Skip to main content
. 2022 Mar 28;81(19):27631–27655. doi: 10.1007/s11042-022-12500-3

Table 3.

Selected hyper-parameters for various ML classifiers

Classifier Hyper-parameter(s) Value
SVM Regularization Constant (C) 1.0
Decision function shape One versus rest
Gamma Scale
Kernel Radial basis function
Tolerance 0.001
LogisticRegression regularization constant (C) 1.0
Penalty l2
Tolerance 0.0001
KNeighborsClassifier Metric Minkowski Distance
# of Neighbors 3
Weights Uniform
DecisionTreeClassifier Criterion Gini
Max Depth 5
Min Samples Leaf 1
Min Samples Split 2
Splitter Best
RandomForestClassifier Bootstrap True
Criterion Gini
Max Depth 20
Max Features 10
N Estimators 1000
XGBClassifier Base Score 0.97
Booster Gradient Boosting Tree
Max Depth 3
N Estimators 1000
Objective Logistic Regression