide 
cyclic peptide (cGRGDdvc)).351 In the example, LXW7 
potently and specifically immobilized to αvβ3-integrin of 
EPC/EC, but presented weaker binding to platelets and no 
binding to THP-1 monocytes. A 12-mer peptide, termed 
as TPS (TPSLEQRTVYAK), an EPC-specific ligand, 
also unfolds high affinity and specific binding ability for 
human endothelial progenitor cells (EPCs).352 WKYMVm 
(Trp-Lys-Tyr-Met-Val-D-Met), a hexapeptide, according 
to Li’s group,353 possessed a fixed characteristics show-
ing up remarkable EPC-induced recruitment for vasculo-
genesis guided by activating the formyl peptide receptor. 
Newly, HGGVRLY, hemocompatible peptide-1 (HCP-1), 
α4β1 integrin ligand, a recently defined stem cell homing 
peptide, could combine with EPCs and boost them spread-
ing, which confirmed by Hsu et al.354 Going further, HGG-
VRLY also fastened a high proportion of BMSC (bone 
marrow stromal cells) having VCAM-1. In other investi-
gations, HCP-1-immobilized surface was very productive 
in gaining mitigated thrombus by lowing platelet adhe-
sion and enhanced endothelial cell adhesion.355,356 Another 
α4β1 integrin ligand, REDV displaying peptide sequences 
Arg-Glu-Asp-Val, has been recognized as optionally and 
effectively catching endothelial cells (ECs) in fluid shear 
stress.357 Markedly, for mesenchymal stem cells, another 
promoter cell, incremental evidence had argued that MSCs 
possessed inhibitory potential to restenosis via boosting re-
endothelialization358and anti-inflammatory effects of SMC 
promoted by paracrine factors from MSCs.359 Additionally, 
DNA aptamers360 also could act as potent cell-bonded mol-

ecules, especially for harvesting self-seeding of EPCs onto 
vascular stent. More than promoted migration and prolif-
eration for ECs, ZNF580 or VEGF gene also served as an 
attractor of EPCs in circulating blood.310 Another type of 
candidate, introduction of growth (NGF, nerve growth fac-
tor)320/chemotactic CXCL1 (CXCL1 binding his receptor 
CXCR2)317 factors on stent had been investigated in hom-
ing circulating EPCs.

Balloon catheter-based systems.  Balloon catheter-driven 
local delivery comes to the foreground for lesional traf-
ficking in recent years. Based on existing circumstances, 
compared with old plain balloon, apart from opening 
artery and improving blood flow, coated balloons could 
carrier a sufficient dose of an effective payload, for exam-
ple paclitaxel, to the lesional tissue. Upon the balloons 
inflated, the drugs, adhering onto balloon membrane or 
hidden underneath the folds wrapped around the shaft, are 
pushed into the wall of arterial blood vessel and surround-
ing tissue.361 The loss and transfer to the wall can be bal-
anced by designing physical surface features or coating 
formulation of the balloons. For coating balloon, some ele-
ments would be appropriately added, such as medication 
for treatment, an inactive excipient with aiding in drug 
transfer. More often, balloon surface would be also 
designed, such as micro-porous. Furthermore, designing 
balloon catheter itself has emerged as a novel approach of 
local liquid delivery to achieve uniform agents into vessel 
wall, such as occlusion perfusion catheter. Occlusion per-
fusion catheter (OPC), a catheter containing three bal-
loons, comprises two compliant occlusion balloons 
defining the treatment chamber at both ends and a center 
space occupying balloon (treatment chamber) through 
which the therapeutic agent would be infused. Perfusion 
catheter opens a direct manner of delivering payloads into 
medial artery for handling restenosis.362 Bunch et al. 
exploited the occlusion perfusion catheter as an actual 
drug delivery catheter to locally deliver liquid paclitaxel to 
the stenotic lesions and assessed the feasibility, safety, and 
efficacy of this tactic for disposing of restenosis. Ulti-
mately, they demonstrated that liquid paclitaxel treatment 
using occlusion perfusion catheter could be safely and 
effectively prevent restenosis.363 In this part, therapeutic 
ingredients coated balloons will be introduced mainly.

Effective payloads.  Lesion-homing delivery via active 
principle (like antiproliferative drug, gene, antithrom-
botic agents as well as cells) laden balloon may occupy 
the crude preponderance with leaving no foreign bodies in 
the blood vessel in management of in-stent restenosis and 
de novo lesion in small-vessel. For remedying atheroscle-
rotic arterial disease, drug-coating balloon has emerged as 
an available alternative. The balloons carrying medicine 
(such as cytotoxic agent paclitaxel and sirolimus) coat the 
inner side of atherosclerotic vessels, which arrests or puts 
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off adverse complications and inhibits pathological path-
way of atherosclerosis and neointimal hyperplasia.364–366 
Paclitaxel, a highly lipophilic antineoplastic drug show-
ing sustained inhibition of the cell proliferation, produces 
a rapid inhibitory effects after the exposure of cells or 
tissues to paclitaxel for just a few seconds to a few min-
utes.367 Based on paclitaxel eluting, drug-coated balloons 
have recently displayed enhanced efficacy in treating 
recurrence of stenosis.368,369 During treatment of coronary 
in-stent restenosis, early studies suggested that paclitaxel-
coated balloon catheter with 3 μg/mm2 of balloon sur-
face area apparently weakened the secondary occurrence 
of stenosis, and second stent implantation and sustained 
drug release at the site of injury may not be necessary for 
the inhibition of restenosis.370 Meanwhile, Bonaventura 
et al. generalized that, differing from drug-eluting stents, 
handling with drug-coated balloon carrying paclitaxel 
received lower late lumen loss and similar restenosis and 
revascularization rates to DES for treating small-vessel de 
novo lesions.371 Chowdhury372 represented that diminished 
inflammation and plaque burden in nonobstructive lesions 
had been observed in paclitaxel drug-coated balloon treat-
ment and proved that paclitaxel drug-coated balloon with 
suppressed capacity for atherosclerotic proceedings could 
safely and potentially serve as regional anti-atherosclero-
sis therapy. Another candidate sirolimus is also a coping 
style of reducing intimal growth. In one investigation, var-
ious sirolimus coating (crystalline coating and amorphous 
one) had been produced, and their inhibitory capability 
of neointimal proliferation had been confirmed, although 
they showed significantly unlike residence time in the 
coronary artery wall.373 Of particularly note is that charac-
teristics of drug molecules themselves embodying lipophi-
licity, molecular size and surface charge, would affect drug 
penetration and cell uptake into specified target, which had 
been narrated by Tesfamariam in detail.374

For local administration with angioplasty balloon cath-
eter, inhibition of thrombosis is also of great concern. Back 
in 1994, Nunes et al.375 transported a synthetic antithrom-
bin to the arterial wall for suppressive platelet-dependent 
thrombosis via a hydrogel-coated angioplasty balloon 
catheter, concurrently without altered bleeding parameters. 
Other antithrombotic drugs (heparin, argatroban) had been 
sent to injured arteries via porous balloon catheter to pre-
vent thrombosis or partial intimal hyperplasia without 
obstructing system coagulability.376,377 Furthermore, over 
the past decades, balloon catheter-based systems have 
been described as useful mode of therapeutical gene ship-
ping for treating cardiovascular conditions, incorporating 
micro-needle, double-balloon, channel balloon, and porous 
balloon catheters, while, for efficiently, selectively and 
rapidly mediating gene transfer into given cell types of 
artery wall, appropriate system should be opted.378,379 For 
the efficient delivery and long-term expression of thera-
peutic genes targeting the medial SMCs, Pankajakshan et 

al. applied irrigating balloon catheter to transfer gene 
(SM22α promoter) wrapped in a AAV2/9 vector into 
intended site after inflating balloon catheter with minute 
pores to injure the coronary artery SMCs. In the light of 
their exploration, object gene was successfully expressed 
in the middle layer with lasting for at least 2 months.380 On 
these foundations, suppress intimal hyperplasia via bal-
loon catheter-based gene delivery is a promising concept. 
More than the foregoing payloads, endothelial cells also 
had been conveyed to balloon-dilated rabbit arteries 
through a local delivery catheter (dispatch), and adhered 
onto scathed arteries with modest cellular retention.381

Modifying of the balloon surface.  Considering more 
effective local drug delivery for facilitated drug reten-
tion on balloon and shift into tissue while weakened drug 
loss into blood, modifying balloon surface is considered 
to be applicable and potential, including adding excipi-
ents (iopromide, dimethyl sulfate, dextrane, urea, poly-
ethylene glycol, and so on) or carriers/coatings (hydrogel, 
nanoparticle, and polyethylene oxide coating) and micro-
structure (perforating, arrays).365,382 The immobilization of 
ionic monomers (acrylic acid and 2(dimethylamino) ethyl 
methacrylate) onto polyethylene balloon catheters meets 
an instantaneous local high concentration of argatroban 
(an available anti-thrombin agent) within dilated artery, 
though encountering a decrease after restoring blood 
flow.383 Given surface design could manifest discrep-
ant kinetic characteristics for a certain kind, different in 
rate of release, binding capacity to treated sites, systemic 
drug concentration, tissue penetration depth, and retention 
capacity. Obviously, adding controlled release coating, 
such as hydrogel or others, could obtain better pharma-
cokinetics. In one example, Dick et al. employed a porous 
balloon catheter and a gel-coated one as model of local 
drug delivery system and compared the differences of drug 
behavior between them. Evidently, it could be concluded 
that, compared to the hydrogel-coated balloon, the porous 
one obtained more payloads within treated segment at 
the cost of higher system concentration, which rendered 
low transport efficiency.384 Tomaru et al.376 used a novel 
porous balloon catheter consisting of dumbbell-shaped 
balloon with 12 small holes as the delivery system and 
demonstrated that this new porous balloon catheter created 
less mechanical vascular trauma comparing with the con-
ventional ones. Microstructure of surface determines the 
drug transfer efficiency and retention efficiency in treated 
vessel. Developing microneedle array as drug supporter 
also enables to eliminate low drug delivery efficiency of 
standard DEB, which implies the superior therapeutic effi-
cacy for atherosclerosis. And microneedle drug eluting 
balloon is proven to be suitable solution for intraluminal 
delivery led by microneedles embedding tissue and going 
deep into the tunica media of the vascular tissue.385 Still 
further, Tzafriri and his partners386 devised various micro-
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features (amorphous, flaky, and microneedle) on balloon 
surface to move paclitaxel, observed that microneedle 
system reaped larger coverage, higher tissue concentration 
than amorphous/flaky surface. Based on nanomotors with 
the property of penetrating into target cell, Huang et al.387 
developed a novel balloon-coating with a paclitaxel pack-
aged into MJAMS/aV (platelet membrane coated Janus 
mesoporous silica nanomotor modified with anti-VCAM-1 
antibody) for the long-term anti-proliferative effects of 
paclitaxel. Specifically, nanomotor could penetrate into 
the atherosclerotic plaque deeply, which promoted by 
near-infrared (NIR) light, wrapping of nanomotor with 
platelet membrane minimized drug loss before reach-
ing the plaque and anti-VCAM-1 antibody linked to the 
excessive VCAM-1of the plaque site. Concurrently, sol-
vents also pose as a controller of healing potion transfer. 
Take for example, when methanol, water, or acetone were 
used as solvent for paclitaxel-contained balloon, high 
drug loss into blood entailed low drug transfer rates to the 
applied site. But used ethyl acetate-solutions, smaller drug 
loss and more un-transferred PTX onto balloon had been 
observed.388

Comprehensive analysis of these delivery 
strategies

As a systematic transportation strategy, more than thera-
peutic agents, the transport mode on the basis of nanopar-
ticles encounters their challenges: how to colocalize and 
how to work. Its final therapeutic effects are derived from 
drug molecule, efficiency of targeted transport as well as 
degree of plaque damage caused by particle fixation. In 
this regard, the specificity of molecules (including thera-
peutic molecules and targeting moieties) embellished onto/
into nanoparticles is required for positioning, retention and 
cure. More than payloads, the shape and size of particles 
may induce the discrepancies in targeting ability and dis-
tribution. Zhang et al.389 elaborated that the order of target-
ing capacity is platelet (the highest), cylinder, blade, sphere 
and brick (the lowest), and enlarged size mediated the 
increased targeting efficiency. Moreover, the level of 
plaque injury is closely related to the changes in hydrody-
namic characteristics caused by particles. Virtually, the 
onset, growth and rupture of atherosclerosis are very sensi-
tive to fluid dynamics. Hemodynamics plays a central part 
in the development of atherosclerosis, and shear stress, the 
friction force exerted by blood flow on the blood vessel 
wall, is a key driving force.390 According to the principle of 
hydrodynamics in atherogenesis, the regions of predispo-
sition for plaque forming possess some clear attributes: 
curvature, branching, bifurcation, tapering, or external 
attachment (like plaque) inducing disturbed flow.391 In 
these susceptible zones, weaker shear force acts on 
endothelial cells, comparing with protected zones.392 And, 
in these areas of vascular stenosis, the cap of the plaque 

presents the maximum wall shear stress (WSS) and the 
regions with low WSS exist at the rear of plaques like 
shoulder.393 High shear stress tends to make plaque rup-
ture, while the sites with low shear stress are more likely to 
obtain lipid deposition. Additionally, aggravated stenosis 
is parallel to the rising WSS.393 Given these conditions, the 
effect of transport vehicle induced hemodynamic changes 
on plaque progression should be considered. And seeing 
the principle of fluid dynamic in stenosed vascular lumen, 
nanoparticles themselves can be used as drug agents for 
regulating the hemodynamics of stenotic artery toward 
atheroprotective flow environment, like minimizing the 
stresses on the wall and resistance to blood flow.394 Injected 
nanoparticles with different size, shape, and dose (volume 
fraction) have distinct effects upon mechanical forces in 
plaque, which induces plaque injury of different severity. 
Generally, nanoparticles with platelet shape show the 
highest WSS, meaning the most serious damage to plaque, 
compared with cylinder-, brick-, and sphere-shaped nano-
particles.395 Enlarged dose and particle size would trigger 
appearance of high shear stress, which may lead to the rup-
ture of plaque.389,395 Together, more than optimum presen-
tation of therapeutic or targeted molecules, it is necessary 
to optimize the particle body design.

As a major interventional formulation, the long-term 
effectiveness of stent implantation in the treatment of ath-
erosclerosis is approved. But its adverse consequences have 
also attracted attention. Fast recovery of blood flow and in 
situ supply of therapeutic molecules provide favorable fac-
tors. Thrombotic and inflammatory properties of the mate-
rial itself accelerate negative effects. And acute injury 
(endothelium denudation/dysfunction) caused by stent 
expansion was once dubbed the important cause in the for-
mation of stenosis. For dispelling ultimate unfavorable per-
formance, multifarious drugs are loaded onto the surface of 
stent for restoring endothelial layer, SMC-selective preven-
tion, or lowering the thrombosis/inflammation of materials. 
Ulteriorly, in addition to drug dependent wall response, it 
has been deliberated that the local hemodynamic forces 
induced by rigid protruding and malapposed struts after 
stent graft are a significant inducement of in-stent restenosis 
and thrombosis. Insufficient stent design (strut thickness 
and shape) and deployment (i.e. underexpansion inducing 
larger distance of the struts from the vessel wall) may 
impede healing response post-stent.396 Concretely, in stented 
segments, the zones between the struts have a strong dispo-
sition to growing neointima considering low WSS in these 
regions while high WSS on the surface of struts linked to 
platelet activation. And, the large struts engender heavy pro-
truding and hindrance for blood flow while less embedding 
into vascular lumen, accompanied by increased shear rate. 
Regions with high shear rate reside in the top and bottom of 
malapposed struts, forming a thrombotic surface. As a con-
sequence of incomplete stent expansion, residual stenosis 
further deteriorates the mechanical environment of dilated 
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artery (i.e. decreasing WSS, more disturbed), thus acceler-
ates the stent failure with restenosis, stent thrombosis.397 
And, it is obvious that severe residual stenosis heralds more 
disturbance. Compared with non-streamlined struts (rectan-
gular), struts with appropriate streamlining (circular/ovoid) 
could abate the magnitude of shear rate at the top of strut 
and the area of recirculation regions around the struts.398 
Overall, the final clinical outcome of stent implantation is 
the comprehensive result of drugs, stent design and implan-
tation technology.

As another alternative mode of drug transportation 
based on interventional device, more than opening blocked 
blood vessels quickly, balloon transport also has advan-
tages in uniform drug distribution on arterial wall, imme-
diate drug release, a shorter duration of antiplatelet therapy, 
and no long-term residue of foreign material. Now, balloon 
dilatation is widely used to deal with in-stent restenosis 
implicated in EDS and bare metal stent, neo-plaques at 
small vessels and bifurcated vessels.12 But, the expansion 
of balloon causes vascular injury of the host artery, fea-
tured by endothelial dissection and damage, which expe-
dites ensuing acute platelet deposition, SMC hyperplasia, 
and restenosis. The acute and subsequent results of balloon 
angioplasty are the most susceptible to inflation pressure, 
balloon size (balloon to vessel ratio), and time (inflating 
time). High inflation pressure obtains high acute lumen 
acquisition, but results in severe vascular trauma with sig-
nificantly higher incidence of dissection, thrombus and 
restenosis. And, unrelated expansion pressure, excessive 
balloon size leads to large vascular wall trauma and reste-
nosis.399 As reported Li et al.,400 excessively rapid balloon 
dilatation also works as a considerable cause of arterial 
dissection (referring to a tear along the inner wall of an 
artery). Commonly, it is recommended that inflated time of 
30–60 s at nominal pressure (about 7–8 atm) and matched 
balloon-to-vessel ratio (about 0.8–1.0) are appropriate to 
avert vascular dissection.12 But, for drug delivery, expan-
sion time should be considered more carefully. Notably, 
due to elastic recoil of blood vessels after deflating balloon 
or insufficient dilatation, the existence of residual stenosis 
limits the therapeutic effect of balloon. Based on hemody-
namic analysis, less loss of blood vessel gain helps to 
maintain a normal hydrodynamic environment, as large 
residual stenosis implies large vessel wall shear stress, 
increasing the risk of restenosis.401 Significantly, selecting 
the optimal balloon size and expansion pressure, small 
residual stenosis could be obtained. Optimizing balloon 
design is also a way to achieve small residual stenosis. By 
the combination of incision (cutting the lumen of the thick-
ened vascular wall and possibly breaking the elastic force) 
and dilatation of the plaque, cutting balloon angioplasty 
minimizes arterial wall trauma and decreases residual ste-
nosis for lessened neoproliferative response, and subse-
quent restenosis.402,403 For inhibiting the response of 
excessive SMC proliferation and eventual restenosis 

induced by trauma, the selected drug is loaded on the bal-
loon surface. Low drug transport efficiency to target tissue 
and the use of nonspecific drugs are still the main limita-
tions. In order to enhance drug transport efficiency, coat-
ing technologies (like hydrogel), balloon surface design as 
well as the employment of drug carriers have been care-
fully recommended. Ultimately, integrating these factors, 
the optimization of therapeutic agent selection, balloon 
design (surface and construct), and surgical procedure 
improves the targeting delivery of treatment drugs into 
plaque and lessens the trauma of target artery for acceler-
ated positive vascular repair response.

Conclusions and perspectives

Inevitably, the pathological progression of atherosclerosis 
is the ramification of cross- and cascade-response of multi-
pathways, covering macrophage inflammatory phenotype 
and damaged phagocytosis, inflamed endothelium, pheno-
type-modulated SMC, abnormal lipid metabolism, pro-
duction of reactive oxygen species as well as deposited 
thrombus, etc. Based on this circumstance, it is a legiti-
mate basis for treating atherosclerotic plaque to eliminate/
inhibit pathogenic factors and revive native cell functions. 
Focusing on how the therapeutic agents reach the lesion, 
stent-, balloon-, or nanoparticles-based delivery modes are 
under processive investigation. Naturally, since the idea 
delivery strategies require maximal bioavailability of tar-
get tissue/cells in plaque for therapeutic molecules to 
restore functions of health vascular, delivery modes medi-
ated by stent, balloon, or nanoparticles counter their draw-
backs. Post-stenting restenosis induced by vascular injury 
response (e.g. endothelial discontinuity and growth of 
SMC), late thrombus and nonspecific therapeutic drugs 
(like antiproliferative agents) limits stent-based treatment. 
Additionally, coagulation and inflammation induced by 
stent itself should be solved, like ticagrelor294 for resolving 
coagulation and recombinant CD47404 for reduced inflam-
matory cell attachment. For this formulation guided by 
balloon,374,385 mostly relying on EC-toxic drugs, arterial 
elastic recoil, and negative geometric modeling may cause 
an abrupt restenosis and short balloon inflation times (30–
60 s) would be not conducive to drug shift efficiency from 
balloon surface to the luminal lesion. Moreover, cytotoxic 
levels associated with high drug concentrations locally and 
systemic distribution also should be considered. Therefore, 
stent/balloon-free strategies meet the clinical needs. The 
handicaps of systemic transportation induced by nanopar-
ticles are concentrated on how to arrive in plaque tissue/
cells successively rather than being cleared. And this sys-
temic trafficking scheme is required to achieve lessened 
plaque progression, potentiated regression and stability.

From the perspective of therapeutic molecules, the 
effects should be directionality and uniqueness with 
annihilating harmful factors while protecting or 
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promoting favorable events one or more. In the case of 
RGD presenting in fibronectin, fibrinogen, von 
Willebrand factor, vitronectin, and thrombospondin,189 
this peptide captures platelets via binding to αIIbβ3 
(GPIIb/IIIa), αvβ3, and α5β3, while blocks fibrinogen 
binding to platelets guided by competitive effect for 
αIIbβ3. RGD on surface would capture platelets. More 
importantly, integrins αvβ3 and α5β3 are also expressed 
on endothelial cells.405 So, RGD can link ECs and plate-
lets. Therefore, selected payloads should be specific for 
treated targets. General drug-eluting stents have impeded 
neointimal smooth muscle cell hyperplasia, but aggravat-
ing dysfunction of endothelial cell, which lead to late 
thrombogenic events and post-angioplasty restenosis. 
For supporting stent applications, new specific agents 
should alleviate disease phenotypes of SMCs but facili-
tate health one of ECs and nonthrombogenic effects. The 
novel PERK inhibition (like GSK2606414) mitigated 
phenotypic switching of smooth muscle cells by activat-
ing SRF and inhibiting STAT3, while rescued endothelial 
cells from impaired growth and releasing of prothrombo-
genic tissue factor.43

Taken together, given reliving more normal functions 
of narrowing vessels, election of appropriate drugs and 
local delivery modes is required for: treating inflammation 
and restoring effective efferocytosis; targeting thrombi; 
preventing monocyte recruiting and subsequent mac-
rophage accumulation; altering lipid metabolism; holding 
back SMC phenotypic modulation, reducing ROS produc-
tion, and protecting endothelium. And, based on different 
shift strategies, the future directions should be considered 
separately as depiction of Figure 11.
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Figure 11.  The promising treatment of atherosclerosis in development and the trends.
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