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Abstract

Background: Genotype-by-environment interaction (GxE) studies probe heterogeneity in 

response to risk factors or interventions. Popular methods for estimation of GxE examine 

multiplicative interactions between individual genetic and environmental measures. However, risk 

factors and interventions may modulate the total variance of an epidemiological outcome that itself 

represents the aggregation of many other etiological components.

Methods: We expand the traditional GxE model to directly model genetic and environmental 

moderation of the dispersion of the outcome. We derive a test statistic, ξ, for inferring whether 

an interaction identified between individual genetic and environmental measures represents a more 

general pattern of moderation of the total variance in the phenotype by either the genetic or the 

environmental measure.

Results: We validate our method via extensive simulation, and apply it to investigate genotype-

by-birth year interactions for Body Mass Index (BMI) with polygenic scores in the Health and 

Retirement Study (N=11,586) and individual genetic variants in the UK Biobank (N=380,605). We 

find that changes in the penetrance of a genome-wide polygenic score for BMI across birth year 

are partly representative of a more general pattern of expanding BMI variation across generations. 

Three individual variants found to be more strongly associated with BMI among later born 

individuals, were also associated with the magnitude of variability in BMI itself within any given 

†Correspondence about the paper should be sent to these authors., bdomingu@stanford.edu, tuckerdrob@utexas.edu.
Contributions: BWD and ETMD designed the study with additional input from KK. BWD, TMT, and EMTD contributed to analysis. 
All authors were involved in drafting the manuscript.

Declarations
Conflicts: The authors declare no conflicts of interest.

Ethics Approval: Not applicable.
Consent: Not applicable.
Availability of Data: Data is available as indicated in manuscript.
Code Availability: Code is available at https://github.com/ben-domingue/scalingGxE.

HHS Public Access
Author manuscript
Behav Genet. Author manuscript; available in PMC 2022 March 28.

Published in final edited form as:
Behav Genet. 2022 January ; 52(1): 56–64. doi:10.1007/s10519-021-10090-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ben-domingue/scalingGxE


birth year, suggesting that they may confer general sensitivity of BMI to a range of unmeasured 

factors beyond those captured by birth year.

Discussion: We introduce an expanded GxE regression model that explicitly models genetic 

and environmental moderation of the dispersion of the outcome under study. This approach can 

determine whether specific GxE interactions identified are specific to the measured predictors or 

represent a more general pattern of moderation of the total variance in the outcome by the genetic 

and environmental measures.

Keywords

gene-by-environment interaction; gene × environment interaction; GxE; G×E; vQTL; 
heteroscedasticity

1 Introduction

A major goal for epidemiology and public health is to identify measurable factors that 

predict otherwise unexplained variation in susceptibility or response to environmental risk 

factors and interventions. Genotype-by-Environment (GxE) interaction studies [1, 2, 3, 4]—

which test whether the genotype-phenotype association varies in magnitude across the range 

of a measured environmental variable (alternatively, whether the environment-phenotype 

association varies in magnitude across the range of the measured genotype)—are often 

pursued with this goal in mind. If so, the genotype (alternatively, environment) may serve 

as an explanatory factor for the variation in susceptibility. It is common for GxE research to 

interpret any interaction identified between genetic and environmental measures as specific 

to that pair of variables. However, it may often be the case that identified GxE interactions 

represent more general patterns of sensitivity of genetic or environmental effects on the 

outcome to a broad range of factors. Note that our focus here is on the interplay between 

genetic and/or environment variables and the distribution of the outcome, which is distinct 

from other types of confounding in GxE that have been raised (e.g., regarding how to 

properly control for measured confounders in GxE [5]).

Consider the empirical question we focus on here. Suppose a polygenic score [6] is found to 

be increasingly predictive of a phenotype across birth years. Is it specifically the polygenic 

score that increases in its predictive power across birth years? Or would many different 

correlates of the phenotype also increase in their level of prediction of the phenotype 

across birth year, as would be evidenced by more general changes in the dispersion of 

the phenotype across birth years? By directly modeling trends in the total variance in the 

phenotype across birth years we can distinguish between these alternatives.

We develop a formal modeling framework for testing whether an identified GxE interaction 

represents a pattern specific to the genetic and environmental variables under study, or 

a more general pattern. In particular, we consider circumstances in which the genetic 

and/or the environmental measure is associated with the magnitude of variance in the 

outcome. We expand the standard model for testing GxE (in both single locus and polygenic 

score settings) to include moderation of the dispersion of the outcome in the form of 

heteroscedastic residuals. We develop a test statistic for inferring whether an identified GxE 
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between specific genetic and environmental measures represents to a more general effect of 

the genetic or environmental moderator on the dispersion of the phenotype.

Distinguishing whether an identified GxE interaction is specific to the pair of variables 

under study versus an instance of a more general pattern is critical to understanding 

the mechanisms driving the interaction and to policy implications of the effect. All else 

being equal, when the dispersion of a phenotype is directly controlled by the level of 

the moderator, the standard regression-based model will identify a significant interaction 

between that moderator and any correlate of the phenotype, whether genetic or non-

genetic. For example, when the effectiveness, intensity, or dosage of a phenotype-altering 

intervention varies proportionally to baseline levels of the phenotype, then the variance of 

the phenotype will increase in response to the intervention, and the unstandardized effect 

sizes for all correlates of baseline levels of the phenotype are expected to increase.

Similarly, when a genetic variant confers greater plasticity in a phenotype, then the variance 

of the phenotype is expected to differ across alleles (i.e., the variant is a variance quantitative 

trait locus, vQTL). We would then expect the variant to moderate the effect sizes for all 

correlates of that phenotype proportionally to their main effects, and a policy or intervention 

would be most likely to benefit from targeting a suite of determinants of the outcome 

rather than focusing efforts on the specific predictor studied. Only when a moderator acts 

preferentially on specific mechanisms of variation in the phenotype are interactions with 

various predictors expected to depart from expectations that follow from differences in total 

variance across the range of the moderator. In such circumstances, a policy or intervention 

that is more specifically targeted may be justified. GxE findings driven by more general 

moderation of the distribution of the outcome may not justify such interventions. We expect 

that these questions will be germane to a wide range of GxE investigations, including those 

relying on individual loci, standard polygenic scores, and “variance polygenic scores” [7, 8] 

which are derived from vQTL discoveries.

Figure 1 illustrates how GxE can result from heteroscedasticity. At left, we illustrate a 

scenario in which a polygenic score (PGS) is associated with a constant proportion of 

variance in the phenotype across the range of the measured environment, but the total 

variance in the phenotype increases across this range. This indicates that the expected 

percentile location within the distribution of the phenotype will also be constant across 

the range of E (assuming that the shape, but not dispersion, of the distribution remains 

constant across the range of E). At right, we consider an analogous scenario with respect 

to a single genetic variant that moderates the variance of the phenotype (i.e a vQTL [9, 

10, 11, 12, 13]). In both panels, we can observe increasing differentiation of scores on the 

phenotype across levels of the genetic or environmental predictor, even though the predictor 

is associated with a constant proportion of variance in the phenotype across the range of the 

moderator. By directly modeling the heteroscedasticity, we are able to distinguish between 

scenarios in which GxE represents this general pattern of variance modulation from those 

representing more specific patterns of GxE. Note that heteroscedasticity has traditionally led 

to concerns about inaccurate standard errors [14]. This is an important concern, especially 

because GxE effects are often small. However, our goal here is not merely to obtain more 
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accurate standard errors but rather to directly model the heteroscedasticity in order to gain 

substantive insight.

After expanding the traditional GxE model to directly model genetic and environmental 

moderation of the total dispersion of the outcome, we use this model to elucidate the 

interaction between birth cohort and genetics linked to body mass index (BMI). We test 

whether observed interactive associations with BMI represent a more general increases in 

the total dispersion of BMI over historical time. That is, we ask whether birth year is 

associated specifically with amplification of genetic risk for BMI or more generally with 

amplification of total variation in BMI.

2 Methods

With a measured genotype, as indexed by a single-locus allele count or a polygenic score 

(PGS), the standard model for GxE is

Y i = β0 + β1Gi + β2Ei + β3Gi ⋅ Ei + ei, (1)

where Yi is the phenotype for person i, Gi is the genotype, Ei is the environment, and ei is 

an error term. Here, the effect of Gi on Yi is allowed to vary as a linear function of Ei, as 

indexed by the regression coefficient β3. However, a crucial assumption is that the residuals, 

ei, are homoscedastic across all levels of Ei: ei N 0, σϵ2 .

This model (Eqn 1) can be expanded so as to relax the assumption of homoscedasticity of 

residuals across Ei by specifying the following environmental heteroscedasticity model,

Y i = τ0 + τ1Ei + π0Gi + π1Gi ⋅ Ei + λ0ϵi + λ1Ei ⋅ ϵi . (2)

Here, τ1 is the main effect of the measured environment, π0 is the main effect of 

Gi, π1 is the analogue to β3 in Eqn 1, λ0 is the main effect of the error ϵi (which 

we assume, without loss of generality given λ0, to have unit variance), and λ1 is 

the coefficient used to index heteroscedasticity. Rather than simply adjusting standard 

errors and p values of the standard model using a robust estimation method, this model 

explicitly estimates heteroscedasticity as a model parameter. Such direct modeling of 

heteroscedasticity allows us to overcome specification bias that would result from estimating 

a standard homoscedastic GxE model, even with a robust estimator. It allows us to plot, 

for example, moderation of variance explained by the genetic predictor as a proportion 

of total variance (both explained plus unexplained variance). Eqn 2 is similar to previous 

suggestions for modeling heteroscedasticity [15] but note that we are purposeful in choosing 

a functional form for the heteroscedasticity term, Ei · ϵi, that directly parallels the GxE term, 

Gi · Ei. We provide parallel models for heterogeneity of residuals across Gi (the genetic 
heteroscedasticity model) and heterogeneity of residuals across both Ei and gi (the full 
heteroscedasticity model) in the Supplemental Information (SI; A.3.2).

The heteroscedasticity model is a flexible model allowing for both conventional GxE 

and heteroscedasticity. In order to test whether this flexibility is necessary, we propose a 
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restricted form version of this model that does not directly include GxE but instead allows 

for the total variance of the phenotype to vary as a function of Ei. This scaling model 
represents a scenario wherein GxE—in the sense of a significant estimate of β3 in Eqn 

1—arises as a function of differences in the total variance of Yi as a function of Ei. We 

choose this nomenclature given that the model emphasizes the importance of the outcome’s 

scale. Under this model, the proportional contribution of Gi is constant over the range of Ei, 

but the scale of Yi systematically varies across the range of Ei; i.e., Ei acts as a “dimmer” 

[16].

The scaling model for moderation of the variance of Yi as a function of Ei takes the form

Y i = a0 + a1Ei + b0 + b1Ei Y i
⋆ . (3)

Here, Y i
⋆ is an unobserved factor representing unexplained variation in Yi incremental of Ei. 

The b0 + b1Ei coefficient on the Y⋆ term produces heteroscedasticity in Yi as a function of 

Ei. We let

Y i
⋆ = ℎGi + eϵi (4)

where G is a measured genotype standardized to have unit variance and ϵi is an unobserved 

error term (we assume it is also scaled to have unit variance). Finally, we identify the units 

of Y⋆ by specifying e = 1 − ℎ2. The penetrance of the measured genotype is thus controlled 

via the relative magnitudes of h and e. Note, in particular, that the genotype’s penetrance 

(in terms of Y i
⋆) is constant. The test that we introduce relies on this property; i.e., when 

properly scaled, the penetrance of the measured genotype to Yi is constant. Suppose that b1 

= 0. In that case, Yi is affected solely by environmental and genetic main effects. If b1 ≠ 0, 

then the role of Y i
⋆ with respect to Yi varies as a function of E and so do the raw—but not 

relative—contributions of Gi and ϵi to Y.

We show (SI-A) that the environmental heteroscedasticity model reduces to the 

environmental scaling model when

π0
λ0

= π1
λ1

. (5)

We use this to derive the test statistic ξE and associated hypothesis test of whether an 

empirical estimate of GxE is distinguishable from the scaling model as

ξE ≡ π0λ1 − π1λ0, (6)

H0: ξE = 0. (7)
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We provide parallel heteroscedasticity and scaling models for moderation of the variance of 

Yi as a function of Gi (leading to an analogous test statistic, ξG) and illustrate how π1 can be 

usefully decomposed into scaling and non-scaling components in SI-A.3.

We conduct a variety of simulation studies (see SI-C). These studies suggest that ξE is a 

reliable indicator of whether the scaling model is the basis for GxE. When a test of the 

statistic fails to reject H0 : ξE = 0 and there is significant GxE (π1) observed, we cannot rule 

out that the scaling model is driving observed GxE. When the test suggests rejection of H0 : 

ξE = 0, alternative forms of GxE are implicated. Software to estimate the models considered 

here is described in SI-D. We now apply our heteroscedastic GxE model to the well-studied 

interaction between birth year and genetics linked to body mass index (BMI) [17, 18, 19, 20, 

21], a literal textbook example (see Section 11.3 of [22]).

3 Results

3.1 Data Descriptions

We first test whether previous reports of GxE using a polygenic score can be plausibly 

attributed to more general increases in the total dispersion of BMI, including variation 

unique of its genetic etiology, across birth cohorts [23, 24]. We thus ask whether birth year 

is associated specifically with amplification of genetic risk for BMI or more generally with 

amplification of all variation in BMI. We consider GxE in the Health and Retirement Study 

(HRS) [25], a biannual longitudinal study of US adults over 50 (N=11,586). This data has 

been used in similar previous studies [17, 18, 19]. We use a BMI PGS [26] as constructed 

by the HRS [27] and analyze mean BMI across all waves. See SI-E for further description of 

the data.

We then go on to apply our heteroscedastic GxE model to examine individual locus-by-

year interactions for BMI. To illustrate how our approach can be used to conduct SNP-

level analyses, we apply our technique using the top hits from a recent BMI GWAS 

[26] to investigate whether they are associated with heteroscedastic GxE. We conducted 

heteroscedastic regression analyses for 96 marker SNPs for the genome-wide significant loci 

identified in [26] using independent data from N=380,605 participants from UK Biobank 

(UKB; not used in the BMI GWAS [26]). Results for all SNPs can be found in Table F.2. 

The UKB is highly non-representative [28] potentially affecting the generalizability of our 

results. As with the HRS data, the environmental heteroscedasticity parameter (λ1) was 

positive and significant in all models, suggesting greater variance in BMI among those born 

later in the 20th century. See SI-E for further description of the data.

3.2 Polygenic Score Analysis in the HRS

We first analyze all respondents together and then conduct separate analyses by sex; 

results are presented in Table 1. Consistent with earlier findings [17, 18, 19], we observe 

considerable evidence for stronger prediction of BMI by the PGS for more recently born 

individuals (i.e., π1 > 0). However, we also observe a birth year-linked increase in non-PGS 

variance in BMI (i.e., λ1 > 0); thus, the observed GxE may be attributable to a more general 

pattern of increasing variance in BMI with birth year. In sex-pooled analyses, the probability 
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associated with a test of H0 : ξ = 0 is approximately 0.02. We also consider analysis of BMI 

after normalizing transformations (both Box-Cox [29] and an automated approach [30]) and 

after controlling for ten PCs and sex; results are similar.

Motivated by recent work [21], we also consider sex-stratified analyses. Those results 

suggest findings vary by sex; for males, we are unable to reject the null of the scaling model. 

To illustrate the differences in implications in our sex-stratified analyses, we also conduct 

a posterior predictive check analysis [31], see Figure 2. These findings confirm those of 

Table 1: for males, the scaling model produces data consistent with the HRS data whereas 

for females the observed data are inconsistent with both Scaling and GxE approaches (see 

additional detail in SI–F).

Finally, decomposing π1 estimates (i.e., Eqn 43) suggests that, for females and males, 

41% (95% CI: 10–57%) and 25% (95% CI: 0–54%) of the GxE (π1) effect cannot be 

attributed to a simple scaling term. In an analysis of all respondents, this proportion is 

37% (95% CI: 9–52%). We also report λ2—the coefficient used to index heteroscedasticity 

as a function of Gi—and ξG—a test parallel to ξE of genetic heteroscedasticity. We can 

similarly decompose observed GxE into components related to genetic heteroscedasticity; in 

sex-pooled analysis, 65% (95% CI: 52–73%) cannot be attributed to a genetic scaling term 

(see Eqn 44). Additional results on these parameters are included in the SI.

Collectively these results indicate substantial evidence for birth year linked 

heteroscedasticity in BMI; the simple homoscedastic GxE model does not adequately 

represent the data. As a final illustration, if we consider the amount of variation in BMI 

explained by the polygenic score (along the lines of Figure 2), the classic GxE approach 

in the full data would suggest that this grows from 0.024 in the first birth year to 0.137 in 

the final birth year. In contrast, analysis under the heteroscedastic regression model suggests 

much more modest changes, from only 0.045 in the first birth year we observed to 0.088 in 

the last. We further discuss these findings and evidence related to genetic heteroscedasticity 

in SI-F.

3.3 SNP Analyses in the UKB

Under the full heteroscedasticity model, four SNPs exhibited significant gene-by-birth year 

effects as indicated by (Bonferroni-adjusted) p-values for the π1 parameter. Table 2 contains 

parameter estimates from the full heteroscedasticity model for these SNPs along with ξE 

and ξG estimates obtained from the respective heteroscedasticity models. The main effect 

of birth year (τ1) was negative, indicating that later-born UK Biobank participants tend to 

have lower BMI. Given substantial epidemiological evidence from representative samples 

indicating increasing BMI with birth year, we speculate that this negative association may be 

driven by selection bias in the UKB sample [28] (see additional discussion in SI–F). Given 

that rs1558902 is a variant in the FTO gene locus our finding replicates earlier results [32] 

which reported increasing penetrance of a variant within FTO over historical time using a 

different data set. Given that ξG was highly significant for each of these four SNPs we reject 

the null that observed GxE is driven entirely by scaling. In vQTL analysis (see additional 

discussion in SI–F) we replicate earlier findings [9] suggesting that the FTO gene may act 
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as a vQTL. We note one key limitation: we are unable to distinguish age from cohort effects 

given the design of the UKB but use birth year to maintain consistency with HRS findings.

4 Discussion

Identified GxE interactions between specific pairs of genetic and environmental variables 

may represent specific instances of more general patterns of interaction. This will occur 

when the genetic or environmental predictor moderates the total variation in a phenotype. 

For instance, when the phenotypic variation changes as a function of environment, 

traditional homoscedastic GxE models are likely to detect interactions between that 

measure and all other correlates of the phenotype, both genetic and non-genetic. Here, 

we have delineated an expanded heteroscedastic GxE regression model that explicitly 

models moderation of the dispersion of the the phenotype as a function of the genetic 

and environmental measures. We use this model to derive a test statistic, ξ, which 

compares this heteroscedasticity model to a simpler scaling model in which GxE arises 

from more general differences in phenotypic variance, irrespective of etiology. When the 

scaling model holds, differences in phenotypic variance across the range of the genetic or 

environmental moderator induce a form of GxE that is only apparent in unstandardized 

units; the proportional contribution of the remaining predictors to phenotypic variance 

remains constant across the range of the moderator. We recommend employing ξ as a formal 

test of the difference between the GxE and scaling models, and we recommend employing 

the heteroscedasticity models introduced here for obtaining more accurate estimates and 

visualizations of the proportions of variance explained in the phenotype across different 

levels of the genetic or environmental moderators.

We provide an application of the heteroscedastic regression model, replicating previous 

observations that that genetic predictors of BMI have become increasingly penetrant in 

recent years. However, we additionally observed that the total variance in BMI increased 

with participant birth year. We found that, amongst males within the sample, the interaction 

between PGS and birth year was indistinguishable from a scaling model in which the total 

variance in BMI increases over birth year. While we reject the null that the scaling model 

produced data for females, we still estimate that a large proportion of the observed GxE may 

be due to scaling. In the full sample, only 37% of the estimated π1 term cannot be attributed 

to scaling; while this suggests some conventional GxE, it is relatively modest. Other work 

has considered the potential moderation of genetic risk for BMI as a function of diet [4, 

33], other lifestyle characteristics [34], and educational attainment [35]. Our findings may 

justify reconsideration of these earlier results with an increased focus on outcome variation. 

Outside of research focused on genetics, our work also dovetails with other empirical 

evidence [36] suggesting that effectively modeling variation in BMI across contexts may be 

crucial for accurate understanding of health disparities. We also note that the data considered 

here focus on older respondents. Such data may have unique characteristics; these data may 

be shaped by mortality selection [37] or otherwise be non-representative [28]. Moreover, for 

consistency with past work in this area (e.g., [17]), we interpret effects of birth year in terms 

of cohort effects, but we have not attempted to formally distinguish between age, period, and 

cohort effects.
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Issues surrounding the scaling of the phenotype not fully explored here have the potential 

to have additional relevance for study of GxE. For instance, skew in the distribution of the 

phenotype may produce both GxE and heteroscedasticity by inducing a dependency between 

the mean and the variance of the distribution of the phenotype. Complications associated 

with analysis of such outcomes have been of concern since the days of Fischer [38] but we 

emphasize that heteroscedasticity is not always simply an epiphenomenon of non-normality. 

For instance, in our empirical analysis of BMI, we report results of GxE analyses after a 

normalizing (we use both Box-Cox [29] and an algorithmic approach [30]) transformation of 

BMI, and continue to detect both GxE and heteroscedasticity.

The methods introduced here can be viewed as complementary to those based in other 

genetic research designs, such as twin/family [39] and genome-wide molecular methods [40] 

that focus on GxE in the form of differences in the magnitude of of genetic variance or 

(SNP) heritability across the environmental range. The techniques developed here could be 

incorporated along with other recently developed GxE techniques [41], as well as techniques 

to further relax assumptions regarding the parametric form of the likelihood [42, 43], to 

further enhance the robustness of future GxE work. We also suspect that this approach may 

prove especially useful in analysis of polygenic scores designed to identify the magnitude of 

variation in the outcomes, a recently developed tool for genetic prediction [7, 8].

GxE research faces a number of conceptual and statistical challenges [16]. Thoughtfully 

and rigorously engaging with these challenges is particularly salient given the substantial 

recent increases in the availability of both genetic resources [44] and computational tools 

[45] for such research and the well-known failings of earlier epochs of such work [46]. Our 

proposed test is designed to help clarify the nature of potential GxE findings and to shed 

additional light on the processes contributing to variation in the phenotype; in particular, we 

can assess the extent to which the genetic etiology is relatively stable across the range of 

the environmental measure. Using the model and test statistic presented here, researchers 

can test for whether variance in the phenotype that is not explained by the genetic predictor 

shifts across the range of the environment and whether a scaling model may account for 

the obtained pattern of GxE. When the scaling model holds, we would suggest that the 

environment largely acts as a “dimming” mechanism on phenotypic variation [16] without 

altering the proportional contribution of genetic variation to the phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Hypothetical examples of an Environmental moderator (left) or a genetic moderator (right) 

of total variance in a phenotype producing the impression of GxE. Left: Residuals of 

the regression of the Phenotype on the Measured Environment are heteroscedastic. high, 

average, and low polygenic scores (PGSs) are associated with constant percentiles of 

the phenotype at any given location along the x axis. However, because variance of the 

phenotype expands across the range of the Measured Environment, the PGS accounts for 

increasing unstandardized variance across this range. Right: A variance quantitative trait 

locus (vQTL) in which the effect allele is associated with greater variance in the phenotype. 

Unstandardized scores on the phenotype that are associated with high, average, and low 

levels of the measured environment (E) become more distinct with increasing number of 

effect alleles. However, because the total variance in the phenotype expands across the x 

axis, the percentile locations of these scores within each genotype (0, 1, or 2) is constant 

across all levels of the genotype.
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Figure 2: 
Gray lines represent genetic penetrance as a function of birth year simulated based on 

either the scaling model (Eqn 13, on left) or the standard homoscedastic GxE model (Eqn 

1, on right). Red lines represent genetic penetrance as a function of birth year estimated 

from the real data using the heteroscedastic regression model (Eqn 2). Analyses based on 

standardized BMI data.
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Table 1:

Estimates from parameters of the full heteroscedasticity model (Eqn 49) in analysis of GxE for BMI as a 

function of birth year in the HRS. The ξE and ξG estimates reported are obtained from the environmental and 

genetic heteroscedasticity models, respectively.

Gender BMI
a N τ 1 π0 

b π 1 Prπ1 λ0 
b λ1 

b λ 2 Prλ2 PrξE PrξG

All Std 11586 0.19 0.25 0.06 1.78e-11 0.93 0.12 0.09 7.49e-50 1.76e-02 7.89e-04

All BC 11586 0.17 0.26 0.04 1.79e-05 0.95 0.06 0.02 1.15e-03 2.68e-02 5.14e-04

All BN 11586 0.17 0.26 0.04 2.52e-05 0.95 0.06 0.02 1.14e-03 2.66e-02 6.56e-04

All Res 11586 0.20 0.26 0.06 3.99e-12 0.93 0.11 0.09 1.01e-53 9.37e-03 5.28e-04

M Std 5022 0.19 0.26 0.04 4.69e-04 0.93 0.12 0.09 1.63e-22 3.91e-01 2.75e-01

M BC 5022 0.17 0.26 0.03 2.11e-02 0.95 0.07 0.03 1.33e-03 3.83e-01 1.65e-01

M BN 5022 0.17 0.26 0.03 3.05e-02 0.95 0.06 0.03 4.84e-03 3.86e-01 1.78e-01

M Res 5022 0.19 0.26 0.04 4.54e-04 0.93 0.11 0.08 4.70e-22 3.99e-01 2.04e-01

F Std 6564 0.20 0.25 0.06 6.65e-09 0.93 0.12 0.09 3.51e-31 2.24e-02 1.21e-03

F BC 6564 0.18 0.26 0.04 2.09e-04 0.94 0.06 0.02 1.11e-02 3.82e-02 1.75e-03

F BN 6564 0.18 0.26 0.04 2.10e-04 0.94 0.06 0.02 6.43e-03 3.66e-02 1.95e-03

F Res 6564 0.20 0.26 0.07 1.46e-09 0.92 0.12 0.09 7.91e-33 1.06e-02 8.36e-04

a
We consider four transformations of BMI. Std denotes the standardized mean BMI shown in the middle panel of Figure E.1. BC denotes the 

Box-Cox transformation [29]. BN denotes the transformation from bestNormalize [30]. Res denotes analysis of standardized variables after all 
(BMI, birthyear, PGS) have been residualized on 10 PCs and gender as per Frisch–Waugh–Lovell theorem given previous concerns regarding 
interaction research [5].

b
We show probabilities for parameters when the maximal probability in a column is larger than 1e − 6.
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Table 2:

Estimates from parameters of the full heteroscedasticity model (Eqn 49) in analysis of GxE for Box-Cox 

transformed BMI as a function of birth year in the UK Biobank for those SNPs with significant π1 estimates 

following Bonferonni adjustment. The ξE and ξG estimates reported are obtained from the environmental and 

genetic heteroscedasticity models, respectively.

SNP π 0 
a π 1 Prπ1 λ 0 

a λ 1 
a λ 2 Prλ2 PrξE PrξG

rs543874_A −0.0271 −0.0085 1.90e-07 0.9873 0.0369 −0.0036 1.48e-03 4.39e-06 1.04e-07

rs13021737_G 0.0279 0.0062 1.33e-04 0.9873 0.0369 0.0036 1.53e-03 1.46e-03 1.75e-04

rs1558902_T −0.0503 −0.0077 2.12e-06 0.9864 0.0368 −0.0096 1.76e-17 2.96e-04 5.14e-07

rs2075650_A 0.0113 −0.0060 2.43e-04 0.9875 0.0371 −0.0002 8.53e-01 2.01e-04 5.78e-04

a
We show probabilities for parameters when the maximal probability in a column is larger than 1e − 6.
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