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A B S T R A C T   

The outbreak of novel corona virus 2019 (COVID-19) has been treated as a public health crisis of global concern 
by the World Health Organization (WHO). COVID-19 pandemic hugely affected countries worldwide raising the 
need to exploit novel, alternative and emerging technologies to respond to the emergency created by the weak 
health-care systems. In this context, Artificial Intelligence (AI) techniques can give a valid support to public 
health authorities, complementing traditional approaches with advanced tools. This study provides a compre-
hensive review of methods, algorithms, applications, and emerging AI technologies that can be utilized for 
forecasting and diagnosing COVID-19. The main objectives of this review are summarized as follows. (i) Un-
derstanding the importance of AI approaches such as machine learning and deep learning for COVID-19 
pandemic; (ii) discussing the efficiency and impact of these methods for COVID-19 forecasting and diag-
nosing; (iii) providing an extensive background description of AI techniques to help non-expert to better catch 
the underlying concepts; (iv) for each work surveyed, give a detailed analysis of the rationale behind the 
approach, highlighting the method used, the type and size of data analyzed, the validation method, the target 
application and the results achieved; (v) focusing on some future challenges in COVID-19 forecasting and 
diagnosing.   

1. Introduction 

After recognizing the COVID-19 outbreak in Wuhan, China, as a 
Public Health Emergency of International Concern in the month of 
December 2019, the World Health Organization (WHO) declared it an 
epidemic on January 30th, 2020, and a pandemic on March 12th, 2020. 
Since then, COVID-19 spread exponentially all over the world, causing 
worldwide travel restrictions, as well as mandatory lockdown in many 
cities. 

COVID-19 severely affected countries worldwide, causing enormous 
problems in the health systems due to the exceptional magnitude of the 
pandemic. Overwhelmed hospitals, exhausted physicians and nurses, 
shortage of medical supplies and of detection tools, among which 
COVID-19 testing kits and screening tools, made the battle against the 
pandemic difficult and often ineffective, not able to reduce the disease 
spreading. 

COVID-19 pandemic made clear that advanced and emerging tech-
nologies are required to respond to the emergency and to tackle the 
challenges due to the weak health-care systems and financial burden. 

In this context, Artificial Intelligence (AI) techniques can give a valid 
support to public health authorities, complementing traditional ap-
proaches with advanced tools, in the difficult tasks of COVID-19 
detection, spreading, monitoring, diagnosing, screening, surveillance, 
and contact tracing. 

Artificial intelligence is defined as a technology that allows com-
puters to imitate human intelligence to perform tasks commonly asso-
ciated with intelligent beings, such as learning and problem solving. 

In the recent years, the use of AI-based tools is having a key role in 
improving the management and the solution of several issues and 
problems of the health sector like medical image inspection, precision 
medicine, epidemics prevention and spreading, as well as for disease 
detection and prevention. COVID-19 created a global health emergency 
where the importance and key role of AI-driven intelligent systems has 
been drastically increased in the last year. As such, the challenges arisen 
by the COVID-19 emergency in terms of tracing of the infection or the 
prediction of its diffusion and the way it would spread, together with the 
evaluation of the effects of restrictive measures and lockdown, have 
produced several and promising research activities using artificial 
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intelligence techniques. 
In this context, disease prediction and spreading is still a tough 

concern in the healthcare field. Providing prediction systems that can 
accurately anticipate and diagnose virus spreading remains a chal-
lenging task. Nevertheless, the integration of medical expertises within 
AI-driven algorithms could represent an effective solution to address the 
challenges and issues arisen by COVID-19. The huge availability of data 
produced by the pervasiveness of IT tools and devices, together with the 
ever-increasing computing power, made possible the implementation of 
AI-based solutions that exhibited an exceptional performance in 
addressing many of the above mentioned issues. 

1.1. Scope of the survey and contributions 

The purpose of this review is to provide a comprehensive description 
of the application and effectiveness of AI technologies for forecasting, 
detecting, and diagnosing COVID-19. The study investigates and dis-
cusses an extensive collection of papers published in the last year with 
the aim of giving an overview of how AI can help fighting COVID-19 
pandemic. 

In particular, the review has been conducted by trying to answer to 
the following questions: (i) which are the emerging AI technologies used 
to forecast COVID-19? (ii) What is the effectiveness of such methodol-
ogies? We explore these questions, with the following contributions:  

• This is the first exhaustive and focused survey concerning only a very 
specific topic that is COVID-19 forecasting through AI techniques. In 
fact, even if there are some other interesting surveys focusing on the 
role of AI techniques in the battle against COVID-19, they cover a 
more broader spectrum of applications and topics. For example, the 
survey of Dagliati et al. [1] focuses on collaborative data in-
frastructures to support COVID-19 research. The survey of Combi 
et al. [2] presents a taxonomy based on methodologies and tech-
niques for classifying intelligent information systems and AI tech-
niques state-of-the-art for COVID-19 data-intensive applications.  

• In comparison with other similar surveys focusing only on AI based 
approaches for forecasting COVID-19, we provide an extensive 
background description of such techniques, which can help non- 
expert to better understand and grasp the underlying concepts.  

• For each work surveyed, we provide a detailed analysis of the 
rationale behind the approach, highlighting the method used, the 
type and size of data analyzed, the validation method, the target 
application and the results achieved.  

• We summarize the main research contributions related to the role of 
AI in the COVID-19 forecasting by reporting in Table 3 the main 
features of the approaches, in order to guide the reader through the 
principal literature results about the targeted topics.  

• Finally, based on the selected literature review we conclude that, 
even if several applications addressing COVID-19 issues have been 
proposed, only few of them are currently mature enough to be used 
in practice. We report the main limitations of current approaches, 
including interpretability and learning from limited labeled data. We 
also draw some suggestion for future works. 

The paper is organized as follows. In the next section, an overview of 
the already published reviews on the use of AI techniques for COVID-19 
is reported and the main differences with this survey are highlighted. In 
Section 3 we describe the main AI learning techniques used by re-
searchers to deal with the coronavirus pandemic and recall the evalua-
tion measures used to assess the results of the experimentations. Section 
4 provides summary statistics and information regarding the algorithms 
described in the survey, including publication venues. In Section 5 we 
give a detailed review of the works in the literature discussing models, 
methods and results obtained for COVID-19 forecasting and tracking. 
Section 6 provides a conclusive discussion about the main limitations of 
the reviewed approaches also outlining some advices for future 

researches. Section 7 concludes the survey. 

2. Related reviews 

To the date of writing this paper, a number of researches conducted 
reviews of the approaches proposed for tackling the pandemic by 
exploiting artificial intelligence methods. Most of the related reviews 
cover different medical research aspects to help fighting against COVID- 
19, such as screening, image analysis, vaccine and drug development. In 
the following, a description of the most significant and recent reviews is 
reported. 

Chen et al. [3] performed a review where different areas in which AI 
has been used are discussed. In this survey, authors investigated the 
main scope and contributions of AI in combating COVID-19 from the 
aspects of disease detection and diagnosis to virology and pathogenesis, 
drug and vaccine development, epidemic and transmission prediction. 
In addition, they also summarize the available data and resources that 
can be used for AI-based COVID-19 research. Finally, the main chal-
lenges and potential directions of AI in fighting against COVID-19 are 
discussed. 

In Naude et al. [4] the limitations, constraints and pitfalls for 
application of AI in battling the disease are discussed. State-of-the-arts of 
a wide range of applications of AI and big data for the pandemic is 
presented in [5]. In Alamo et al. [6], data-driven methods for moni-
toring, modeling and forecasting the pandemic are described. A dis-
cussion on how big data can help to manage the pandemic is presented 
in [7]. In [8], a review on the data science approaches to combat the 
disease is presented. 

The survey of Dagliati et al. [1] focuses on collaborative data in-
frastructures to support COVID-19 research. The authors highlighted the 
current state-of-the art and the open issues of data sharing, data privacy 
regulations and governance, pointing out the problem of data interop-
erability due to the heterogeneity in terms of data formats and stan-
dards, healthcare processes modeling and representation, shared 
procedures. 

In Combi et al. [2] is presented a survey about the state-of- the art of 
AI and clinical information systems to support the management of 
COVID-19 patients. The authors proposed a taxonomy based on meth-
odologies and techniques for classifying intelligent information systems 
and AI techniques for COVID-19 data-intensive applications. According 
to such a taxonomy, in the paper are described the main features of the 
applications like data collection, machine learning, natural language 
processing, process mining and pathway identification, decision support 
systems. With respect to other surveys, Combi et al. provided a slightly 
more technically-oriented survey mainly focusing on computer science 
oriented bibliography source. 

A systematic review on the diagnosis and prognosis of COVID-19 can 
be found in Wynantsm et al. [9]. The review aimed at appraising the 
validity and usefulness of published and preprint reports of prediction 
models for diagnosing COVID-19 in patients with suspected infection, 
for prognosis of patients with COVID-19, and for detecting people in the 
general population at increased risk of COVID-19 infection or being 
admitted to hospital with the disease. Another review of machine 
learning and AI algorithms for managing the pandemic with respect to 
different application scenarios is performed in [10]. 

In the work of Kumar et al. [11] AI approaches in tackling COVID-19 
under different perspectives and addressing several research topics, 
spanning from epidemiology to tracking and prediction are described. In 
Bullock et al. [12] an overview of recent studies using ML and, more 
broadly, AI, to deal with the many aspects of the COVID- 19 crisis is 
presented. Authors identified applications that address challenges posed 
by COVID-19 at different scales, including: molecular, by identifying 
new or existing drugs for treatment; clinical, by supporting diagnosis 
and evaluating prognosis based on medical imaging and non-invasive 
measures; and societal, by tracking both the epidemic and the accom-
panying infodemic using multiple data sources. Authors also review 
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datasets, tools, and resources needed to facilitate Artificial Intelligence 
research, and discuss strategic considerations related to the operational 
implementation of multidisciplinary partnerships and open science. 

The review in Alrazaq et al. [13] focused on AI methods for diag-
nosis, treatment and vaccine discovery, epidemiological modeling, pa-
tient outcome related tasks, and infodemiology. The goal of the work in 
Kamalov et al. [14] is to present the advances in machine learning 
research applied to COVID-19 by covering four major areas of research: 
forecasting, medical diagnostics, drug development, and contact 
tracing. In Nayak et al. [15] an in-depth analysis has been performed on 
the significance of deep learning for COVID-19. 

In Tayarani [16] a detailed overview on the applications of AI in a 
variety of fields, including diagnosis of the disease via different types of 
tests and symptoms, monitoring patients, identifying severity of a pa-
tient, processing COVID-19 related imaging tests, epidemiology, phar-
maceutical studies, etc. is presented. The aim of this study is to perform a 
comprehensive survey on the applications of AI in battling against 
COVID-19, covering every way that AI approaches have been employed. 

In the survey in [17] Hussain et al. summarize the current state of AI 
applications against COVID-19. The study overviews several techniques 
and methods that can be applied to various types of medical 
information-based pandemic. Specifically, the study classifies the 
existing AI techniques in clinical data analysis, including neural systems, 
classical SVM, and edge significant learning. Also, an emphasis has been 
made on regions that utilize AI-oriented cloud computing in combating 
various viruses similar to COVID-19. 

Differently from other existing surveys on the subject, this paper 
proposes a perspective from a point of view of applications for outbreak 
forecasting and spread tracking, framing the problem as a prediction 
problem by looking at the history of infections, deaths, recovery and 
other information to predict the future diffusion of the pandemics by 
means of AI techniques. Since we focus on a very specific area, the re-
view presents a high level overview of the current research, which is 
sufficiently detailed to provide an informed insight. Conversely, since 
the above cited reviews address a broader scope, they do not discuss in 
detail the different approaches in the literature, but provide only an 
overview of the leading ones. 

Nevertheless, as highlighted from all the above reviews, the devel-
opment of AI-based models to forecast, diagnose and predict COVID-19 
infections is still an open research problem. This motivated us to conduct 
a very specific review study of the current approaches proposed to 
forecast and tracking the spread and evolution of COVID-19. 

Before giving a detailed picture of the papers reviewed in this survey, 
we provide a comprehensive description of the AI techniques adopted by 
researches to deal with COVID-19 pandemic and the evaluation indexes 
used to assess the quality of the results they obtained. 

3. AI techniques to predict COVID-19 outbreak 

Artificial intelligence (AI) is a computer science research field, 
coined by the American scientist John MacCarthy in 1956, whose aim is 
to build computers that imitate human intelligence when performing 
tasks. One of the primary goals of AI is learning. Machine Learning (ML) 
and Deep Learning (DL) are two of the main learning areas in AI. 

ML is the use and development of algorithms that are able to learn 
and adapt automatically through experience and by the use of data, 
algorithms and statistical models to analyze and draw inferences from 
patterns in data. Supervised learning algorithms, in particular, build a 
model based on sample data, known as training data, in order to make 
predictions or decisions without being explicitly programmed to do so. 

Deep learning is part of a broader family of learning methods based 
on artificial neural networks in which multiple layers of processing are 
used to extract progressively higher level features from data. Deep- 
learning architectures include deep neural networks, deep belief net-
works, deep reinforcement learning, recurrent neural networks and 
convolutional neural networks. 

In recent years AI technology has been receiving a lot of interest in 
many application fields, including medicine to assist physicians and 
authorities in image inspection, surgery, medical data integration, hos-
pital management, disease-assisted diagnosis, to name a few. 

In the following, we recall and describe the main AI learning tech-
niques used by researchers to forecast the propagation of the corona-
virus infection and its effects on new cases, recoveries, deaths, and 
diagnosis. A summary of the described approaches, along with the 
acronym used for denoting them, is reported in Table 1. 

3.1. Regression 

Regression analysis [18] is a supervised learning technique based on 
statistical concepts which allows to estimate the relationships between a 
dependent variable and one or more independent variables and to model 
the future relationship between them. 

3.1.1. Linear regression 
The idea at the base of regression analysis for forecasting a time 

series Y is that there is a linear relationship with other time series X. Y is 
called regressand, forecast or dependent variable, while X the re-
gressors, predictors or independent variables. In the simplest case, the 

Table 1 
Summary of the described AI techniques and their abbreviation.   

Method Abbreviation Description 

Machine 
Learning 

Statistics 

LR Linear Regression 
MLR Multiple Linear Regression 
PR Polinomial Regression 
LoR Logistic Regression 

LASSO 
Least Absolute Shrinkage and 
Selection Operator 

Time Series 

WMA Weighted Moving Average 
ES Exponential smoothing 
AR Autoregressive process 
MA Moving Average 

ARMA AutoRegressive Moving 
Average 

ARIMA 
AutoRegressive Integrated 
Moving Average 

Prophet 
Modular regression model 
developed a Facebook 

Classification 

SVM Support Vector Machine 

LS-SVM Least Square Support Vector 
Machine 

SVR Support vector regression 
NB Naive Bayes 
EL Ensemble Learning 
XGB Extreme Gradient Boosting 
HMM Hidden Markov 
IBL Instance-Based Learning 
KNN K-Nearest Neighbor 
DT Decision trees 
CR Classification via Regression 
RF Random Forest 
Extra Trees Extremely Randomized Trees 

Deep 
Learning 

Artificial Neural 
Netwoks 

RVFL Random Vector Functional 
Link Network 

RNNs Recurrent Neural Networks 
DNNs Deep Neural Networks 

LSTMs 
Long Short-Term Memory 
Networks 

BiLSTMs 
Bidirectional Long short- 
term Memory Networks 

SLSTMs Stacked Long Short-Term 
Memory Networks 

ConvLSTM Convolutional LSTM 
GRU Gate Recurrent Unit 

CNN 
Convolutional Neural 
Network 

GAN 
Generative Adversarial 
Network 

VAE Variational Autoencoder  
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forecast variable has a linear relationship with a single variable: 

Yt = β0 + β1Xt + ε (1) 

The Eq. (1) represents a straight line where β0 is the Y-intercept, β1 is 
the slope, called the regression coefficient, and ε is the error term. The 
goal of the prediction is thus to find the values of the coefficients βi to 
obtain the best-fit regression line. The extension to the multivariable 
regression model is obtained as 

Yt = β0 + β1X1,t +…+ βkXk,t + εt (2)  

with the regression coefficients βi computed for each independent var-
iable Xi. These coefficients measure the effect of each predictor by 
considering the effects of all the other predictors. In order to build a 
model, the regression coefficients must be estimated. The least square 
principle allows to choose the values of the coefficients by minimizing 
the sum of squared errors: 

∑T

t=1
ε2

t =
∑T

t=1

(
Yt − β0 − β1X1,t − … − βkXk,t

)
(3) 

Fitting (or training or learning) the models then means finding the 
best estimates of the regression coefficients which minimize the sum of 
squared errors. The prediction of Y can thus be obtained by substituting 
the estimated coefficients through Eq. (3) in the Eq. (2) by setting ε = 0, 
i.e. 

Ŷ t = β̂0 + β̂1X1,t +…+ β̂kXk,t (4)  

3.1.2. LASSO and RIDGE regression 
LASSO (Least Absolute Shrinkage and Selection Operator) and 

RIDGE regression are regression methods that use regularization tech-
niques for obtaining more accurate predictions. Regularization is a 
technique that reduces overfitting when data has high variation. To 
achieve less variance on the test data, a penalty term is added to the best 
fit obtained from the training set and compresses the coefficients of the 
predictor variables to reduce their influence on the output variable. 
Thus, the number of variables is the same but the magnitude of their 
coefficients is reduced. 

The LASSO regression applies a shrinkage technique that shrinks the 
extreme values of the features towards the central values. LASSO con-
siders one feature at a time and uses it only if it improves the fit. The 
process penalizes such features by setting their coefficients to a very 
small value, potentially equal to zero. Thus the important features are 
automatically selected. The method optimizes the following equation 

∑n

i=1

(

Yi −
∑

j
Xijβj

)2

+ λ
∑k

j=1
∣βj∣ (5)  

where λ is the amount of shrinkage. When λ = 0 all the features are 
considered and the LASSO reduces to the linear regression that uses the 
residual sum of squares to build the predictive model. 

The RIDGE regression differs from the LASSO one in the penalty 
function which considers the square of the absolute values of the co-
efficients: 

∑n

i=1

(

Yi −
∑

j
Xijβj

)2

+ λ
∑k

j=1
β2

j (6)  

3.1.3. Logistic regression 
Logistic regression is a predictive analysis technique used when the 

dependent variable is binary, like presence/absent, yes/no. Consider the 
simplest case with two predictors, X1 and X2, and a binary variable Y. Let 
p denote the probability that Y = 1 (p = P(Y = 1)). It is assumed a linear 
relationship between the predictor variables and the log-odds (also 
called logit) of the event that Y = 1. In statistics, the logit function is the 
logarithm of the odds (a measure of the likelihood of a particular 

outcome) of the result p
1− p. This relationship can be written as: 

logb
p

1 − p
= β0 + β1X1 + β2X2 (7)  

by exponentiating the log-odds we obtain 
p

1 − p
= bβ0+β1X1+β2X2 (8)  

and applying algebraic manipulations the probability that Y = 1 is given 
as 

p =
1

1 + b− (β0+β1X1+β2X2)
(9) 

Thus, if the coefficients are fixed, it is possible to compute the 
outcome of the Y variable. 

3.2. Time series prediction 

A time series [19,20] is defined as a collection of data observed 
sequentially over time. A time series is modeled as a sequence of random 
variables Y = {Yt : t ∈ T}, with T an index set. Y is called stochastic 
process and it is assumed to satisfy the assumption of stationarity, i.e. 
the probability laws of the process do not change over time. 

Time series analysis aims to model the stochastic mechanism that 
generates the observed series and to forecast the future values of the 
series on the base of the known history of that series. Often, a time series 
is decomposed into three components: the trend, which considers the 
variable movements without taking into account seasonality or irregu-
larities; the seasonality, i.e. the periodic fluctuation of the variables; the 
residual, which is the unexplainable part of the time series. Moreover, 
time series can be univariate and multivariate. The former contains a 
single observation stored sequentially over time, the latter are used 
when more variables and their interactions are considered. 

3.2.1. Weighted Moving Average (WMA) 
A general linear process, {Yt}, is a weighted linear combination 

Yt = et +ψ1et− 1 +ψ2et− 2 +…  

where et are independent random variables with zero-mean. ψ j are 
weights assumed to form an exponentially decaying sequence ψ j = ϕj, 
where − 1 ≤ ϕ ≤ 1. Then 

Yt = et +ϕet− 1 +ϕ2et− 2 +… (10) 

If the number of weights is finite, the process is called a moving 
average process, and it is denoted as 

Yt = et + θ1et− 1 + θ2et− 2 +…+ θqet− q (11) 

This series is called a moving average of order q and it is abbreviated to 
MA(q). 

3.2.2. Autoregressive process (AR) 
An autoregressive process obtains the current value of the series Yt by 

using its past values. More in detail, a p-order auto regressive process Yt 
is obtained as a linear combination of the most recent past p values plus a 
new term, thus is satisfies the following equation: 

Yt = ϕ1Yt− 1 +ϕ2Yt− 2 +…+ϕpYt− p + et (12)  

where et is assumed to be independent of the past Yt, for every t. 

3.2.3. AutoRegressive Moving Average (ARMA) 
If the series is partly autoregressive and partly moving average, we 

obtain a mixed Autoregressive Moving Average Model satisfying the 
equation: 
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Yt = ϕ1Yt− 1 +ϕ2Yt− 2 +…+ϕpYt− p + et + θ1et− 1 + θ2et− 2 +…+ θqet− q

(13)  

{Yt} is called a mixed autoregressive moving average process of orders p 
and q and denoted as ARMA(p,q). 

3.2.4. AutoRegressive Integrated Moving Average (ARIMA) 
The above models assume stationarity, i.e. the process has a deter-

ministic trend that will persist in the future. However, in many appli-
cations such an assumption is not realistic, and time series are non- 
stationary, thus do not have a constant mean over time. 

A time series {Yt} is said to follow an integrated autoregressive moving 
average model if the d-th difference {Wt} of {Yt} is a stationary ARMA 
process. If {Wt} follows an ARMA(p,q) model, {Yt} is said an ARIMA(p, 
d,q) process [21]. For practical uses, d = 1 or at most d = 2 are adopted. 
When d = 1, {Wt = Yt − Yt− 1} and ARIMA(p,1,q) can be expressed as: 

Yt = ϕ1Wt− 1 +ϕ2Wt− 2 +…+ϕpWt− p + et + θ1et− 1 + θ2et− 2 +…+ θqet− q

(14) 

The ARIMA(p,d,q) model is thus an extension of the ARMA (p, q) 
model which combines the Auto-Regressive (AR(p)) and the Moving 
Average (MA(q)) time series models with a differencing parameter 
d used to convert a non-stationary time series into a stationary series. 

3.2.5. Exponential smoothing 
Exponential smoothing is a time series forecasting method which, 

differently from the moving average family, assigns exponentially 
decreasing weights over time to the past observations. The simplest form 
of exponential smoothing forecasts the current value of Yt as 

Yt = αet +(1 − α)Yt− 1  

where α is called the smoothing factor, with 0 ≤ α ≤ 1, et is the actual 
value, and Yt− 1 is the previous forecast value. 

3.2.6. Prophet 
Prophet is a method developed at Facebook by Taylor and Letham 

[22], available as open source software in Python and R. It is based on a 
modular time series model having three components, trend, seasonality, 
and holidays. These components are combined as the equation 

Yt = Gt + St +Ht + εt  

where Gt is the trend function modeling non-periodic changes in the 
time series values, St represents periodic changes, such as weekly and 
yearly seasonality, and Ht represents the effects of holidays. εt is the 
error term due to changes that the model cannot contemplate. As the 
authors point out, Prophet shows some advantages with respect to other 
methods, such as flexibility, which allows to make different assumptions 
regarding trends and multiple periods of seasonality. Moreover, differ-
ently from ARIMA, measurements do not need to be regularly spaced, 
thus it is not necessary to interpolate missing values. 

3.3. Classification Classification 

Machine learning (ML) is a branch of artificial intelligence that finds 
the underlying relationships among data and information [23]. Arthur 
Samuel [24] in 1959 defined ML as the field of study that gives computers 
the ability to learn without being explicitly programmed. Supervised ma-
chine learning algorithms use training examples to obtain a hypothesis, 
named also model, that estimates a class membership, able to generalize 
the hypothesis on unseen data by predicting their unknown class. 
Models can be either deterministic or probabilistic. More formally, let X 

and Y be the input and the output domains, respectively. A determin-
istic model is a function 

y = f (x; θ) (15)  

with x ∈ X , y ∈ Y and θ = {θ1,…,θD} a set of real parameters. 
A probabilistic model assumes that data input and output are random 

variables drawn from a probabilistic distribution p(x,y), which is the 
ground truth. A model distribution, which approximates the ground 
truth, is built from the data. It is then possible to compute the probability 
of a class label given an input p(y|x). This procedure is called margin-
alization. A probabilistic model refers to either discriminative model 
distribution 

p(y|x; θ) (16)  

or generative model distribution 

p(x, y; θ) (17)  

over the data. A generative model obtains the distribution from the 
dataset. 

3.3.1. Naive Bayes (NB) 
Bayesian Learning [25] is as very popular approach to learning based 

on the famous Bayes rule: 

p(a|b) =
p(b|a)p(a)

p(b)
(18)  

where a and b are random variables and p(a|b) is conditional probability 
of a given b, defined as 

p(a|b) =
p(a, b)
p(b)

(19)  

p(a,b) is the probability that both a and b occur. The term p(b|a) is called 
the likelihood, p(a) the prior, and p(a|b) the posterior. In the machine 
learning context, given a training set D with m examples, the input x and 
the output y random variables, the aim is to find a probabilistic model p 
(x,y|D) which produces the data. It is possible to apply the Bayes rule by 
replacing y by the unknown parameters θ. Thus we get: 

p(θ|D) =
p(D|θ)p(θ))

p(D)
(20)  

where p(D|θ) is the likelihood of parameters θ, p(θ) is the prior proba-
bility of θ, and p(θ|D) is the posterior of θ given data D. 

3.3.2. Support Vector Machine (SVM) 
Support Vector Machine (SVM) is a classification technique intro-

duced by Boser et al. [26] that maximizes the margin between the 
training data and the decision boundary. SVM solves a binary classifi-
cation problem by using the concept of separation hyperplane and 
finding the maximum separation margin that correctly classifies the 
training data as much as possible. The optimal hyperplane is represented 
with the support vectors. 

One of the main characteristics of SVM is the use of the so-called 
kernel trick [27]. Since often data is not linearly separable in the orig-
inal input space, data is mapped into a higher-dimensional space by 
using a kernel function ϕ. In this new space a linear separator is able to 
better discriminate between the different classes. 

Given a training set D = {(xm,ym)}m=1
M, with xm ∈ Rn, ym ∈ {− 1,1}, 

an SVM classifier satisfies the inequalities: 
{

wT ϕ(xm) + b ≥ 1 if ym = +1
wT ϕ(xm) + b ≤ − 1 if ym = − 1 (21)  

where ϕ is a kernel function. Several kernel functions can be used for the 
mapping, such as linear, polynomial, Gaussian, exponential, and Sig-
moid. Changing the kernel, allows to build new models. SVM has been 
shown to be one of the most powerful classifiers in machine learning. 
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3.3.3. Least Square Support Vector Machine (LS-SVM) 
Least Square Support Vector Machine is a variation of SVM intro-

duced by Suykens and Vandewalle [28] which solves a set of linear 
equations instead of the inequalities (21). The main advantage of this 
formulation of SVM is the higher efficiency since it transforms the task of 
solving a complex quadratic program to that of finding a solution of a set 
of linear equations. 

3.3.4. Support Vector Regression (SVR) 
SVM can be used also to deal with regression problems. As described 

in Section 3.1, in a regression problem the model returns a continuous- 
valued output instead of a set of discrete values, thus regression is a 
generalization of the classification problem. 

Support Vector Regression is an extension of SVM which introduces a 
region, named tube, around the function to optimize with the aim of 
finding the tube that best approximates the continuous-valued function, 
while minimizing the prediction error, that is, the difference between 
the predicted and the true class label. SVR uses an ε-insensitive loss 
function which penalizes predictions farther than ε from the desired 
output. Different loss functions can be used, such as linear or quadratic. 
The value of ε determines the width of the tube. 

3.3.5. Instance-based learning 
Instance-based learning (IBL) is a group of algorithms that build an 

hypothesis directly from the training instances, and perform general-
ization by comparing a new instance with instances seen in training, 
already stored in memory. These algorithms are referred to as lazy, since 
computation is postponed until a new instance is observed. An example 
of IBL classifier is the K-Nearest Neighbor (KNN), which, in order to 
assign an instance to a class, computes the similarity between the cur-
rent instance and the k nearest training instances. 

3.3.6. Decision Trees (DTs) 
Decision Trees (DTs) [29] is one of the most known classification 

method which predicts the class label of unknown instances after 
generating a tree from a set of training examples. The nodes of the tree 
are the attributes of the training set and a branch from a node corre-
sponds to one of the possible values of that attribute. A new instance is 
classified by starting from the root of the tree, testing the value of its 
attributes, and following the branch down along the tree having the 
same attribute value of that example. 

Classification via Regression (CR) is a variant of a decision tree clas-
sifier proposed by Frank et al. [30], which has linear regression func-
tions at the leaves of the tree. 

3.4. Ensemble Learning 

Ensemble Learning is a machine learning methodology which uses 
multiple learning methods, named weak learners or base models, to 
improve the predictive capability of each constituent learning algo-
rithm. There are two main ensemble strategies: bagging [31] and 
boosting [32]. In bagging (bootstrap aggregating) the models have equal 
weights and are trained on bootstrap samples of the same training set 
size, i.e. examples are randomly chosen by allowing replacement, 
meaning that an example can occur multiple times. 

Random Forests (RFs) is a bagging ensemble learning method that 
generates several decision trees during the training phase and returns as 
result the mean prediction of the individual trees. Extremely Randomized 
Trees, also referred as extra trees, is another ensemble method that 
changes the tree generation by introducing more variation, such as tree 
depth. 

In boosting weak learners are sequentially combined in an adaptive 
way, i. e. each model gives more importance to the misclassified ex-
amples by assigning lower weights to correctly classified examples and 
higher weights to examples difficult to classify. AdaBoost [33] is the 
most known boosting method. 

Gradient Boosting (GB) is an ensemble method that builds weak 
learners by optimizing a suitable cost function. XGBoost is an efficient 
implementation of Gradient Boosting which obtains more accurate 
predictions. 

Stacking ensemble is a variation of ensemble learning whose main 
characteristic is the combination of different types of weak learners. 

3.5. Artificial Neural Networks (ANNs) 

Artificial Neural Networks have been proposed since 1940s as a 
simplified model of the human brain. However, it was only in 2006, after 
the paper of Hinton et al. [34] proposing the deep neural networks 
(DNNs), that the research in the field propagated very fast. Let w be a 
vector containing the parameters and x the input, ANNs can be mathe-
matically considered as a nonlinear regression model f(x) = φ(w,x), 
where φ is a nonlinear model function. 

Perceptrons are the basic units of ANNs. Their model function is 
computed as 

f (x;w) = φ
(
wT x

)
(22) 

The nonlinear function φ is called activation function. Training the 
perception model is done by updating the weights as follows: 

wt+1
i = wt

i + η
(
ym − φ

(
xT wt) )xm

i (23)  

where η is the learning rate. The perception model, however, is not able 
to deal with nonlinearly separable functions, thus since its definition in 
early 1960s, several extensions have been proposed. 

Feed-Forward Neural Networks where one of the first ones, with a 
model function of the form 

f (x;W1,W2,…) = …φ2 (W2φ1(W1x) )… (24)  

where φ1, φ2, … are nonlinear activation functions, Wi are weight 
matrices containing the parameters, and the points indicate that there 
can be an arbitrary number of nested functions. Popular activation 
functions are the Rectified Linear Unit ReLU φ(x) = max (0,x), the hy-
perbolic tangent, the sigmoid φ(x) = 1

1+e− x. 
For a labeled training D = {(xm,ym)}m=1

M, the square loss for a single 
hidden layer is computed as 

C(W1,W2,D) =
∑M

m=1

(
φ2
(
WT

2 φ1
(
WT

1 xm) ) − ym )2 (25) 

Random Vector Functional Link Netwok (RVFL) is a special single 
hidden layer feed-forward neural network proposed by Pao et al. [35], 
where the output weights are chosen as an adaptable parameter. 

3.5.1. Recurrent neural networks (RNNs) 
Feed-forward neural networks are organized in layers where infor-

mation is fed forward through layers. A recurrent neural network is rep-
resented as a graph of units, all connected to each other, which are 
updated in discrete time steps at the same time. Thus the input is 
interpreted as the set of units at time t = 0 while the output is given by 
some units at time T. The hidden units have the role of computational 
function. The state of the G hidden units can be described as ht = (h1

t,…, 
hG

t)T, and after each update, it is given by: 

ht+1 = φ
(
WT ht) (26)  

where W is the G × G matrix containing the weights and φ is a nonlinear 
activation function. 

3.5.2. Long Short-term Memory Networks (LSTMs) and variants 
RNN are particularly apt to analyze sequential data and thus for 

temporal forecasting applications. However training could be chal-
lenging because of the problem of exploding and vanishing gradients 
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and they are unable to model long term dependencies [36]. Long Short- 
term Memory networks [37] tries to address these problems by intro-
ducing the concepts of memory cells ct and new gate units, i.e. the input 
gate it, the output gate ot, and the forget gate ft. The forget gate decides 
what can be propagated from the previous memory units, the input gate 
which information must be accepted, the output gate generates the new 
long-term memory. Given the input sequence xt and the number h of 
hidden units, the gates are defined as follows:  

• input gate: it = σ(xtWxi + Ht− 1Whi + bi)  
• forget gate: ft = σ(xtWxf + Ht− 1Whf + bf)  
• output gate: ot = σ(xtWxo + Ht− 1Who + bo)  
• intermediate cell state: ̃ct = tanh(xtWxc + Ht− 1Whc + bc)

• cell state ct = ft∘ct− 1 ∘̃ct  
• new state: ht = ot ∘ tanh (ct) 

where ∘ is the element wise multiplication, Wxi, Wxf, Wxo, Whi, Whf, Who 
are the weight parameters, and bi, bf, bo the bias parameters. The sigmoid 
σ and tangent functions tanh are the activation functions. 

The bi-directional LSTM (BiLSTM) is an extension of LSTM which 
takes into account not only the backward context, but also the forward 
one. 

The Gate Recurrent Unit (GRU) [38] model improves the LSTM per-
formance by reducing the number of LSTM parameters and by merging 
the input and forget gates from the LSTM model. 

Stacked LSTM [39] is another extension of LSTM, also known as 
multilayer fully connected structure, which combines multiple LSTM 
layers, where each intermediate layer output is used as an input for next 
LSTM layer. Stacked LSTM gives the output for each time stamp and not 
a unique output for all time stamps. 

3.5.3. Convolutional Neural Networks (CNNs) 
Convolutional Neural Network [40] is a feed-forward network using 

three main layers: the convolutional and the pooling, which are used to 
reduce the complexity, and the fully connected layer, which is a flat-
tened layer connected to the output. The term convolutional comes from 
the mathematical convolution operation, which, given two functions, 
produces a new function providing how the shape of one is modified by 
the other. In can be considered as a specialized type of linear operator. 
Convolutional operation is used in place of matrix multiplication. 

Generative Adversarial Network GAN is a learning model composed of 
two neural networks, the generative network which generates candidate 
solutions, and the discriminative network which evaluates them. 

An autoencoder is an artificial neural network which learns efficient 
codings, generally using dimensionality reduction techniques, of unla-
beled data. The encoding is evaluated and improved by trying to 
regenerate the input from the encoding. The model is trained with the 
objective of minimizing the error between the encoded-decoded data 
and the original data. 

A Variational Autoencoder (VAE) is an autoencoder which regularizes 
the training to avoid overfitting and improves the generative process. 

3.6. Evaluation metrics 

In this section we summarize the evaluation indexes adopted in the 
described papers for assessing the quality of the results obtained by the 
approaches. The main evaluation metrics are reported in Table 2, along 
with their mathematical equation defining them. 

Let yt, t = 1, …, T, be the actual values of a measurement, y their 
mean value, ŷt the predicted values, k the number of regressors, and T 
the number of measurements. Moreover, let TP denote the true positive 
cases, i.e. the number of persons that truly have COVID-19 infection, FP 
the false positive cases, i.e. the number of persons that don't have the 
infection, but a classifier mistakenly identified them as infected, TN the 
true negative cases, i.e. the number of persons that don't have COVID- 

19, and the classifier correctly identified them, FN the false negative 
cases, i.e. the number of persons that have COVID-19, but the classifier 
did not identify them. 

The Receiving Operating Characteristics (ROC) is a graphical repre-
sentation of the ability of a binary classifier when a discrimination 
threshold is varied. The ROC curve plots the true positive rates against 
increasing values of the false positive rate. The Area Under the Curve 
(AUC) measures the performance of the binary classifier. Its value 
ranges between 0.5 and 1, where 0.5 means that the classifier behaves 
like a random classifier, while 1 that it is perfect, i.e. its error rate is zero. 

4. Material and method 

This study aimed at providing a comprehensive review of methods, 
algorithms, applications, and emerging technologies that can be utilized 
for forecasting, monitoring, diagnosing, and tracking COVID-19. 

Given the fast-moving nature of the epidemics, we attempted to be 
comprehensive in the literature coverage. For this reason, many of the 
articles cited are still preprints at the time of writing. The review was 

Table 2 
Evaluation metrics for assessing the results of the reviewed algorithms.  

Evaluation Metric Equation 

Mean Absolute Error (MAE) MAE=
1
T
∑T

t=1
∣yt − ŷt ∣ 

Normalized Absolute Error (NAE) 
NAE=

1
T
∑T

t=1

⃒
⃒yt − ŷt

⃒
⃒

yt 
Maximum Difference (MD) 

MD=
1
T

max

(
∑T

t=1

(
yt − ŷt

)

Mean Square Error (MSE) MSE=
1
T
∑T

t=1

(
yt − ŷt

)2 

Laplacian Mean Square Error 
(LMSE) LMSE=

1
T
∑T

t=1

(
yt − ŷt

)2

1
T
∑T

t=1

(
yt
)2 

Mean Absolute Percentage Error 
(MAPE) MAPE=

1
T
∑T

t=1
∣
yt − ŷt

yt
∣*100 

Structural Content (SC) 

SC=1 −

1
T
∑T

t=1

(
yt
)2

1
T
∑T

t=1

(
ŷt
)2 

Peak Signal to Noise Ratio 
PSNR = 10 log 10 

(
max

(
yt
)2

MSE

)

Relative Mean Bias Error (rMBE) 
rMBE=

∑T
t=1
(
yt − ŷt

)

∑
yt

*100 

Root Mean Square Error (RMSE) 
RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T
∑T

t=1

(
yt − ŷt

)2
√

Root Mean Square Log Error 
(RMSLE) RMSLE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T
∑T

t=1

(
log
(
yt
)
− log

(
ŷt
) )2

√

relative Root Mean Square Error 
(rRMSE) 

rRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T
∑T

t=1

(
yt − ŷt

)2
√

1
T
∑T

t=1
yt

*100 

Coefficient of determination R 
squared R2 = 1 −

∑T
t=1
(
yt − ŷt

)2

∑T
t=1
(
yt − y

)2 

Adjusted Coefficient of 
determination R squared R2

Adjusted = 1 −
T − 1

T − k − 1

∑T
t=1
(
yt − ŷt

)2

∑T
t=1
(
yt − y

)2 

Accuracy (Acc) Acc =
TP + TN

TP + TN + FP + FN 
Precision (P) or Positive Predictive 

Value (PPV) 
P =

TP
TP + FP 

Recall (R) or Sensitivity R =
TP

TP + FN 
F-measure F − measure =

2*Precision*Recall
Precision + Recall 

Specificity (SPC) SPC =
TN
N 

Negative Predictive Value (NPV) NPV =
TN

TN + FN 
Matthews Correlation Coefficient 

(MCC) MCC =

(TP × TN) − (FP × FN)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√
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guided by the procedures stated by [41] namely; search strategy, study 
selection (inclusion/exclusion criteria), study eligibility, and quality 
assessment. The review of literature is carried out on databases of Sci-
enceDirect (SD), IEEE Xplore, Web of Science (WoS), Google Scholar, 
Scopus, PubMed, ACM Digital Library, arXiv and medRxiv. The search 
has been conducted using keywords related to the detection and pre-
diction of COVID-19 under the concept of AI like: Coronavirus, artificial 
intelligence, machine learning, deep learning, COVID-19, forecasting, pre-
diction, tracking, spreading, time-series prediction. 

A comprehensive literature search was conducted in the above 
mentioned databases for English language papers published from 
February 2020 to March 2021. We selected peer-reviewed articles, both 
journal and conference papers, and pre-prints. These articles were 
further screened based on title and abstract to check their compatibility 
with the targeted topics. The main focus of the search was on systems, 
algorithms, methods and techniques for the forecasting of COVID-19 
spread. The applications mainly target on the detection, diagnosis, 
classification and prediction of COVID-19 cases, in terms of daily new 
cases, number of deaths, number of recovered. We excluded incomplete 
articles, and application papers with limited achieved results. The 
relevant articles were subjected to a full reading process for collecting 
and extracting relevant research publications for the review. As result of 
the search, we collected the latest research about forecasting of COVID- 
19 exploiting artificial intelligence methods. 

After applying the inclusion as well as exclusion procedures, a total 
number of 146 papers have been considered for the final study. Different 
techniques of ML and DL have been used in the papers: 61% of the 
techniques are ML related, and 39% are DL related. The graphs in Figs. 1 
and 2 show the specific ML or DL methods used, respectively. Fig. 1 
highlights that ARIMA is the most used technique with a percentage of 
13%, followed by SVR (8%), SVM (7%), Naive Bayes and MLP (5%). 
Fig. 2 shows that LSTM is the most used deep learning method with a 
percentage of 29%, followed by ANN with 16%, RNN and NN with 8%, 
CNN 6%, and Bi-LSTM 5%. 

The selected papers are published by different editors like IEEE, 
Elsevier, Springer, MDPI, and some others, while for preprints Medrxiv 

and arXiv are considered; 26% of the papers are preprints and 74% are 
peer reviewed articles and conference proceedings. Fig. 3 shows that 
Elsevier largely surpasses all others with 33% of publications, followed 
by Springer with 10% and IEEE with 8%. 

Of the 146 papers selected, we removed preprints and chose the most 
significant and representative for each of the main ML and DL tech-
niques. In total 38 papers have been selected to undergo a more in-depth 
study. An analytical review of those 38 papers is reported in Section 5 
and summarized in Table 3. Papers have been categorized on the basis of 
the AI method they used and described in the appropriate section ac-
cording to the classification. However, some of the papers implemented 
more AI methods, thus, the classification includes the different methods 
used. In Section 5.5 the remaining 146 papers, either preprint at the time 
of writing, or reporting experimentations on few available data at the 
publication time, are overviewed. 

5. Literature review 

In this section we review the works in the literature discussing 
models, methods and applications of machine learning or deep learning 
techniques for COVID-19 forecasting and tracking, selected following 
the procedures discussed in Section 4. Differently from previous reviews 
regarding COVID-19, the one proposed in this paper focuses on a very 
specific topic, that is COVID-19 forecasting exploiting DL and ML 
methods. Accordingly, data extraction and classification of the selected 
studies, were conducted to evaluate the efficacy of the approaches in 
terms of COVID-19 detection, diagnosis, forecasting and spreading 
throughout AI enhancements, such as learning, regression and predic-
tion. In particular, a detailed analysis of the 38 selected papers is pro-
vided throughout the section, grouping the different works according to 
the AI category employed. For each study in the literature, we extracted 
the most important features like the method implemented, the data type 
and size used, the evaluation methods adopted, the accuracy for each 
method, the results achieved. For each study, the features are summa-
rized in Table 3, while in Section 5.5 the rest of the 146 papers, including 
preprints, are overviewed. 

Fig. 1. ML techniques used for COVID-19 forecasting.  
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5.1. Time series methods 

Kumar et al. [42] present an evaluation study for predicting COVID- 
19 cases in the 10 counties which had the higher number of infected 
people in the early 2020, namely US, Spain, Italy, France, Germany, 
Russia, Iran, United Kingdom, Turkey, and India. The authors collected 
the reported daily COVID-19 confirmed, recovered, death, and active 
cases for these 10 countries from March 1st until May 20th, down-
loading them from the COVID-19 data repository managed by the Johns 
Hopkins University Center for Systems Science and Engineering (JHU 
CSSE) [43]. The authors considered two times series forecasting models, 
ARIMA [21] and Prophet [22], to obtain predictions and evaluated the 
quality of the results by using statistical measures. The results showed 
that ARIMA obtains better performance than Prophet, for most of the 
countries. For instance, the MAPE value of the active cases in Iran is 2% 
while that of Prophet is 82%. However, the main problem of ARIMA is 

that the authors used a different value for the order of the autore-
gression, i.e. the number of previous days necessary for finding the 
parameters. 

Singh et al. [44] performed an experimental study to predict the 
daily cases of infections for five countries, namely Italy, Spain, France, 
United Kingdom, United States of America, by applying as prediction 
models the autoregressive integrated moving average (ARIMA) and the 
least square support vector machine (LS-SVM). The prediction results 
were validated by comparing them with the true confirmed data and 
computing the mean absolute error (MAE), the mean square error 
(MSE), the root mean square error (RMSE), and the coefficient of 
determination (R2). The results showed that the values obtained by 
using the LS-SVM model are much better than those obtained by 
applying ARIMA. 

Wang et at. [45] propose to combine the Logistic model of popula-
tion growth and the Prophet model with the aim of improving the long- 
term prediction capability of the time series model in order to obtain a 
reliable epidemic curve and trend of the epidemic. The authors consider 
epidemiological data from January until June 16, 2020, and present 
results for global countries, Brazil, Russia, India, Peru and Indonesia. 

The logistic growth forecasting model is based on the following 
equation: 

dQ
dt

= rQ
(

1 −
Q
K

)

(27)  

where Q is the population size, r the intrinsic growth rate, and K the 
maximum population size that the environment could carry. dQ/dt 
represents the growth of the population. r and K are constants, while the 
value of Q follows a typical S-shaped curve with a rapid increase at the 
beginning reaching a maximum value, denoted as cap. This cap marks a 
critical point after which the disease transmission begins to decline. The 
cap value computed by the logistic model is given as input to Prophet to 
obtain the epidemic curve and predict the epidemic trend. Prediction 
results are reported until December 2020. However, it worth pointing 

Fig. 2. DL techniques used for COVID-19 forecasting.  

Fig. 3. Editor distribution of the publications.  
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Table 3 
Summary of methods.  

Publication Method Data Types Data size Output Validation 
method 

Result 

Abdulaal et al.  
[154] 

ANN Demographics, 
comorbidities, smoking 
history 

398 patients - hospital 
admissions for SARS-CoV-2, 
February 2–April 22, 2020, 
West London teaching hospital 

Patient-specific 
mortality risk 

Acc, R, SPC, P, 
NPV, ROC 
AUC 

86.25%Acc, 87.50% R, 
85.94% SPC, 60.87% P, 
96.49% NPV, 90.12% 
AUC 

Abdulkareem 
et al. [68] 

SVM,RF,NB 18 laboratory findings 
from the Hospital 
Israelita Albert Einstein 
at Sao Paulo, Brazil 

600 patients COVID-19 cases Acc, P, R, 
AUC, F- 
measure 

SVM outperforms other 
methods: 95% Acc, 95% 
AUC, 94% F-measure 

Ahamad et al.  
[61] 

XGB, DT, RF, SVM, 
GBM 

COVID-19 patients 
clinical data 

6512 patients from 7 provinces 
in China 

Prediction of positive 
patients 

P, R, F- 
measure, AUC 

XGB outperforms other 
methods 

Alakus et al.  
[51] 

ANN, CNN, LSTM, 
RNN, CNNLSTM, 
CNNRNN 

18 laboratory findings 
from the Hospital 
Israelita Albert 
Einstein, Sao Paulo, 
Brazil 

600 patients COVID-19 cases Acc, P, R, 
AUC, and F- 
measure 

CNNLSTM outperforms 
other methods: 92.30% 
Acc, 90% AUC, 93% F- 
measure 

Aljame et al.  
[77] 

RF, LoR, XGB Routine blood tests 5644 data samples from Albert 
Einstein Hospital, Brazil 

COVID-19 diagnosis Acc, AUC, R, 
SPC 

XGBoost outperforms 
other methods: 99.88% 
Acc, 99.38% AUC 

Ardabili et al.  
[87] 

LoR, LR, 
logarithmic, 
quadratic, cubic, 
compound, power 
and exponential 
regressors, MLP, 
ANFIS 

COVID-19 daily cases in 
Italy, Germany, Iran, 
USA, and China 

30 days COVID-19 daily cases RMSE, 
Correlation 
coefficient 

MLP outperforms other 
methods 

Arpaci et al.  
[63] 

NB, LoR, IBk, CR, 
PART, DT 

14 clinical features 114 patients COVID-19 daily cases CCI, P, R, F- 
measure, AUC 

CR outperforms other 
methods 

Assaf et al. [64] ANN, RF, CR, DT Patients demographics, 
clinical data 

6995 patients COVID-19 Death and 
critical cases 

R, SPC, P, 
NPV, Acc, 
AUC 

RF outperforms other 
methods: R, SPC, P, NPV 
and Acc of 75.0%, 95.8%, 
75.0%, 95.8% and 92.9%, 
respectively, 93%AUC 

Brinati et al.  
[65] 

DT, ExtraTrees, 
KNN, LoR, NB, RF 

Routine blood exams 279 patients Positive or negative 
cases 

Acc, P, R, SPC, 
AUC 

RF outperforms the other 
classifers: 82% Acc, 92% 
R, 83%P, 65% SPC, 84% 
AUC 

Burdick et al.  
[76] 

XGBC Clinical data (textual) 197 patients of 5 US hospitals, 
March 24 to May 4, 2020 

Prediction of need for 
invasive mechanical 
ventilation of COVID- 
19 patients within 24 
h of an initial 
encounter 

AUC, P, R, SPC Outperforms MEWS 
approach 

Casiraghi et al.  
[80] 

RF Symptoms, clinical 
history, comorbidities, 
laboratory 
measurements, 
saturation/oxygen 
values, patients data 

301 patients, March 7–April 10, 
2020 

COVID risk prediction AUC, R, SPC, 
Acc, F- 
measure 

Outperforms linear 
models 

Chakraborty 
et al. [59] 

LR, PR COVID-19 cases and 
deaths per day 

January 30–April 19, 2020 COVID cases and 
deaths 

R2, MAE, 
RMSE, MSE 

PR outperforms LR 

Chaurasia et al.  
[66] 

NB, MA, ES, Holt's 
linear, Holt- 
Winters, ARIMA 

Number of COVID-19 
cases and deaths per 
day 

January 22 to May 28, 2020 COVID-19 deaths RMSE NB outperforms other 
methods 

Devaraj et al.  
[48] 

ARIMA, LSTM, 
SLSTM, Prophet 

COVID-19 cases per day 
from John Hopkins 
University, World 
Weather Page, 
Wikipedia 

Global-wide, country and city 
specific analysis data from 22nd 
Jan 2020 to 8th May 2020. 
Simulated dataset for seven 
cities for the months of May, 
June, July, August 2020. All 
countries data from January 
2020 to September 2020. 

COVID-19 cases, 
deaths, recovery for 
India and Chennai 

RMSE, MAE, 
MAPE, R2 

SLSTM outperforms other 
methods, ARIMA 
outperforms LSTM. 

dos Santos 
Gomes et al.  
[71] 

Kalman filter, fuzzy 
clustering 

Daily deaths in Brazil February 29–May 18, 2020 Death cases RMSE, MAE, 
RMSPE, R2, 
MAPE 

Outperforms contestants 
methods 

Farooq et al.  
[52] 

ANN COVID-19 cases, deaths 
and recoveries, rate of 
vaccination 

30th January - 13 June 2020, 
total cases in India is 308,993 
with 154,330,154,330 
recoveries and 8884 deaths 

Rate of infection, rate 
of recovery, rate of 
death 

Simulation Reduce the number of 
deaths to 1.3 million from 
55 million, if mobility and 
contact is made 5 times to 
that of the lockdown 
period 

Gao et al. [62] Mortality Risk 
Prediction 
ensemble Model 

EHRs in 4 China 
hospitals 

2160 patients Prediction of 
physiological 
deterioration and 

Acc, AUC AUC ranges from 0.9186 
to 0.9762 in the three 
validation cohorts 

(continued on next page) 

C. Comito and C. Pizzuti                                                                                                                                                                                                                      



Artificial Intelligence In Medicine 128 (2022) 102286

11

Table 3 (continued ) 

Publication Method Data Types Data size Output Validation 
method 

Result 

(MRPMC) 
including: EL, LoR, 
SVM, GBDT, NN 

death up to 20 days in 
advance 

Gupta et al. [53] LSTM Time series of number 
of COVID-19 cases and 
deaths 

January 22–October 9, 2020 COVID-19 cases and 
deaths 

RMSE RMSE: 0.0766–0.0533, 
outperforms SVM and DT 

Hasan et al. [79] ANN, EEMD COVID-19 cases, 
deaths, recovery 

January 22–May 18, 2020, 
Center for Systems Science and 
Engineering (CSSE) at the Johns 
Hopkins University 

Confirmed, death, 
recovery cases 

MSE, R2, Acc Outperforms traditional 
statistical analysis 

Hazarika and 
Gupta [88] 

MLP COVID-19 daily cases in 
Brazil, India, Peru, 
Russia, USA 

April 11–July 10, 2020 COVID-19 cases RMSE, MAE, 
R2, PSNR, SC, 
MD, LMSE, 
NAE 

Comparable or better 
results than SVR and RVFL 

Hernandez et al.  
[46] 

ARIMA COVID-19 daily cases 145 countries, 1 M people. From 
the day each country presented 
the first case of COVID-19 to 
May 28, 2020 

COVID-19 daily cases RMSE RMSE: 144.81 

Khanda et al.  
[67] 

SVM, NB, LoR, DT, 
RF, EL 

Clinical textual reports 212 patients Classification of texts 
into four different 
categories: COVID, 
SARS, ARDS and both 
COVID, and ARDS. 

Acc, P, R, F- 
measure 

LoR and NB showed better 
results than other methods 
with 96.2% Acc, 94% P, 
96% R, 95% F-measure. 

Kumar et al.  
[42] 

ARIMA, Prophet COVID-19 cases in SP, 
IT, FR, DE, RS, Iran, UK, 
Turkey,India 

March 1st-May 20th, 2020 COVID-19 confirmed, 
active, recovered, 
death cases 

MAE, RMSE, 
RRSE, MAPE 

ARIMA outperforms 
Prophet 

Meng et al. [54] CNN, LoR Clinical data and CT 
images 

366 severe or critical COVID-19 
patients 

Survival probability AUC, Acc, R, 
SPC, Kaplan- 
Meier analysis 

AUC: 0.952 (95% 
confidence interval, 
0.928–0.977) on the 
training set and 0.943 
(0.904–0.981) 

Pinter et al. [60] ANFIS, MLP-ICA COVID-19 cases and 
death rate in Hungary 

4 March - 19 April 2020 COVID-19 cases and 
deaths 

R2, MAPE, 
RMSE 

MLP-ICA outperforms 
ANFIS 

Pourhomayoun 
et al. [78] 

SVM, ANN, RF, DT, 
LR, KNN 

Clinical, demographic 
and physiological data 

2,670,000 laboratory- 
confirmed COVID-19 patients 
from 146 countries around the 
world including 307,382 
labeled samples 

Predict the mortality 
of patients with 
COVID-19 

Acc, R, SPC 89.98% Acc 

Ramchandani 
et al. [83] 

NN Census data, intra- 
county mobility, inter- 
county mobility, social 
distancing data, past 
growth of infection in 
US 

April 5th-June 28th 4 COVID cases 
increase classes: 
negligible, moderately 
low, moderately high, 
significantly high 

Acc 63.7% Acc on the test set: 
12–28 June 

Ren et al. [81] Singular spectral 
analysis 

COVID-19 daily cases January 22–April 11, 2020, COVID-19 Daily cases Singular 
spectral 
analysis 

Efficay of the proposed 
model 

Ribeiro et al.  
[69] 

ARIMA, CUBIST,RF, 
RIDGE, SVR, EL 

COVID-19 daily cases in 
Brazil 

February 24th - April 19th, 
2020 

COVID-19 cases ahead 
in one, three, and six- 
days 

MAE, sMAPE SVR and EL outperform 
other methods 

Rostami et al.  
[82] 

MLR COVID-19 daily cases 
and number of daily 
phone calls 

East Midlands region of England 
between 18 March − 19 October 
2020 

COVID-19 daily cases ME, MAE, 
RMSE 

Outperforms ARIMA, ETS, 
Seasonal Naive, Prophet 
and a regression model 
without call data 

Rustam et al.  
[58] 

LR,LASSO SVM,ES Worldwide COVID-19 
patients 

January 22nd-March 27th COVID-19 cases, 
deaths, recovery in 
the next 10 days 

MAE,RMSE 
R2score 
RAdjusted

2 

EA Outperforms other 
methods 

Shahid et al.  
[47] 

ARIMA SVR,GRU 
LSTM,Bi-LSTM 

COVID-19 cases January 22nd - June 27th COVID-19 cases in 
Brazil, DE, IT, SP UK, 
China, India, Israel, 
Russia,USA 

MAE MAPE R2 BiLSTM outperforms other 
methods 

Shastri et al.  
[49] 

ConvLSTM Stacked 
LSTM Bi-directional 
LSTM 

COVID-19 cases in USA 
and India 

February 7th-July 7th COVID-19 cases and 
deaths 

MAE, P, R, F- 
measure 

Conv-LSTM outperforms 
the other two methods 

Shastri et al.  
[86] 

Deep-LSTM 
ensemble model 

COVID-19 cases and 
deaths in India 

29th January - 1st September 
2020 

COVID-19 cases and 
death 

MAPE, Acc, P, 
R, F-measure 

97.59% Acc for confirmed 
cases and 98.88% Acc for 
deaths. MAPE is for 
confirmed and death cases 
of 2.40 and 1.11. 

Singh et al. [44] ARIMA LS-SVM COVID-19 cases IT,SP, 
FR,UK,USA 

January 21st - May 9th, 2020 COVID-19 cases in MAE,MAPE 
RMSE,R2 

LS-SVM outperforms 
ARIMA 

Wang et al. [45] LoR, Prophet COVID-19 cases in 
Brazil, Russia, India 
Peru,Indonesia 

February to June 16, 2020 COVID-19 cases Acc Comparing the predicted 
cases with the real cases, 
the approach sensibly 

(continued on next page) 
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out that by comparing the prediction of cumulated cases with the actual 
cumulated cases of infections, the approach sensibly underestimates the 
true value. 

In Hernandez et al. [46] an algorithm to perform and evaluate the 
ARIMA model for 145 countries, distributed into 6 continents, is pro-
posed. The authors construct a model for these continents using the 
ARIMA parameters, the population per 1 M people, the number of cases, 
and polynomial functions. The time series start on the day when each 
country presented the first case of COVID-19 and finish on May 28. The 
proposal is able to predict the COVID-19 cases with a RMSE average of 
144.81. The main outcome of this paper is showing a relation between 
COVID-19 behavior and population in a continent, pointing out the 
opportunity to create more models to predict the COVID-19 behavior 
using variables as humidity, climate, culture, among others. 

5.2. Deep learning methods 

Shahid et al. [47] evaluated the capability of times series and deep 
learning methods in predicting the number of confirmed, deaths, and 
recovered cases in ten countries, namely Brazil, Germany, Italy, Spain, 
UK, China, India, Israel, Russia, and USA. The authors used autore-
gressive integrated moving average (ARIMA), support vector regression 
(SVR), long short term memory (LSTM), bidirectional long short term 
memory (Bi-LSTM), gated recurrent unit (GRU). The performance of the 
models has been measured by computing the mean absolute error MAE, 
root mean square error RMSE, and R2 score. The dataset used for the 
experiments consists of the number of confirmed, deaths and recovered 
cases of 158 samples in the period January 22nd until June 27th, 2020. 
The 110 cases from 1/22/2020 to 5/10/2020 have been used for 
training the models, and to predict the 48 cases from 5/11/2020 to 6/ 
27/2020. The experimentation results showed that the Bi-LSTM model 
outperforms, in the majority of cases, all the other methods. This method 
showed to be more robust and to obtain higher prediction accuracy. The 
ranking of the models, in decreasing order of performance, is Bi-LSTM, 
LSTM, GRU, SVR and ARIMA. 

In [48] Devaraj et al. aim to predict the cumulative confirmed, death 
and recovered global cases by using different models with Auto- 
Regressive Integrated Moving Average (ARIMA), Long Short-Term 
Memory (LSTM), Stacked Long Short-Term Memory (SLSTM) and 
Prophet approaches. For long-term forecasting of COVID-19 cases, 
multivariate LSTM models is employed. The performance metrics are 
computed for all the models and the prediction results are subjected to 
comparative analysis to identify the most reliable model. From the re-
sults, it is evident that the Stacked LSTM algorithm yields higher accu-
racy with an error of less than 2% as compared to the other considered 
algorithms for the studied performance metrics. Country-specific anal-
ysis and city-specific analysis of COVID-19 cases for India and Chennai, 
respectively, are predicted and analyzed in detail. 

Shastri et al. [49] present a comparative analysis of deep learning 
methods to predict COVID-19 cases for one month ahead in USA and 
India. The DL methods used for the experimentation are Stacked LSTM, 
Bi-directional LSTM and Convolutional LSTM. The datasets of confirmed 
and death cases of COVID-19 taken into consideration ranges from 
February 7th till July 7th 2020. The experiments showed that Convo-
lution LSTM outperforms the other two models in predicting the COVID- 
19 cases. In fact, the values obtained by Convolution LSTM of precision, 

recall, and f-measure are higher than those returned by Stacked LSTM, 
Bi-directional LSTM, while the MAPE error is lower. 

Zeroual et al. [50] present a comparative evaluation of deep learning 
methods for predicting the number of new and recovered cases. The 
methods used for the experimentation are Recurrent Neural Network 
(RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), 
Gated recurrent units (GRUs) and Variational AutoEncoder (VAE). The 
study considered the number of daily confirmed and recovered cases 
coming from Italy, Spain, France, China, USA, and Australia in the 
period January 22nd till June 17th, 2020. The methods have been 
trained with data until May 31st, and then testing has been performed on 
the next 17 days. The accuracy of the models has been measured by 
computing RMSE, MAE, MAPE, and RMSLE. Results showed the better 
performance of the VAE compared to the other algorithms. 

In [51] Alakus et al. developed an application to predict COVID-19 
exploiting laboratory findings and using six different deep learning 
models, like: Artificial Neural Network (ANN), Convolutional Neural 
Networks (CNN), Long-Short Term Memory (LSTM), Recurrent Neural 
Networks (RNN), CNN-LSTM, and CNN-RNN. For the experimental 
evaluation a dataset of 600 patients and 18 laboratory findings from the 
Hospital Israelita Albert Einstein at Sao Paulo Brazil has been used. 
Performance of the models is measured with accuracy, precision, recall, 
AUC, and F1-scores. To validate the models, 10 fold cross-validation has 
been applied. Best results are observed from the LSTM deep learning 
model with accuracy of 86.66%, recall of 99.42%, and AUC score of 
62.50%. All the deep learning models experimented in the study showed 
an accuracy of over 84%. Similar inferences can be made for precision 
and recall values. 

Farooq et al. [52] proposed an Artificial Neural Network (ANN) 
based real-time online incremental learning technique to estimate the 
parameters of a data stream guided analytical model of COVID-19 based 
on traditional epidemiological model. The COVID-19 data from India 
has been taken as the case study, during the period 30th January 
2020–13 June 2020, with a total number of cases reported in India 
equals to 308,993. Using this model, authors simulated preventive 
measures like lockdown, vaccination and herd immunity to study their 
impact on the evolution of COVID-19 disease. Finally, they proposed a 
method to reduce the number of deaths caused by the pandemic in case a 
vaccine is not available at the mass level. The impact of this strategy has 
been simulated and it has been shown that the number of deaths can be 
reduced from 55 million to 1.3 million if the population compartmen-
talization starts tomorrow and ends on day 300 of the pandemic in India. 
During this period, the mobility and contact in low risk group have to be 
made five times as compared to the lockdown period and upon remixing 
of the two groups the mobility and contact should be reduced to 2 times 
from 5. 

Gupta et al. [53] proposed a model based on a deep learning algo-
rithm with two long short-term memory (LSTM) layers for predicting the 
number of confirmed and death cases of COVID-19. The paper considers 
the available infection cases of COVID-19 in India from January 22, 
2020, till October 9, 2020. The model predicts coronavirus cases and 
deaths for the next 30 days, taking the data of the previous 260 days of 
duration of the pandemic. It has been compared with other popular 
prediction methods (Support Vector Machine, Decision Tree and 
Random Forest) showing a lower normalized RMSE. This work also 
compares COVID-19 with other previous diseases (SARS, MERS, H1N1, 

Table 3 (continued ) 

Publication Method Data Types Data size Output Validation 
method 

Result 

underestimates the true 
value. 

Zeroual et al.  
[50] 

RNN, LSTM, 
BiLSTM GRU,VAE 

COVID-19 cases January 22 to June 17 COVID-19 cases RMSE, MAE 
MAPE, RMSLE 

VAE outperforms other 
methods 

Zheng et al. [85] LSTM NLP COVID-19 cases January 23rd-February 18th COVID-19 cases MAE MAPE LSTM+NLP outperforms 
each model alone  
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Ebola, and 2019-nCoV). Based on the mortality rate and virus spread, 
this study concludes that the novel coronavirus (COVID-19) is more 
dangerous than other diseases. 

Meng et a. [54] developed a prognostic tool to identify high-risk 
patients and assist in the formulation of treatment plans. They retro-
spectively collected 366 severe or critical COVID-19 patients from four 
centers, including 70 patients who died within 14 days (labeled as high- 
risk patients) since their initial CT scan and 296 who survived more than 
14 days or were cured (labeled as low-risk patients). They developed a 
3D densely connected convolutional neural network (termed De- 
COVID19-Net) to predict the probability of COVID-19 patients 
belonging to the high-risk or low-risk group, combining CT and clinical 
information. The area under the curve (AUC) is 0.952 (95% confidence 
interval, 0.928–0.977) on the training set and 0.943 (0.904–0.981) on 
the test set. The Kaplan-Meier analysis revealed that the model could 
significantly categorize patients into high-risk and low-risk groups. 

Hu [55] proposed a modified stacked auto-encoder for modeling the 
transmission dynamics of the epidemics in China. In [56], Rizk et al. 
proposed an improved Multi-layer Feed-forward Neural Network 
(ISACL-MFNN) model, which uses an improved Interior Search Algo-
rithm (ISA) to optimize model parameters and a Chaotic Learning (CL) 
strategy to enhance ISA performance. From the official COVID-19 data 
set reported by the WHO, data from January 22, 2020, to April 3, 2020, 
in the United States, Italy, and Spain were collected to train the ISACL- 
MFNN model and to predict the confirmed cases within the next 10 days. 

In Cabras et al. [57], a deep learning algorithm (LSTM) and a 
Bayesian Poisson-Gamma model are used to estimate the evolution of 
the pandemic in Spain. 

5.3. Machine Learning methods 

Rustam et al. [58] present a study on the capability of four machine 
learning methods to predict the number of newly infected cases, of 
deaths, and of recoveries in the upcoming 10 days. The authors for the 
experimentation use linear regression, LASSO regression, support vector 
machine, and exponential smoothing. The performance of each models 
has been evaluated by computing the R2 score, RAdjusted

2 score, mean 
square error (MSE), mean absolute error (MAE), and root mean square 
error (RMSE). The data used for the training is relative the worldwide 
COVID-19 patients provided by Johns Hopkins University. The dataset 
has been preprocessed and divided into training set (85%) and testing 
set (15%) form January 22nd until March 27th. The results pointed out 
that the ES forecasting model outperforms all the others. 

In [59] Chakraborty et al. proposed to use Linear Regression, Poly-
nomial Regression and a granular computing based regression model, 
the Granular Box Regression (GBR), to predict the daily increase of new 
COVID-19 cases in India. GBR finds the relationship between indepen-
dent variables and a dependent variable by using multidimensional 
boxes. Its objective is of surrounding the data objects with boxes as 
closely as possible and then use the diagonal of these boxes as linear 
regression lines. A comparative analysis is conducted to evaluate the 
performance of these three regression models on three COVID-19 Indian 
datasets, collected from api.covid19india.org in the period January 30 
to April 19. The performance of the different models has been evaluated 
using R2, Mean Absolute Error, Root Mean Square Error, and Mean 
Square Error values. The experimental results showed that the Poly-
nomial regression model outperforms the other two regression models. 

Pinter et al. [60] propose a hybrid machine learning approach to 
predict COVID-19 using data from Hungary. The hybrid machine 
learning method consists of a network-based fuzzy inference system 
(ANFIS) and a multi-layered perceptron-imperialist competitive algo-
rithm (MLP-ICA). The methods are used to predict time series of infected 
individuals and mortality rate. Evaluations were conducted by 
computing the determination coefficient, root mean square error and 
mean absolute percentage error values. The dataset used for the evalu-
ations consists of COVID-19 cases and mortality rate of Hungary from 4- 

March to 19-April 2020. Two scenarios were proposed. Scenario 1 
considered sampling the odd days and Scenario 2 used even days for 
training the data. Both scenarios were used for training the two machine 
learning models ANFIS and MLP-ICA and to find the best set of param-
eters to use for predicting outbreaks on the validation samples. The 
validation is performed for nine days with promising results which 
confirms the model accuracy. MLP-ICA outperformed ANFIS. 

In Ahamad et al. [61] a model that employs supervised machine 
learning algorithms to identify the features predicting the COVID-19 
disease with high accuracy is presented. Features examined included 
age, gender, observation of fever, history of travel, and clinical details 
such as the severity of cough and incidence of lung infection. Authors 
applied different machine learning algorithms and found that the 
XGBoost algorithm performed with the highest accuracy (≥85%) in 
predicting and selecting features detecting the COVID-19 status, inde-
pendently from the age. A statistical analysis pointed out that the most 
frequent and significant predictive symptoms are fever (41.1%), cough 
(30.3%), lung infection (13.1%) and runny nose (8.43%). The authors 
observe that, since a high percentage of people do not develop any 
symptoms, their approach could be used for diagnosing COVID-19 
presence, also at the early stages of infection. 

Gao et al. [62] presents a Mortality Risk Prediction Model of COVID- 
19, named MRPMC, exploiting patient's clinical data on admission able 
to predict death up to 20 days in advance. MRPMC is an ensemble model 
including Logistic Regression, Support Vector Machine, Gradient Boos-
ted Decision Tree, and Neural Network. To train and validate MRPMC, 
the authors considered 2520 COVID-19 patients with known outcomes 
(discharge or death) from two affiliated hospitals of Tongji Medical 
College, Huazhong University of Science and Technology, including 
Sino-French New City Campus of Tongji Hospital (SF) and Optical Valley 
Campus of Tongji Hospital (OV), and The Central Hospital of Wuhan 
(CHWH) between January 27, 2020 and March 21, 2020. 360 patients 
out of the total were excluded, while the remaining 2160 COVID-19 
patients were considered for the analysis. Participants from SF were 
randomly partitioned 50% for training and 50% for internal validation. 
Participants from OV and CHWH were used as two external validation 
sets. MRPMC outperformed the baseline models in predicting the mor-
tality risk of COVID-19 on the SFV and CHWH groups. It achieved an 
area under the receiver operating characteristics (ROC) curve (AUC) of 
0.9621 in identifying the of non survivors with an accuracy of 92.4% in 
the SFV cohort. Regarding the prediction of prognosis, MRPMC obtained 
an AUC of 0.9760 and an accuracy of 95.5% on the OV data, while an 
AUC of 0.9246 and an accuracy of 87.9% on the CHWH cohort. 

Arpaci et al. [63] presented a study for COVID-19 diagnosis that 
implements six predictive models using six different classifiers based on 
14 clinical features. This research employs machine learning classifica-
tion algorithms, including Bayes classifier, logistic-regression, lazy- 
classifier, meta-classifier, Classification via Regression (CR), rule- 
learner, and decision-tree. Domain experts selected 14 attributes, out 
of 170, to be included in the predictive model. These features were then 
used to build a predictive model. In particular, the IBM SPSS statistical 
software platform is used to generate the descriptive statistics of the 
patients, while the data mining tool Weka to analyze the data and test 
the predictive model. This study considered 114 cases from the Taizhou 
hospital of Zhejiang Province in China from January 17, 2020 to 
February 1, 2020. The models were validated using Accuracy, TP rate, 
FP rate, precision, recall, F-measure, and ROC area. The results showed 
that the CR meta-classifier is the most accurate classifier for predicting 
the positive and negative COVID-19 cases with an accuracy of 84.21%. 

In Assaf et al. [64] three different machine-learning models were 
used to predict COVID-19 patient deterioration. The authors considered 
Neural Networks, Random Forest, and Classification and Regression 
Decision Tree and compared the results obtained by the models to 
known predictor parameters (e.g., patients demographics, clinical data) 
and to the Acute Physiology and Chronic Health Disease Classification 
System II (APACHE II) risk prediction score, which is a measure of the 
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disease severity for adult patients admitted to intensive care units. 
Among 6995 patients evaluated, 162 were hospitalized with non-severe 
COVID-19, of them, 25 (15.4%) patients deteriorated to critical COVID- 
19. Machine-learning models outperformed all other parameters, 
including the APACHE II score (ROC AUC of 0.92 vs. 0.79, respectively), 
reaching 88.0% sensitivity, 92.7% specificity and 92.0% accuracy in 
predicting critical COVID-19. Machine-learning models demonstrated 
high efficacy in predicting critical COVID-19 compared to the most 
efficacious available tools. 

Brinati et al. [65] developed machine learning classification models 
using hematochemical values from blood exams drawn from 279 pa-
tients who, after being admitted to the San Raffaele Hospital (Milan, 
Italy) emergency room with COVID-19 symptoms. 177 patients resulted 
positive, whereas 102 were negative. The authors considered different 
machine learning classifiers: decision tree (DT), extremely randomized 
Trees (ET), K-nearest neighbors (KNN), Logistic Regression (LR), Naive 
Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), 
three-way Random Forest classifier (TWRF), a modification of the 
Random Forest algorithm. Machine learning models are able to 
discriminate between patients who are either positive or negative to the 
SARS-CoV-2: their accuracy ranges between 82% and 86%, and sensi-
tivity between 92% e 95%, so comparably well with respect to the gold 
standard. Authors also developed an interpretable Decision Tree model 
as a simple decision aid for clinician interpreting blood tests (even off- 
line) for COVID-19 suspect cases. 

The approach in Chaurasia et al. [66] aims to predict the future 
spread of COVID-19 using the dataset taken from Data WHO Coronavirus 
COVID-19 cases and deaths-WHO-COVID- 19-global-data. Data includes 
confirmed cases, deaths, and recovered cases from all countries (htt 
ps://data.humdata.org/dataset/coronavirus-covid-19-cases-and-deaths 
2020). The data period is from January 22 to May 28, 2020. Several 
forecasting techniques have been implemented: naive method, which 
assumes that the next expected value to predict is equal to the last 
observed, simple average, moving average, single exponential smooth-
ing, two variations of exponential smoothing, and ARIMA, for compar-
ison, and compared by computing the Root mean square error score. The 
authors found that no method outperforms the others. 

In [67], Khanday et al. classified textual clinical reports into four 
classes by using classical and ensemble machine learning algorithms. 
The data consists of clinical reports in the form of text, texts are classi-
fied into four different categories of diseases such that it can help in 
detecting coronavirus from earlier clinical symptoms. Data concern 
about 212 patients which have shown symptoms of coronavirus and 
other viruses. The information regarding each patient are stored in 24 
attributes, i.e. patient id, offset, sex, age, finding, survival, intubated, 
went-icu, needed-supplemental-O2, extubated, temperature, pO2- 
saturation, leukocyte count, neutrophil count, lymphocyte count, 
view, modality, date, location, folder, filename, DOI, URL, License 
Clinical notes and other notes. Different supervised machine learning 
techniques are used for classifying the text into four different categories: 
COVID, SARS (severe acute respiratory syndrome), ARDS (acute respi-
ratory distress syndrome) and both COVID, and ARDS. The classifiers 
are: support vector machine (SVM), multinomial Naive Bayes (MNB), 
logistic regression, decision tree, random forest, bagging, Adaboost and 
stochastic gradient boosting. Preprocessing on clinical reports by using 
techniques like Term frequency/inverse document frequency (TF/IDF), 
Bag of words (BOW) and report length, allowed to select 40 relevant 
features which were used by the methods to obtain the classification. 
Logistic regression and Multinomial Naive Bayes showed better results 
than other ML algorithms by having 96.2% testing accuracy, precision 
94%, recall 96%, and F1 score 95%. 

Abdulkareem et al. [68] propose a model based on Machine Learning 
(ML) and Internet of Things (IoT) for Smart Hospital Environments 
which could help physicians to diagnose patients with COVID-19. The 
dataset used is that of Alakus et al. [51], consisting of 600 patients and 
18 laboratory findings from the Hospital Israelita Albert Einstein at Sao 

Paulo Brazil. The clinical data measured for patients are red blood cells, 
hemoglobin, platelets, hematocrit, aspartate transaminase, lympho-
cytes, monocytes, sodium, urea, basophils, creatinine, serum glucose, 
alanine transaminase, leukocytes, potassium, eosinophils, C reactive 
protein, and neutrophils. These laboratory findings are considered as the 
features on which the ML models are trained to classify patients as either 
normal or COVID-19 cases. A feature extraction process is also per-
formed to detect the most discriminative features and improve classifier 
prediction. The ML models adopted for the experimentation are Naive 
Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM). 
Experimentation on the benchmark dataset showed that the SVM model 
outperforms all the others by producing a correct diagnosis performance 
of up to 95%. 

Ribeiro et al. [69] present an experimentation of several methods for 
short-term forecasting of COVID-16 cases in Brazil. The authors employ 
autoregressive integrated moving average (ARIMA), cubist regression 
(CUBIST) [70], random forest (RF), ridge regression (RIDGE), support 
vector regression (SVR), and stacking-ensemble learning. All these 
models are evaluated for time series forecasting in ten Brazilian states 
having high incidence of daily confirmed cases in the period February 25 
till March 19, 2020, with one, three, and six-days ahead. Regarding the 
stacking-ensemble learning approach, Gaussian process (GP) is used as 
meta-learner, while the CUBIST regression, RF, RIDGE, and SVR models 
as base-learners. The prediction capabilities of the models has been 
evaluated by computing the mean absolute error, and the symmetric 
mean absolute percentage error. The results show that SVR and stacking- 
ensemble learning obtain better performance when compared to the 
other models. The models achieve errors in a range 0.87%–3.51%, 
1.02%–5.63%, and 0.95%–6.90% in one, three, and six-days-ahead, 
respectively. The ranking of models, from the best to the worst 
regarding accuracy, in all scenarios is The ranking of the models, with 
respect to the obtained accuracy in decreasing order, is SVR, stacking- 
ensemble learning, ARIMA, CUBIST, RIDGE, and RF. 

In [71] dos Santos Gomes et al. propose a new machine learning 
computational tool for adaptive tracking and real time forecasting of 
COVID-19 death cases. The approach combines Kalman filters and an 
interval type-2 fuzzy clustering algorithm which adopts an adaptive 
similarity distance mechanism. The dataset used for the experimenta-
tion, extracted from the official report by Ministry of Health of Brazil, 
consists of the daily deaths reports in the period ranging from 29 of 
February 2020 to 18 of May 2020. The method has been compared with 
LASSO, ARIMA and LSTM recurrent neural network, Wavelet-Coupled 
Random Vector Functional Link (WCRVFL) of [72], and the approach 
in [73], based on ARIMA. The evaluation indexes computed for the 
comparison are RMSE (Root Mean Square Error), MAE (Mean Absolute 
Error), RMSPE (Root Mean Square Percentage Error), R2 (coefficient of 
determination), MAD (Median Absolute Deviation) and MAPE (Mean 
Absolute Percentage Error). Experimental results showed the efficiency 
and better performance of proposed methodology when compared to the 
other approaches. 

Cheng et al. [74] introduced an ML-based technique that forecasts 
the Intensive Care Unit transfer for the COVID patients. The authors 
have utilized an RF model along with nursing assessments, laboratory 
information, electrocardiograms, and time series as input types. The 
proposed model proved the significance of inflammation, shock, renal, 
and respiratory failure in COVID-19 advancement. It obtained 72.8% 
sensitivity, 76.3% specificity, 79.9% AUC, and 76.2% accuracy respec-
tively. Based on the experiments, the authors conclude that the ML- 
based forecasting technique can be utilized as a testing tool to recog-
nize the threat of COVID-19 patients and to improve hospital resource 
management thus providing more effective care to these patients. 

In Nemati et al. [75] several statistic and machine learning tech-
niques are implemented to analyze the survival characteristics of 1182 
hospitalized patients. The survival analysis can be applied to predict 
patient length of stay in the hospital. The authors, for the discharge-time 
prediction of COVID-19 patients, used the statistical estimators Kaplan- 
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Meier estimator KM, Cox Proportional Hazard CoxPH, Coxnet, Accel-
erated Failure Time model (IPCRidge), and three machine learning 
methods Stagewise Gradient Boosting, Componentwise Gradient 
Boosting, and Support Vector Machine (SVM). Model performances in 
discharge-time prediction are compared by using the Concordance index 
(C-index) metric. C-index is a metric to evaluate the predictions of al-
gorithms in survival analysis which computes the percentage of 
concordant pairs among all feasible evaluation pairs. The computational 
results agree with the outcome reported in early clinical reports released 
for a group of patients from China that confirmed a higher mortality rate 
in men compared with women and in older age groups. The results 
indicate that the Gradient Boosting survival model outperforms other 
models for patient survival prediction in this study. The model is not 
only more accurate when compared with the other boosting methods, 
but also it outperforms other algorithms in discharge-time prediction in 
terms of accuracy. 

Burdick et al. [76] proposed a machine learning-based method to 
predict the need for ventilation in COVID-19 patients to help triage 
patients, allocate resources, and prevent emergency intubations and 
their associated risks. In a multicenter clinical trial, the authors evalu-
ated the performance of a Gradient Boosting algorithm (XGBoost Clas-
sifier) for the prediction of invasive mechanical ventilation of 197 
patients with a COVID-19 diagnosis within 24 h of their hospitalization 
into five United States health systems, between March 24 and May 4, 
2020. The algorithm demonstrated a good accuracy in predicting the 
need for mechanical ventilation within 24 h. Further, the algorithm 
identified 16% more patients than a standard scoring system minimizing 
also the false positive rate. 

In Aljame et al. [77] an ensemble learning model for COVID-19 
diagnosis, named ERLX, from blood tests is proposed. The model uses 
three well-known diverse classifiers, extra trees, random forest and lo-
gistic regression, which have different architectures and learning char-
acteristics at the first level, and then combines their predictions by using 
a second level extreme gradient boosting (XGBoost) classifier to achieve 
a better performance. For data preparation, the proposed methodology 
employs a KNNImputer algorithm to handle null values in the dataset, 
isolation forest (iForest) to remove outlier data, and a synthetic minority 
oversampling technique (SMOTE) to balance data distribution. The 
model was trained and evaluated by using a publicly available data set 
from Albert Einstein Hospital in Brazil, which consisted of 5644 data 
samples with 559 confirmed COVID-19 cases. The ensemble model 
achieved a very good performance with an overall accuracy of 99.88%, 
AUC of 99.38%, a sensitivity of 98.72% and a specificity of 99.99%. 

Pourhomayoun et al. [78] proposed an AI model to help hospitals 
and medical facilities to decide which patients needs immediate atten-
tion, who must be hospitalized first, triage patients when the system is 
overwhelmed by overcrowding, and reduce delays in giving the neces-
sary care. Several machine learning algorithms, including Support 
Vector Machine, Artificial Neural Networks, Random Forest, Decision 
Tree, Logistic Regression, and K-Nearest Neighbor, have been used to 
predict the mortality rate in patients with COVID-19. In the study au-
thors used a dataset of more than 2,670,000 laboratory-confirmed 
COVID-19 patients from 146 countries around the world including 
307,382 labeled samples. The results showed an overall accuracy of 
89.98% in predicting the mortality rate. In this study, the most alarming 
symptoms and features were also identified. A separate dataset of 
COVID-19 patients was used to evaluate the model accuracy. 

In Hasan [79] a hybrid model that incorporates ensemble empirical 
mode decomposition (EEMD), a method that decomposes non-linear and 
non-stationary time series, and artificial neural network (ANN) for 
predicting the COVID-19 epidemic is proposed. A real-time COVID-19 
time series data has been used in the period January 22 to May 18, 2020. 
The cumulative global data of daily level information by country were 
retrieved from the Center for Systems Science and Engineering (CSSE) at 
the Johns Hopkins University GitHub repository (https://github. 
com/CSSEGISandData/COVID-19) accessed on 19/05/2020. The time- 

series data has first been decomposed using EEMD to produce sub- 
signals and make original data denoised, then an ANN has been built 
to train the denoised data. The results have been compared with some 
traditional statistical analysis methods and showed that the proposed 
model outperforms statistical approaches. The validation metrics used 
were MSE, R2 and accuracy. 

5.4. Methodological breakthrough 

The approaches described in the previous sections mainly apply the 
existing AI techniques on available data and compare the different 
methods to experimentally evaluate them, without introducing signifi-
cant novel ideas. In this section, we report some of the approaches in 
both DL and ML domains that did not simply experimented existing 
techniques, rather they introduced original new ideas aiming at 
advancing methodologies in the field of AI for COVID-19 forecasting. 

The work of Casiraghi et al. [80] proposed an interesting methodo-
logical approach to identify abnormalities in chest radiographs (CXR) 
and, thus, improving patient risk prediction. To this purpose they 
designed an explainable machine learning system which may provide 
simple decision criteria to be used by clinicians as a support for early 
assessment of COVID-19 risk prediction estimated by both expert radi-
ologists and by specialized state- of-the-art deep neural networks. A 
novel feature selection algorithm is proposed that combines the Boruta 
algorithm with permutation based feature selection methods to select 
variables that are most relevant for COVID-19 risk prediction. The most 
important variables are then selected to train a RF classifier, whose rules 
may be extracted, simplified, and pruned to finally build an associative 
tree. Results show that the radiological score automatically computed 
through a neural network is highly correlated with the score computed 
by radiologists, and that laboratory variables, together with the number 
of comorbidities, aid risk prediction. This study was performed on 
clinical, comorbidity, laboratory, and anterior-posterior (A-P) or 
posterior-anterior (P-A) CXR data from patients referred to the ED of an 
urban multicenter health system, from March, 7, 2020, to April, 10, 
2020. All patients in the cohort were RT-PCR positive for COVID-19. 
With this setting, the patient set included, 207 and 94 adult men and 
women with a mean age of 61 years, and with a number of days with 
symptoms from COVID-19 that were on average 7. Among them 214 
patients were at low risk, while 87 patients were at high risk. Results 
show that the prediction performance of the approach was compared to 
that of generalized linear models and shown to be effective. The pro-
posed machine learning-based computational system can be easily 
deployed and used in emergency departments for rapid and accurate risk 
prediction in COVID-19 patients. 

Ren et al. [81] proposed a computational model to predict epide-
miological trends of COVID-19, with the model parameters enabling an 
evaluation of the impact of non-pharmacological interventions (NPIs) 
such as lockdowns for effective management of the disease and control 
of its spread. By representing the number of daily confirmed cases 
(NDCC) as a time-series, authors assumed that, with or without NPIs, the 
pattern of the pandemic satisfies a series of Gaussian distributions ac-
cording to the central limit theorem. The underlying pandemic trend is 
first extracted using a singular spectral analysis (SSA) technique, which 
decomposes the NDCC time series into the sum of a small number of 
independent and interpretable components such as a slow varying trend, 
oscillatory components and structureless noise. After that a mixture of 
Gaussian fitting (GF) has been used to derive a novel predictive model 
for the SSA extracted NDCC incidence trend, with the overall model 
termed SSA-GF. The model is shown to accurately predict the NDCC 
trend, peak daily cases, the length of the pandemic period, the total 
confirmed cases and the associated dates of the turning points on the 
cumulated NDCC curve. The predictive model is validated using avail-
able data from China and South Korea, and new predictions are made, 
partially requiring future validation, for the cases of Italy, Spain, the UK 
and the USA. Comparative results demonstrate that the introduction of 
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consistent control measures across countries can lead to development of 
similar parametric models. 

Gao et al. [62] developed a mortality risk prediction model for 
COVID-19 that utilizes clinical data in EHRs to stratify patients by 
mortality risk on admission. Six ML models including LR, support vector 
machine (SVM), gradient boosted decision tree (GBDT), neural network 
(NN), K-nearest neighbor (KNN), and random forest (RF) displayed 
varying but promising performances to predict mortality risk in the 
three validation cohorts in terms of discrimination and calibration. To 
build a predictive model with augmented prognostic implications, the 
authors integrated the top four best predictive models (LR, SVM, GBDT, 
and NN) to create an ensemble model called MRPMC. The validated 
capability of enabling expeditious and accurate mortality risk stratifi-
cation of COVID-19 may facilitate more responsive health systems that 
are conducive to high-risk COVID-19 patients via early identification. 

In [82] Rostami et al. exploited phone call data to forecast daily 
confirmed cases. They proposed a multiple linear regression model that 
exploits the relationship between the confirmed cases and the phone call 
data. In particular, the regression model expresses the number of 
confirmed cases as a function of past lags of confirmed cases, current and 
past lags of the number of phone calls, the effect of weekends and the 
trend. Data used in this paper comprised the number of daily COVID-19 
confirmed cases and the number of daily phone calls received at the 
National Health Service 111 in the East Midlands region of England 
between 18 March 2020 and 19 October 2020. The simplicity, inter-
pretability and reliability of the model, obtained in a careful forecasting 
exercise, is a meaningful contribution to decision makers at local level 
who acutely need to organise resources in already strained health ser-
vices. The authors show that their approach outperforms ARIMA, ES, 
Seasonal Naive, a simple method which forecasts the number of 
confirmed cases as equal to the last observed confirmed cases from the 
same day of the previous week, Prophet and a regression model without 
call data. 

In Ramchandani et al. [83] is presented DeepCOVIDNet, a deep 
learning approach to predict COVID cases in the next seven days by 
using several features, such as census data, intra-county mobility, inter- 
county mobility, social distancing data, past growth of infection. These 
features are grouped on the base of their similarity and classified as 
constant, time-dependent, and cross-county time-dependent. Deep-
COVIDNet is composed of two modules: the embedding module and the 
DeepFM module, a factorization based neural network proposed by Guo 
et al. [84]. The task of the embedding module is to provide an embed-
ding for each group of features of the same dimension. These embed-
dings are given as input to the DeepFM module which computes higher 
order interactions between the embeddings and outputs a probability 
distribution of the current rise in cases, i.e. those with the greatest 
probability. The period considered for the experimentation is April 5th 
through June 28th. The authors trained the model by using data until 
June 11, considering four classes to categorize the growth in the number 
of new cases: negligible increase, moderately low increase, moderately 
high increase, and significantly high increase. Then tested the model on 
the 17 days from June 12 through June 28. The average accuracy on 
these 17 days is 63.7% on the four output classes. The code is available 
at https://github.com/urban-resilience-lab/deepcovidnet. 

Zheng et al. [85] propose a hybrid artificial intelligence model for 
the prediction of COVID-19 cases in China by embedding the long short- 
term memory (LSTM) network with the Natural Language Processing 
(NLP) module into a traditional model of virus spreading. The model 
assumes a retrospective approach which uses the ratio of the number of 
new confirmed cases at time t to the cumulative number of new 
confirmed cases before time t to compute the infection rate. Moreover, in 
order to take into account the effects of government control measures, 
the reports of media on the subject, and the awareness of people on 
epidemic prevention, features from relevant news of various provinces 
and cities are extracted by using pretrained NLP models. These features 
are then combined with the LSTM network to correct the deviation of the 

infection rate estimated by the ISI model. Experimental results on the 
epidemic data of Beijing, Shanghai, Zhejiang, and Hunan show that the 
proposed hybrid model outperforms traditional epidemic models. 

Shastri et al. [86] proposed a nested ensemble model using deep 
learning methods based on long short term memory (LSTM). The pro-
posed Deep-LSTM ensemble model is evaluated on intensive care 
COVID-19 confirmed and death cases of India, with different classifi-
cation metrics, namely accuracy, precision, recall, f-measure and mean 
absolute percentage error. COVID-19 confirmed and death cases of India 
are taken from World Health Organization. Confirmed cases are taken 
from 29th January to 1st September 2020 and death cases are taken 
from 12th March to 1st September 2020. The deep-LSTM ensemble 
model using convolutional and bi-directional LSTM obtains high accu-
racy to forecast COVID-19. The error in the model is calculated in terms 
of mean absolute percentage error (MAPE). The COVID-19 confirmed 
and death cases are predicted for one month ahead. For COVID-19 
confirmed cases the accuracy is of 97.59% and for death cases is 
98.88%, while the MAPE value for the confirmed and death cases are 
2.40 and 1.11, respectively. 

In [87] Ardabili et al. presented a comparative analysis of machine 
learning and regression models to predict the COVID-19 outbreak. Data 
is collected from the website https : //www. worldometers. info/corona-
virus/ # countries for five countries, namely Italy, Germany, Iran, USA, 
and China, for a period of 30 days from January 22, 2020. The authors 
use a regression model with different types of relationships among the 
independent variables, i.e. logistic, linear, logarithmic, quadratic, cubic, 
compound, power, and exponential. Estimation of the parameters was 
performed by using evolutionary algorithms such as the genetic algo-
rithm (GA), particle swarm optimizer (PSO), and grey wolf optimizer 
(GWO). Through parameter tuning authors determined the optimal 
performance of the models. Experiments showed that logistic model 
outperforms the other regression methods. In particular, the logistic 
model using GWO for parameter tuning outperformed that based on PSO 
and GA. As machine learning models two types of artificial neural net-
works were used: Multi-Layered Perceptron (MLP) and an adaptive 
neuro fuzzy inference system (ANFIS), a particular kind of ANN based on 
a fuzzy system. For these methods two scenarios were proposed. Sce-
nario 1 considers three weeks of previous data, while Scenario 2 the 
previous 5 days. The performance of both ML models for the selected 
countries varied for the two different scenarios. By considering the 
average values of the RMSE and correlation coefficient values, Scenario 
1 is more suitable than Scenario 2, and MLP is more suitable than ANFIS 
for outbreak prediction. 

Hazarika and Gupta [88] present the WCRVFL model which hy-
bridizes random vector functional link (RVFL) network with 1-D discrete 
wavelet transform and a wavelet-coupled RVFL network. RVLF is a 
multilayer perceptron (MLP) approach. The RVFL model receives as 
input the wavelet decomposed time-series data. The prediction perfor-
mance of WCRVFL is compared with the state-of-the-art support vector 
regression (SVR) model and the RVFL model on five countries, Brazil, 
India, Peru, Russia and the USA in the period April 11 until June 10, 
2020. Moreover, a 60 days ahead of daily COVID-19 spread forecasting 
is also reported. The performance evaluation has been performed by 
computing the coefficient of determination R2, root mean square error 
(RMSE), mean absolute error (MAE), the ratio between the sum of 
squared error and the total sum of squares (SSE/SST), peak signal to 
noise ratio (PSNR), structural content (SC), the maximum difference 
(MD), Laplacian mean Square error (LMSE) and normalized absolute 
error (NAE). Experimental results show that proposed WCRVFL model 
obtains good prediction values of COVID-19 spread. 

In Kim et al. [89] is proposed Hi-COVIDNet, which takes advantage 
of the geographic hierarchy to predict the number of COVID-19 cases. 
Hi-COVIDNet is based on a neural network with two-level components, 
namely, country-level and continent-level encoders, which understand 
the complex relationships among foreign countries and derive their 
respective contagion risk to the destination country. An in-depth case 
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study in South Korea with real-world COVID-19 datasets confirmed the 
effectiveness and practicality of Hi-COVIDNet. 

5.5. Miscellaneous 

The number of papers published in the last year is really huge, thus 
an exhaustive review and description of each of them is not possible. In 
this section we briefly describe approaches published as preprint at the 
time of writing, and thus not yet accepted after peer revision, or pub-
lished in the early 2020s experimenting their methods on the few 
available data in the consider period. We report them since we used for 
computing statistics reported in Section 4. 

5.5.1. Preprints 
In [90] Huang et al. used 4 DL models (CNN, LSTM, GRU, and MLP) 

to train and predict COVID-19 cases from 7 severely epidemic cities in 
China. The input of these DL models are the features of COVID-19 cases, 
including the number of confirmed cases, cured cases, and deaths. Based 
on the input of the previous 5 days, each model can predict the number 
of COVID-19 cases in the following few days. 

Punn et al. [91] used two machine learning models SVR and PR and 
three deep learning regression models, DNN, LSTM, and RNN to predict 
real-time COVID-19 cases. 

Sarkar et al. [92] used the RF model to analyze the records of 433 
patients with COVID-19 from Kaggle, and identified the important fea-
tures and their impact on mortality. Experimental results show that 
patients over 62 years of age have a higher risk of death. 

In [93,94], Yan et al. analyzed a blood sample data set of 404 pa-
tients with COVID-19 in Wuhan, China, and used the XGBoost classifi-
cation method to select three important biomarkers to predict the 
survival rate of individual patients. Experimental results with an accu-
racy of 90% indicate that higher LDH levels seem to play an important 
role in distinguishing the most critical COVID-19 cases. 

In Kolozsv et al. [95], a recurrent neural network is proposed to 
predict the epidemic curve. Two prediction models are created in this 
work, first the data is fed to a dense neural network and then a conse-
quent regression output layer is used to predict the value. 

In Li et al. [96], a recurrent NN is proposed to build a model of the 
pandemic in Italy. Kapoor [97] proposed a novel forecasting approach 
for COVID-19 case prediction that uses Graph Neural Networks and 
mobility data. In contrast to existing time series forecasting models, the 
proposed approach learns from a single large-scale spatio-temporal 
graph, where nodes represent the region-level human mobility, spatial 
edges represent the human mobility based inter-region connectivity, and 
temporal edges represent node features through time. 

A combination of XGBoost, K-means and LSTM algorithms is used in 
Vadyala et al. [98] to build a model to predict the pandemic in Louisi-
ana, USA. In Javod et al. [99], polynomial regression and neural 
network algorithms are used with the data made available by John 
Hopkins University to build a model of the pandemic. In [100], expo-
nential smoothing and ARIMA are used to predict the pandemic in India. 

In Zandavi et al. [101], LSTM with dynamic behavioral model is 
adopted which considers the effect of multiple factors to enhance the 
accuracy of the prediction across top 10 most affected countries. In order 
to build a predictive model for the pandemic, a new architecture for 
DNN is proposed in Direkoglu et al. [102], which consists of a LSTM 
layer, dropout layer and fully connected layers to predict regional and 
worldwide forecasts. 

In Karimuzzaman et al. [103], ARIMA is used along with Multi- 
Layer-Perceptron (MLP), Extreme Learning Machine (ELM) and Gener-
alized Linear count time series Model (GLM) to model the behavior of 
the pandemic. To predict the epidemic growth rare, an LSTM method is 
proposed in Yudistira [104]. In Rani et al. [105] ARIMA is combined 
with LSTM to predict the pandemic. 

In Melin et al. [106] a multiple ensemble neural network model with 
fuzzy response aggregation for the COVID-19 time series is presented. 

Ensemble neural networks are composed of a set of modules, which are 
used to produce several predictions under different conditions. Fuzzy 
logic is then used to aggregate the responses of several predictor mod-
ules, in this way, improving the final prediction by combining the out-
puts of the modules. 

In Tian et al. [107] an approach integrating LSTM and Gated 
Recurrent Unit to predict the trajectory of the pandemic is proposed. 

LSTM algorithm, combined with a recurrent neural network, is used 
in Kolozsvari et al. [108] to build two prediction models of the pandemic 
in India. In Amo-Boateng [109], a 1D CNN is applied to the time-series 
data of confirmed COVID-19 cases to track and classify progress of the 
pandemic in different countries. In Zhao et al. [110], various Recurrent 
Neural Networks, including the LSTM and 10 types of slim LSTM are 
presented to predict the pandemic in the US. 

In Huang et al. [90] a Convolutional Neural Network is proposed to 
analyze and predict the number of confirmed cases in China. A machine 
learning algorithm is proposed in Kumar et al. [111], to predict the 
number of daily cases. The algorithm combines three machine learning 
algorithms, namely decision tree, support vector machine and Gaussian 
process regression. In Mathur et al. [112], 24 variables linked to COVID- 
19 are used to build a model with CatBoost regression and random forest 
algorithms to predict mortality in the US. 

In order to build a predictive model of COVID-19, three machine 
learning models, namely hidden Markov chain model (HMM), hierar-
chical Bayes model, and LSTM is proposed in Tian et al. [113]. In Liu 
et al. [114] a clustering algorithm is used to process data from Internet 
searches and news alerts to perform a real-time forecasting of the 
outbreak. 

In order to study the epidemic behavior in different zones in New 
York city, a clustering algorithm is proposed in [115] Khmaissia et al., 
that models the outbreak in the city. In Suzuki et al. [116], XGBoost is 
used to predict the number of infections in South Korea. 

In Pereira et al. [117], a clustering algorithm is applied to the world 
regions for which epidemic data are available and the pandemic is at an 
advanced stage. Then a set of features representing the countries 
response to the early spread of the pandemic are used to train an 
Autoencoder Network to predict the future of the pandemic in Brazil. 

Two machine learning algorithms, neural network and Prophet, are 
used in Balde et al. [118] to study the impact of nation-wide measures on 
the pandemic. 

An empirical top-down modeling algorithm is proposed in Uhlig 
et al. [119], which uses a combination of epidemiological, statistical and 
neural network applications. In this approach, a neural network is used 
to develop leading indicators for different regions. These indicators are 
used to assess the risk of an outbreak, determine the effectiveness of the 
measures, predict the outbreak with the associated uncertainty. 

In Dandekar et al. [120], an epidemiological model augmented with 
a neural network approach is proposed to study the effect of quarantine 
and isolation measures implemented in Wuhan on the reproduction 
number, R0. 

5.5.2. Other publications 
In this section are outlined articles that are still preliminary works. 
In da Silva et al. [121] Bayesian regression neural network, cubist 

regression, k-nearest neighbors, quantile random forest, and support 
vector regression, are used stand-alone, and coupled with the variational 
mode decomposition (VMD) employed to decompose the time series into 
several intrinsic mode functions. All AI techniques are evaluated in the 
task of time-series forecasting with one, three, and six-days-ahead the 
cumulative COVID-19 cases in five Brazilian and American states, with a 
high number of cases up to April 28th, 2020. Previous cumulative 
COVID-19 cases and exogenous variables as daily temperature and 
precipitation were employed as inputs for all forecasting models. 

In Barnerjee et al. [122] early diagnoses of COVID-19 is obtained 
through blood counts exploiting several ML approaches (LR, ANN, 
Lasso). 
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Giuliani et al. [123] collected the number of infected people in 
various provinces of Italy, and used the SGLMM Spatial Generalized 
Linear Mixed Models to simulate and predict the spatial and temporal 
distribution of COVID-19 infection in Italy. They collected daily 
epidemic data and saved them in a time series data format, and then 
used LR and LSTM models to make predictions, thereby obtaining the 
outbreak and spread trend of COVID-19. 

In Braga et al. [124] an approach based on artificial neural networks 
(ANN) for the daily and cumulative forecasts of cases and deaths caused 
by COVID-19 in the Brazilian Amazon, and the forecast of demand for 
hospital beds, is proposed. Six scenarios with different periods were used 
to identify the quality of the generated forecasting and the period in 
which they start to deteriorate. Results indicated that the computational 
model adapted capably to the training period and was able to make 
consistent short-term forecasts, especially for the cumulative variables 
and for demand hospital beds. 

An ANN is used in Pirouz et al. [125] to predict the number of cases 
in Hubei, China. Khakharia et al. [126] propose an approach for 
outbreak prediction of COVID-19 for dense and populated countries by 
using machine learning algorithms. Ghany et al. [127] exploits LSTM for 
COVID-19 prediction. In Khan et al. [128] ARIMA and a nonlinear 
autoregressive neural network are deployed to build a model of the 
epidemic to predict the behavior of the epidemic. In Kumar et al. [129], 
ARIMA and ANN are used to predict the pandemic in Italy, Spain and 
France. 

In Car et al. [130] an ANN is used on a publicly available dataset that 
contain information on infected, recovered and deceased patients. In 
this work, the data is transformed into a regression dataset and used in a 
multilayer perceptron to build a model of the number of patients across 
all locations. 

In Fong et al. [131] a case study of using Composite Monte-Carlo 
(CMC) simulation forecasting, enhanced with deep learning network 
and fuzzy rule induction for gaining better stochastic insights about the 
epidemic development is experimented. Instead of applying simplistic 
and uniform assumptions for a MC which is a common practice, a deep 
learning-based CMC is used in conjunction with fuzzy rule induction 
techniques. As a result, decision makers are benefited from a better fitted 
MC outputs complemented by min-max rules that foretell about the 
extreme ranges of future possibilities with respect to the epidemic. In 
another work [132] Fong et al. used traditional time series data analysis 
methods (such as ARIMA, Exponential, and Holt-Winters), ML methods 
(such as KR, SVM, and DT), and AI methods (such as PNN) to analyze 
and predict future outbreaks. 

In Hartono [133], Neural Networks and LSTM are used to build a 
model to forecast the pandemic all over the world. In [134], a multi- 
layer perceptron and vector aggression method are used to design a 
forecasting model for the epidemic in India. 

An unsupervised neural network algorithm called self-organizing 
map is proposed in Melin et al. [135], which spatially groups together 
the countries that are similar to one another with respect to the 
pandemic, so can benefit from using similar strategies. 

A multilayer perceptron neural network is used in Mollato et al. 
[136] to predict the incidence rate of the pandemic in United States. In 
Tamang et al. [137], an ANN-based curve fitting algorithm is presented 
for forecasting the number of cases in India, US, France and the UK, 
considering the progressive trends of China and South Korea. In Tor-
realba et al. [138], neural networks are used to predict the number of 
COVID-19 cases in Mexico. 

In Distante et al. [139] a modified autoencoder is proposed to predict 
the epidemic curve of different regions in Italy. Statistical and AI-based 
approaches are combined in Saba et al. [140] to model and forecast the 
prevalence of the pandemic in Egypt. The work integrates ARIMA and 
Non linear Auto Regressive Artificial Neural Networks (NARANN). 

In Chatterjee et al. [141], LSTM, vanilla, stacked and bidirectional 
LSTM were used to predict the pandemic in the world. The LSTM net-
works are used in Chimmula et al. [142], to build a predicting model for 

the trend and possible finishing time of the outbreak in Canada. 
In another work Aldhyani et al. [143], LSTM algorithm and Holt- 

trend are applied to predict confirmed number of death cases. In 
Tomar et al. [144], LSTM and curve fitting methods are used for the 
prediction of the number of cases in India. 

In Mohammad et al. [145], LSTM is used to model the data obtained 
from Google Trends website and estimate the number of positive COVID- 
19 cases. The authors report that the most effective predictive factors are 
the search frequency of hand-washing, hand sanitizer and antiseptic 
topics. 

A shallow long short-term memory based neural network is proposed 
in Pal et al. [146] to predict the epidemic in different countries. The 
authors use a Bayesian optimization framework to optimize the 
network. In Malki et al. [147] an approach using various regressor 
machine learning models and exploiting the relationship between the 
spread of the disease and factors like weather variables, temperature and 
humidity is proposed. 

In order to investigate the role of environmental parameters, the 
climate and urban parameters of four cities in Italy are studied in 
Haghshenas2 et al. [148]. The authors use ANN, PSO and DE optimi-
zation algorithms for prioritizing climate and urban parameters. 

Different learning algorithms, including ARIMA, Non linear Autor-
egression Neural Network (NARNN) and LSTM approaches are used in 
Kirbas et al. [149], to predict the number of new cases in Denmark, 
Belgium, Germany, France, United Kingdom, Finland, Switzerland and 
Turkey. 

In order to predict the spread of the virus, analyze the growth rate, 
predict how the epidemic will end and correlate the pandemic with 
weather conditions, a novel Support Vector Regression method is pro-
posed in Yadav et al. [150]. 

In Peng et al. [151] support vector regression is applied to predict the 
number of COVID-19 cases in 12 most affected countries. 

An improved version of Adaptive Neuro Fuzzy Inference System 
(ANFIS) is used in Al-qaness et al. [152] to predict the spread of the virus 
in Italy, Iran, Korea and USA. The proposed algorithm uses marine 
predator algorithm to optimize the parameters of ANFIS. In order to 
model the behavior of the pandemic, in another work Al-qaness et al. 
[153] extended the proposed ANFIS model with a flower pollination 
algorithm and a swarm algorithm to optimize the model parameters. 

5.6. Summary of the main features of the selected papers 

Table 3 summarizes the main features of the 38 reviewed papers. The 
features mainly concern AI-related characteristics, data related infor-
mation, the topic addressed by the method, the experimental method-
ology adopted and the results obtained. Specifically, we have a column 
about the kind of ML or DL model used, or what could be considered 
more in general belonging to AI; other two columns reporting infor-
mation about the dataset, and about the type of data and the time in-
terval in which the COVID-19 related data was collected. The remaining 
columns specify the output produced, the validation method and the 
results achieved. 

Different ML and DL methods have been employed for COVID-19 
forecasting and tracking including ARIMA, LSTM, LR, RNN. For 
example, Multilayer Perceptron (MLP) and Adaptive Network-based 
Fuzzy Inference System (ANFIS), among DL methods resulted to be 
very efficient achieving high correlation levels. Novel approaches 
combining temporal and spatial data resulted to be very powerful like, 
for example, using graph neural networks and Google mobility data to 
uncover the rich interactions between time and space that is often pre-
sent in the spread of pandemic. Several ML models are compared to 
forecast confirmed cases. The models under consideration include 
Bayesian neural network, cubist regression, kNN, random forest, and 
support vector regression (SVR). Numerical experiments produce mixed 
results with no clear favorite. Other contributions compare statistical 
and ML approaches to time series forecasting. In particular, they study 
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autoregressive integrated moving average (ARIMA), SVR, and LSTM 
models to forecast the number of infections, deaths, and recoveries. 

The experimental results reported in the revised papers show that 
LSTM models generally outperform ARIMA and SVR. However, ML ap-
proaches do not always outperform traditional methods, as shown in 
other studies that compared classic statistical methods to SVR and other 
traditional ML methods, to predict the number of positive cases, death 
rate, and recovery rate. Such studies show that statistical models 
outperform SVR, RF. 

Long short-term memory (LSTM) networks have been shown to 
outperform the traditional time series models, such ARIMA. As a result, 
LSTMs have been used in various applications involving time series 
projections. Another promising approach, even if not well explored, 
resulted to be the use of ensemble neural network to predict the number 
of confirmed cases and deaths. 

The models were evaluated on the basis of their accuracy and effi-
cacy for different prediction lead times and employed different types of 
data from different countries in their study. Experiments have been 
validated following well known metrics in literature used for the eval-
uation of prediction performance, like prediction accuracy measured in 
terms of AUC, ROC curves, specificity, sensitivity, precision, correlation 
and prediction error measures in term of MAPE, MAE, RMSE. 

The analyzed papers address COVID-19 forecasting by looking at 
different factors and covering different scopes and topics. Fig. 5 shows 
that the majority of the papers focuses on COVID-19 daily cases fore-
casting, with a relevant prevalence compared to the other tackled topics 
(42%). Mortality risk prediction was another topic widely studied in the 
selected literature papers, it has been found in the 30% of the works, 
followed by the prediction of recovery cases that reaches about 8%. 
COVID-19 risk prediction and diagnosis both reach 5%. Critical cases 
prediction and positive and negative cases prediction are around 3%. 
Since COVID-19 daily cases forecasting is the most widely studied topic, 
we show in Fig. 6 the most performing ML and DL methods used by 
researchers. ARIMA and LSTM with both a percentage of 17% resulted to 
be the most successful AI methods for COVID-19 daily cases forecasting, 
followed by ANN with 13% and MLP with 9%. As can be argued from the 
figure, the rest of the approaches used other variants of LSTM like 
BiLSTM, DeepLSTM, which in total represents 37% of the approaches. 
This confirms the fact that LSTM-based approaches turned out to be the 
most successful for COVID-19 cases prediction. 

Fig. 4 shows the data types used for COVID-19 forecasting. Different 
data types have been exploited including demographics, comorbidities, 
clinical data, blood tests, number of daily cases, number of daily deaths, 
number of recovery cases, vaccination rate, physiological data and 

number of daily phone calls. Of those types the most widely used is the 
number of daily cases with a percentage of 41%, followed by clinical 
data with the 19%, the number of daily deaths with 14%, demographics 
with 7% and then all other types with smaller percentage. 

While these studies show how a range of different methodological 
choices can be made when building forecasting models, they demon-
strate the complexities involved in choosing between such models and 
the non-trivial interplay between methods, hyperparameters, and 
datasets. Moreover, since much of the data collected for COVID-19 
modeling tasks is limited, the choice of models and datasets can have 
significant effects on overall performance. 

6. Discussion 

Artificial Intelligence algorithms play a key role in rapid forecasting, 
detection, classification, screening, and diagnosis of COVID-19 infection 
cases. 

Currently, AI mainly focuses on medical image inspection, genomics, 
drug development, and transmission prediction, and thus AI still has 
great unexplored potential mainly in terms of number of new cases and 
deaths prediction. In fact, even if many applications addressing COVID- 
19 forecasting and diagnoses have been proposed, only few of them are 
currently mature enough to be effective in real-world scenarios. 

Till end of 2020 AI was not fully explored on tracking and prediction 
of COVID-19 cases due to the lack of a vast amount of historical data to 
train the AI models. Accordingly, earlier papers that were published 
after few months of the worldwide COVID-19 outbreak, reported results 
of limited relevance due both to the lack of sufficient data to train the AI 
techniques in an appropriate way, but also because of the quality of the 
data themselves. In fact, due to the rapid diffusion of COVID-19, there 
was insufficient data at disposal as well as extensive labeled datasets not 
yet available. Training models on unrepresentative datasets lead to poor 
and even misleading outcomes as the fast-moving nature of the problem 
can make it difficult to perform informed model selection and parame-
ters. This severely affected the performance and accuracy of the fore-
casting models. 

Today the availability of COVID-19 surveillance data in terms of 
number of daily and cumulative cases, number of deaths and number of 
recovery is not an issue anymore. In fact, after two years since COVID-19 
outbreak, several collections of detailed data are available from different 
sources, like for example the one gathered by the Coronavirus Research 
Center of the Johns Hopkins University. Therefore, it would be very 
interesting if the authors of those early works could re-execute the 
proposed approaches using the high volumes of data now available and 

Fig. 4. Data Types used for COVID-19 cases forecasting.  
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validate their approach on the new data. 
Another limitation is that many of the analyzed works do not exploit 

any exogenous variable in the forecasting process. Accounting restric-
tive measures like lockdown, quarantine, traveling limitations could 
enhance the prediction accuracy. Furthermore, the availability of 
vaccination data could be integrated in the forecasting models, greatly 
improving the performance of the prediction. Accordingly, a future 
research line could be to extend the proposed forecasting models with 
exogenous variables like the ones just discussed. 

Still concerns remain for the use of clinical data for COVID-19 early 
diagnosis and early symptoms prediction. There are several limitations 
to the feasible applications of AI methods for COVID-19 prediction on 
such kind of data. We outlined some of them as follows:  

1. Lack of available large-scale training data. Most AI methods rely on 
large-scale annotated training data. In addition, annotating training 
samples is very time-consuming and requires professional medical 
personnel.  

2. The distributed and heterogeneous nature of many data sources 
contributes to data scarcity. In fact, the different data formats 
together with the lack of data standardization and interoperability 
and missing values, make the application of AI methods on such data 

often inaccurate and unreliable. As highlighted in Dagliati et al. [1], 
interoperability is a key concept: COVID-19 pandemic made clear 
that unified frameworks for sharing and exchanging digital epide-
miological data together with data protection are necessary. Data 
federation, data integration and data fusion could be applied to 
overcome data heterogeneity, as well as the use of common stan-
dards at international level. Another suggestion could be the design 
of analytical models tailored to work with the specific issues of the 
current available clinical data related to COVID-19.  

3. Data imbalance between positive and negative samples. Indeed, the 
possibility to collect only few positive COVID-19 samples can impact 
the accuracy of COVID-19 diagnosis.  

4. As pointed out in Combi et al. [2], most of the research carried out so 
far is on Machine Learning rather than on Natural Language Pro-
cessing (NLP) and Decision Support Systems (DSS), this because 
while both DSS and NLP require a major effort in developing, ML is 
based on the application of well-known techniques on COVID-19 
data. Accordingly, there are still space for the design and develop-
ment of both NLP methods and DSS applications specifically tailored 
to deal with COVID-19 peculiarities.  

5. Lack of interdisciplinary cooperation. The use of AI techniques for 
COVID-19 diagnosis and forecasting requires integration of different 

Fig. 5. COVID-19 Forecasting- Topics.  

Fig. 6. Most performing ML and DL methods used for COVID-19 cases forecasting.  
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expertises from multiple disciplines like computer science, medical 
imaging, virology, medical doctors in general. Therefore, a key point 
is the cooperation of researchers belonging to the different disci-
plines to combine and supplement the various knowledge in order to 
be more incisive in the fight against COVID-19.  

6. Privacy, anonymity and ethic issues are key concerns, which need to 
be addressed so as to enable effective contact tracing between citi-
zens as well as effectively preserving their privacy. Privacy matters 
are also relevant when dealing with specific type of data like, for 
example, social media data that is often exposed to privacy violation 
as reported by Combi et al. [2]. 

As final remark we want to underline that still there is space to 
exploit advanced ML algorithms, like ensemble methods such as 
bagging, boosting, stacking, etc. for COVID-19 forecasting of new in-
fections, deaths and recovery. Furthermore, the applicability of AI for 
early symptoms detection and disease diagnosing is not fully exploited 
yet. For example, supervised classification methods could be better 
adapted and explored for detection and classification of the different 
symptoms associated with COVID-19. 

7. Conclusion 

The paper presented a systematic and comprehensive survey of the 
application of AI technologies for forecasting, detecting, and diagnosing 
COVID-19. The study examined and reviewed an extensive collection of 
state-of-the-art COVID-19 prediction and diagnosis algorithms, 
providing a detailed background description of the AI techniques used 
for COVID-19. For each work surveyed, is provided a detailed analysis of 
the rationale behind the approach, highlighting the method used, the 
type and size of data analyzed, the validation method, the target 
application and the results achieved. 

Despite all the significant progress in the application of AI in 
addressing COVID-19 issues, there is still a need for further imple-
mentation of these technologies for detecting, monitoring, and diag-
nosing. Future work should focus on strengthening the current 
technologies mostly for early differential diagnosis of COVID-19 on 
clinical data. Also, future work should consider the issues related to 
privacy preserving and security of sensible health and personal data of 
citizens. 
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