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	 Background:	 Previous studies have demonstrated that embryo development and the occurrence of tumors are closely relat-
ed, as key genes, pathways, miRNAs, and other biological mechanisms are involved in both processes. Extensive 
research has found that abnormal development of nerve ectodermal cells not only leads to neural tube defects 
(NTDs), but also neuroectodermal tumors.

	 Material/Methods:	 Genes associated with both NTDs and neuroectodermal tumors were obtained from the DisGeNET database. The 
STRING database was used to construct the protein–protein interaction (PPI) network and the hub genes were 
visualized using Cytoscape. Additionally, we predicted the miRNAs targeting the identified genes. Sequencing 
data obtained from an NTDs mouse model and human samples were used to confirm the bioinformatics re-
sults. Moreover, a dual-luciferase report assay was used to validate the targeting relationship between the miR-
NA-gene pairs identified.

	 Results:	 A total of 104 intersection genes of NTDs-related and neuroectodermal tumors-related genes were obtained; 20 
of these genes were differentially expressed in NTDs samples and had very close interactions. Among 10 hub 
genes, we identified 3 important susceptibility genes differentially expressed both in RA-induced NTDs mice 
and human glioblastoma samples: Ncam1, Shh, and Ascl1. Among these, we found that the Ncam1 expression 
level was regulated by mmu-miR-30a-5p, and the Ascl1 expression level was regulated by mmu-miR-375-3p.

	 Conclusions:	 In conclusion, we identified differentially expressed genes and a potential miRNA-mediated regulation mech-
anism shared between NTDs and neuroectodermal tumors that may guide future studies aiming to find nov-
el therapeutic targets for NTDs or neuroectodermal tumors.
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Background

During embryonic development, a fertilized egg develops into 
an embryo by undergoing cell division and subsequent cell dif-
ferentiation processes. Similarly, tumors develop by the abnor-
mal proliferation and differentiation of cells due to the pres-
ence of mutations in key genes that regulate the cell cycle. 
The concept of the embryogenic origin of tumors, which was 
first suggested by the French biologists Lobstein and Recamier 
in 1892, states that tumor cells are very similar to embryon-
ic cells and that tumor cells are derived from the continuous 
proliferation of embryonic cells [1]. In 1983, Pierce et al pro-
posed that a tumor was a developmental biology problem and 
further highlighted the close relationship between the occur-
rence of tumors and embryo development [2].

Neural tube defects (NTDs) are a common congenital birth de-
fect caused by the inadequate closure of the neural tube dur-
ing embryo development. In most vertebrates, hollow neural 
tubes are formed as neuroectoderm cells proliferate, invag-
inate, and eventually migrate from the surface of the ecto-
derm [3-6]. Among all types of human tumor tissues, 6 classes 
derive from the neuroectoderm during early embryo develop-
ment: primitive neuroectodermal tumor, glioma, glioblastoma 
(GBM), neuroblastoma, neurilemmoma, and medulloblasto-
ma [7,8]. GBM is a brain tumor with high incidence and mor-
tality rates, for which only a limited number of treatments are 
currently available.

The neural tube is the main primordium of the central nervous 
system. It gives rise to the glial cells, which retain the ability to 
proliferate throughout life. Most adult neurological tumors are 
of glial origin. These tumors are termed gliomas [9], and GBM 
is the most malignant form of glioma [10]. Therefore, from a 
developmental perspective, the embryonic origin of GBM tis-
sue is the neural tube. It is perhaps not surprising that there 
are case reports of patients with both GBM and NTDs [11] and 
that individuals with congenital nervous system defects are 
at higher risk of developing neurological tumors [12]. One out 
of 10 babies with NTDs die before their first year [13]. GBM is 
also a disease with a high mortality rate, and the 5-year sur-
vival rate is less than 10% [14,15]. Although it is difficult to 
obtain samples of both diseases in the same patient, it does 
not prevent scientists from studying the shared genes and po-
tential mechanisms of the 2 diseases. Previous studies have 
reported several genes associated with both NTDs and GBM. 
To the best of our knowledge, the p53 pathway contributes to 
NTDs and to GBM pathogenesis [16]; aberrant expression of 
the platelet-derived growth factor receptor-a (PDGFRA) gene 
has been associated with NTDs and GBM [17]; and insulin-like 
growth factor binding protein 2 (IGFBP2) mRNA levels remain 
high during the neural tube closure and are frequently overex-
pressed in GBMs [18]. Nonetheless, the underlying molecular 

mechanisms are still poorly understood, highlighting the need 
to better understand the mechanisms regulating the expres-
sion of key genes involved in cell proliferation during embryo 
development and tumorigenesis. Many studies have shown 
that microRNAs (miRNAs) such as miR-30, miR-9, and miR-
375 play an important role in neural tube closure during the 
early embryonic development and in tumorigenesis [19-25].

Therefore, finding core genes and potential pathways associ-
ated with both NTDs and neuroectodermal tumors will con-
tribute to understanding their pathogenesis as well as devel-
oping targeted treatments. Our study revealed the key genes 
associated with NTDs and neuroectodermal tumors, and their 
potential mechanism.

Material and Methods

Animals

ICR mice (9-11 weeks, 19-25 g) were provided by the Animal 
Center of Shanxi Medical University and raised in specific 
pathogen-free cages at the animal center with a 12-h light/
dark cycle, keeping the temperature and humidity within the 
range of 20-26ºC and 40-70%, respectively. The NTDs mouse 
model was established by gavage of 28 mg/kg retinoic acid 
(RA) to pregnant mice at embryonic day 7.5 (E7.5). The control 
pregnant mice were treated with the same dose of sesame oil. 
The brain vesicles of mouse embryos were collected at E9.5 
and E10.5. Total RNA was extracted using the TRIzol method 
(Ambion, USA), and cDNA was synthesized using a Revert Aid 
First Strand cDNA Synthesis Kit (Takara, Japan).

Collection of GBM Samples

All GBM samples were collected from the Neurosurgery 
Department of Shanxi Cancer Hospital. Normal adjacent tis-
sue was obtained from the extended excision domain of GBM 
neurosurgical resections. Ethics approval was obtained from 
the Ethics Review Board of Shanxi Cancer Hospital.

Gene Set Analysis

The DisGeNET database was used to identify genes associated 
with NTDs and 6 kinds of neuroectodermal tumors. DisGeNET 
is a platform integrating standardized data on disease-associ-
ated genes from multiple sources. The current release covers 
more than 24 000 diseases and traits, 17 000 genes, and 117 
000 genomic variants [26,27]. It provides a ‘score_gda’ that 
reflects how well established a particular association is based 
on current knowledge by giving the highest value to associa-
tions reported by several databases, particularly those report-
ed by expert-curated resources, and with a large number of 
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supporting publications. We selected different kinds of dis-
ease-associated genes with a score_gda higher than the mean 
score of all genes.

Gene Expression Level Analysis

To confirm the gene expression levels of the identified disease-
associated genes, we used the mRNA-sequencing data from 
mouse and human NTDs samples. Since the NTDs-susceptibility 
genes screened using animal models do not necessarily reflect 
the human pathological mechanisms, we considered only those 
genes that had similar expression trends both in mouse mod-
els and human NTDs samples as candidate genes.

mRNA sequencing data from the RA-induced NTDs mouse mod-
el were obtained by our research team, as reported in our pre-
vious study [28]. Transcriptome data were collected at E8.5, 
E9.5, and E10.5. Briefly, the samples were sequenced using 
the Illumina HiSeqTM 2000 sequencing platform. mRNA se-
quencing data of human NTDs samples were obtained by our 
research team in a previous study [29]. Briefly, in that previ-
ous study, embryos with a gestational age of approximately 
17 weeks were diagnosed with spina bifida and age-matched 
normal embryos were obtained from abortions. Affymetrix HG-
U133A 2.0 GeneChip arrays were used to examine the gene 
expression profile of these samples.

Hub Genes Analysis

The STRING database was used to construct a protein–pro-
tein interaction (PPI) network. This database mainly comprises 
information about interacting proteins collected from exper-
imental data. The current version contains 3 123 056 667 in-
teraction pairs, which originate from 24 584 628 proteins and 
5090 organisms [30]. Cytoscape was used to visualize the net-
work [31]. Hub genes were selected using the Maximal Clique 
Centrality algorithm [32].

Prediction and Confirmation of the Potential miRNA-mRNA 
Pairs

StarBase was used to predict the miRNAs targeting the hub 
genes identified. StarBase is a database facilitating the com-
prehensive exploration of miRNA-target interaction maps from 
CLIP-Seq and Degradome-Seq data. The current version in-
cludes high-throughput sequencing data generated from 21 
CLIP-Seq and 10 Degradome-Seq studies [33]. To confirm the 
potential miRNA-mRNA pairs, we used the miRNA-sequenc-
ing data from the mouse model of NTDs that was previously 
published by our research team [34]. Here, the NTDs mouse 
model was constructed identically according to our previous 
study. Using these data, we selected the miRNAs with oppo-
site expression trends to the hub genes as candidate miRNAs.

Quantitative Reverse Transcription PCR (RT-qPCR) Analysis

The mRNA expression level of hub genes in the RA-induced 
NTDs mice and human GBM samples was assessed using RT-
qPCR. qPCR was performed using Maxima SYBR Green/ROX 
qPCR Master Mix (Takara, Japan). The data were analyzed with 
2–DDCt method. The mRNA expression level of the target genes 
was normalized to that of Gapdh. Primer sequences are shown 
in the Supplementary Tables 1 and 2.

Dual-Luciferase Analysis

A dual-luciferase report assay was used for the validation of 
the miRNA-gene pairs. The luciferase reporter plasmid was built 
using the pmirGLO vector, into which the wild-type and mu-
tant candidate genes were cloned. For this purpose, an appro-
priate number of 293T cells were seeded into a 12-well plate 
and cultured at 37°C in an incubator overnight. Cells were co-
transfected with the luciferase reporter plasmids and miRNA 
mimics/mimics control using Lipofectamine 2000 (Invitrogen), 
and the efficiency of transfection was assessed. After 24 h, 
Firefly and Renilla luciferase activity were detected with a Dual-
Luciferase Reporter Assay kit (PR-E1910, Promega, Wisconsin, 
USA). Relative luciferase activity was defined as the ratio of 
Renilla luciferase activity to the Firefly luciferase activity with 
that of the control set as 1.0. Briefly, cells were washed with 
phosphate-buffered saline, and 400 μL of 1×Passive Lysis Buffer 
(Promega) was added to the cultured well and shaken gently 
for 15 min. The lysate was then transferred to a test tube. A 
total of 20 μL Passive Lysis Buffer lysis buffer was transferred 
into a white 96-well plate, then 100 μL of LARII (Promega) was 
added to detect Firefly luciferase in Multifunctional Enzyme 
Marker. A total of 100 μL of Stop&Glo (Promega) was used to 
detect Renilla luciferase activity.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism soft-
ware, version 8.0. Data were expressed as the mean±S.D. The 
t test analysis was performed to compare the means between 
the 2 groups.

Results

Intersecting Genes Between NTDs and Neuroectodermal 
Tumors

A total of 304 NTDs-associated genes and 9572 neuroec-
todermal tumors-associated genes were downloaded from 
the DisGeNET database. Table 1 shows the number of genes 
associated with the 6 kinds of neuroectodermal tumors. 
Subsequently, we identified the genes that were associated 
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Tumour Total gene number
Gene number 

(Score_gda>average)
Average Score_gda

Primitive neurotodermal tumour 184 24 0.03

Glioma 3097 896 0.03

Glioblastoma 3177 939 0.03

Neuroblastoma 2059 699 0.03

Neurilemmoma 193 55 0.02

Medulloblastoma 862 145 0.04

Table 1. Total number of genes related with 6 kinds of cancer and the number of genes with score greater than the mean value.

Figure 1. �The intersection genes associated with NTDs and neuroectodermal tumors. Deep pink: Genes associated with NTDs and 
6 kinds tumors and their Score_gda were higher than the average; Light pink: Genes associated with NTDs only and their 
Score_gda were less than the average; Orange: Genes associated with 6 kinds of tumors only and their Score_gda were 
higher than the average; Blue: Genes associated with 6 kinds of tumors only and their Score_gda were less than the average. 
This figure was created using PowerPoint, version Microsoft Office Home and Student 2019, supported by Microsoft.
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Figure 2. �Expression of 27 differentially expressed gene in E8.5, E9.5, and E10.5. (A) Heatmap of DGEs’ expression; (B-D) X-axis: Log2 
Ratio in E8.5 (RA/Con), Log2 Ratio in E9.5 (RA/Con), Log2 Ratio in E10.5 (RA/Con) respectively, Y-axis: Gene Symbol. Flesh 
colored: genes with |log2 Ratio|>1 and P value<0.05; light gray: genes with |log2 Ratio|<1 or P value>0.05. These figures were 
created by an open-source tool RStudio, version 1.1.456.
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with both NTDs and neuroectodermal tumors. A total of 104 
overlapping genes were considered as candidate genes for fur-
ther analyses (Figure 1).

Bioinformatics Analysis of the Genes

Among the 104 overlapping genes, differentially expressed 
genes (DEGs) were selected using the threshold criteria of P 
value £0.05 and |Log2Ratio| ³1 based on NTDs mouse transcrip-
tome data. A total of 3 genes were differentially expressed at 
E8.5, 14 at E9.5, and 24 at E10.5, as shown in Figure 2.

A PPI interaction network was constructed and visualized for 
the 27 DEGs using the STRING database and Cytoscape soft-
ware. The PPI revealed that 20 of these interacted very closely. 
The resulting 10 hub genes identified using the maximal clique 
centrality algorithm were: Pou5f1, Bmp4, Shh, Cdh1, Ncam1, 
Snai2, Igf2, Ascl1, Anxa5, and Ccl2 (Figure 3).

Four of the 10 hub genes had the same expression trend in 
human NTDs data as in mouse NTDs data. These genes were 
Ncam1 (up-regulated), Cdh1 (up-regulated), Shh (down-regu-
lated), and Ascl1 (down-regulated). In summary, these 4 genes 
were closely associated with both NTDs and the 6 types of neu-
roectodermal tumors, and were also key genes in the PPI net-
work, suggesting they are important candidate genes.

Hence, we further explored the potential mechanism whereby 
these genes are involved in the pathological mechanism of both 
NTDs and neuroectodermal tumors. As miRNAs are a type of 
small non-coding RNA that plays an important role in regulating 
gene expression [35], using StarBase V2.0, we predicted miR-
NAs regulate expression levels of the candidate genes. A total 
of 180 miRNAs with 245 targeted binding sites were predicted 
for Ncam1, 130 miRNAs with 170 targeted binding sites were 
predicted for Cdh1, 14 miRNAs with 14 sites were predicted 
for Shh, and 24 miRNAs with 34 sites were predicted for Ascl1.

We then used the RA-induced NTDs mouse model’s mRNA-
sequencing and miRNA-sequencing data to filter the predict-
ed results. For this purpose, only miRNA-mRNA pairs with 
opposite expression trends both at E9.5 and E10.5 were re-
tained. A total of 38 miRNA binding sites for Ncam1, 1 miRNA 
binding site for Ascl1, and 32 miRNA binding sites for Cdh1 
were obtained. miRNAs with the highest differential expres-
sion fold value were selected. Finally, we considered mmu-
miR-30a-5p-Ncam1, mmu-miR-375-3p-Ascl1, and mmu-miR-
9-5p-Cdh1 as candidate pairs for experimental verification, 
as shown in Figure 4.

Validation of the Expression Level of the Target Genes

To validate the expression levels of the candidate genes, we 
assessed the mRNA levels of Ncam1, Cdh1, Shh, and Ascl1 in 
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the brain vesicle tissue of E9.5 and E10.5 mouse embryos us-
ing RT-qPCR. Ncam1 and Cdh1 were upregulated in the NTDs 
mice, whereas Shh and Ascl1 were downregulated in NTDs mice. 
Additionally, Ncam1, Shh, and Ascl1 were significantly differen-
tially expressed at E9.5 and E10.5; whereas Cdh1 was signif-
icantly differentially expressed at E10.5, as shown in Figures 

5 and 6. Moreover, we validated expression levels of these 4 
candidate genes in GBM samples using RT-qPCR. Shh and Ncam1 
were significantly upregulated and Ascl1 was significantly down-
regulated in tumor samples, whereas Cdh1 was not differen-
tially expressed in the tumor samples, as shown in Figure 7. In 
summary, among the 4 important susceptibility genes, 3 genes 
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Figure 4. �Differential expression of miRNA-mRNA pairs in E9.5 and E10.5. (A) mmu-miR-30a-5p-Ncam1; (B) mmu-miR-375-3p-Ascl1; 
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(Ncam1, Shh, and Ascl1) were differentially expressed both in 
RA-induced NTDs mice and human GBM samples.

Validation of the Interaction Between the miRNAs and the 
Target Genes

To validate the interaction between the selected miRNA-mRNA 
pairs, we performed a luciferase assay. For this purpose, we 
co-transfected 293T cells with the luciferase reporter plasmids 
and mimic control/miRNAs mimic inhibitor using Lipofectamine 
2000. To ensure the transfection effect of the formal experi-
ment, we conducted a preliminary experiment using the emp-
ty vector plasmid with a red fluorescent signal and acquired 
images using an ordinary fluorescence microscope to visually 
show the transfection effect. As shown in Figure 8, the trans-
fection efficiency was high. The results of the dual-luciferase 
assay are shown in Figure 9. Transfection with the wild-type 

mmu-miR-30a-5p had an approximately 50% inhibitory effect 
on Ncam1, whereas the inhibitory effect was not seen with the 
mutated miRNA. Transfection with wild-type mmu-miR-375-3p 
inhibited approximately 30% of the expression level of Ascl1, 
and the inhibitory effect was not seen with the mutated miR-
NA. However, wild-type mmu-miR-9-5p had no significant ef-
fect on the expression of Cdh1, indicating that it did not have 
a significant specific target binding site on the Cdh1 transcript 
and that the results predicted by the software lacked sufficient 
accuracy. The predicted binding sites of the miRNAs and target 
genes, and the sequence alignments, are shown in Figure 10.

Discussion

With the continuous development of molecular biology tools 
and assays, a growing number of studies have revealed the 

2.0

1.5

1.0

0.5

0.0

E 9.5

Ncam1 Shh Ascl1

**

Re
lat

ive
 m

RN
A n

or
m

ali
ze

d b
y G
ap
dh

**
**

Figure 5. �The expression of candidate genes in E9.5. Gray: Control; Red: Upregulated in NTDs; Green: Downregulated in NTDs. 
n=3,* P<0.05, ** P<0.01, *** P<0.001. Data were analyzed and visualized using the software GraphPad Prism, version 8.0, 
supported by GraphPad Software.

6

4

2

0

E 10.5

Ncam1 Cdh1 Ascl1Shh

***

Re
lat

ive
 m

RN
A n

or
m

ali
ze

d b
y G
ap
dh

** ***

***

Figure 6. �The expression of candidate genes in E10.5. Gray: Control; Red: Up-regulated in NTDs; Green: Downregulated in NTDs. 
n=3,* P<0.05, ** P<0.01, *** P<0.001. Data were analyzed and visualized using GraphPad Prism, version 8.0, supported by 
GraphPad Software.

e936079-8
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Cao R. et al: 
Genes associated with NTDs and neuroectodermal tumors

© Med Sci Monit, 2022; 28: e936079
ANIMAL STUDY

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



similarities between early embryonic cells and tumor cells and 
the key genes, proteins, and metabolic pathways involved in 
both processes [36-38]. A landmark study published in the 
journal Science in 2019 revealed that the most common type 
of childhood kidney cancer is usually preceded by clonal ex-
pansions during embryonic development [39]. A follow-up 
study published in March 2020 showed extensive mutagene-
sis in the placenta and that the mutation sites were the same 
as in many childhood cancers [40]. In 2020, a research team 
from Singapore Genomics Institute and Singapore National 
Cancer Centre demonstrated that fetal liver and liver can-
cer tissues shared an immunosuppressive onco-fetal ecosys-
tem, suggesting that atavistic remodeling might occur in the 
tumor microenvironment [41]. Based on a large-population 
cohort study, cancer risk in children with birth defects was 
precisely estimated in cancers, such as pyloric stenosis and 
medulloblastoma, several different cardiac phenotypes, and 
neuroblastoma [42].

Another large Nordic population-based case-control study in-
dicated that cancer risk increased in individuals with birth de-
fects and persisted into adulthood, both for non-chromosom-
al and chromosomal anomalies [43]. In our studies, through 
a series of bioinformatics analyses, we identified 4 important 
susceptibility genes associated with both NTDs and neuroec-
todermal tumors: Ncam1, Cdh1, Shh, and Ascl1. Three of these 
genes were differentially expressed both in RA-induced NTDs 
mice and human glioblastoma samples: Ncam1, Shh, and Ascl1. 
Ncam1 has been previously reported to be a candidate gene 
involved in NTDs [44], and the novel Ncam1 variant was re-
ported to play an important role in cell signaling associated 
with tumor development in GBM [45]. Shh encodes a neural 
tube patterning-related protein [46], which is also a molecu-
lar marker for medulloblastoma [47]. Finally, the expression 
level of Ascl1 was also found to be altered in the neural tube 
of embryos from diabetic mice [48], and it played an impor-
tant role in controlling the proliferation of GBM cells [49,50]. 
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Figure 7. �The expression of candidate genes in GBM samples. (A) NCAM1. (B) CDH1. (C) SHH. (D) ASCL1. n=10,* P<0.05, ** P<0.01, 
*** P<0.001, ns – not significant. Data were analyzed and visualized using GraphPad Prism, version 8.0, supported by 
GraphPad Software.
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Figure 8. �Cell transfection efficiency. (A) Before transfection; (B) After transfection. The figure was created using Olympus CKX53-FL 
manufactured by Olympus Corporation.
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Figure 9. �Interaction between selected miRNA-mRNA pairs identified by luciferase reporter assays. (A) Luciferase assay of mmu-miR-
30a-5p-Ncam1. (B) Luciferase assay of mmu-miR-375-3p-Ascl1. (C) Luciferase assay of mmu-miR-9-5p-Cdh1. **** P<0.0001. 
Data were analyzed and visualized using the software GraphPad Prism, version 8.0, supported by GraphPad Software.
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Figure 10. �Sequence alignments of miRNAs and target mRNAs. (A) mmu-miR-30a-5p and Ncam1. (B) mmu-miR-375-3p and Ascl1. 
(C) mmu-miR-9-5p and Cdh1. Predicted by StarBase V2.0, which is an open-source software platform. Visualized by 
PowerPoint, version Microsoft Office Home and Student 2019, supported by Microsoft.

In conclusion, previous evidence supports a role for these 3 
genes in both development and tumorigenesis. Future studies 
should evaluate the molecular features of patients with co-oc-
currence of NTDs and neuroectodermal tumors to further elu-
cidate the mechanisms that lead to these complex outcomes. 
Upon further validation, our findings may help in the devel-
opment of cancer surveillance protocols for early tumor de-
tection in children with neural tube defects. However, if the 
models or samples we used have NTDs initially and eventually 
develop neuroectodermal tumors with the same genetic back-
grounds, the DEGs we found will better prove the connection 
between NTDs and neuroectodermal tumors. Moreover, the 
RA-induced NTDs mouse model is not a representative NTDs 
mouse model; therefore, our results obtained from this model 
alone cannot fully explain the relationship between NTDs and 
neuroectodermal tumors. Additional models will be required to 
validate these findings. Furthermore, the susceptibility genes 
we detected have not been verified in human NTDs samples, 
and the pathophysiologic significance and clinical utility of our 
results remain to be determined.

miRNAs are a class of non-coding single-stranded RNA mol-
ecules about 22 nucleotides in length. miRNAs are known to 
participate in the regulation of gene expression at the post-
transcriptional level by binding to the target transcript [51]. 
Through this mechanism, miRNAs drive embryonic develop-
ment in a variety of species, such as zebrafish, Xenopus toads, 
and mice [52-54]. A comprehensive study by Guo et al sup-
ports a close relationship of miRNA expression between ear-
ly human embryonic development and tumorigenesis [55]. 
Many studies have shown that miRNAs are involved in the 
occurrence of NTDs. miR-30 family members play an impor-
tant role in regulating the WNT signaling pathway, TGF-β sig-
naling pathway, and focal adhesion during neural differenti-
ation [56]. miR-375 is upregulated in the NTDs mouse model 
and might be a potential pathway leading to spina bifida [24]. 
Similarly, miRNAs are also known to regulate gene expression 

during tumorigenesis, thereby regulating the process. miR-30 
family members are downregulated in medulloblastoma, lead-
ing to enhanced cancer cell growth and other malignant be-
havior, and thus is a potential new therapeutic target [20]. In 
neuroblastoma, miR-375 regulates nerve cells differentiation, 
thereby contributing to tumorigenesis [57].

Our study verified 2 targeted binding pairs: mmu-miR-30a-5p-
Ncam1 and mmu-miR-375-3p-Ascl1. These 2 pairs can regu-
late the development of neuroectodermal cells, and may also 
be related to neural tube development, making them potential 
biomarkers of NTDs and targets for GBM treatment. Further 
follow-up studies are needed to address the specific under-
lying mechanisms.

Conclusions

In summary, susceptibility genes related to both NTDs and 6 
types of neuroectodermal tumors were obtained. Using bioin-
formatic analysis, we identified 4 potential candidate genes. 
Additionally, we demonstrated that 3 of these genes were 
differentially expressed both in NTDs mice and human GBM 
samples, and 2 were significantly regulated by miRNAs. This 
suggests that the dysregulation of their transcriptional con-
trol might lead to diseases such as NTDs or neuroectoderm 
tumors. Altogether, these results provide a theoretical frame-
work supporting the relationship between early embryo devel-
opment and tumorigenesis and provide the foundation for fu-
ture studies aiming to identify novel therapies for NTDs or GBM.
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