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Abstract

Meta-analyses contribute critically to cumulative science, but they can produce misleading 

conclusions if their constituent primary studies are biased, for example by unmeasured 

confounding in nonrandomized studies. We provide practical guidance on how meta-analysts 

can address confounding and other biases that affect studies’ internal validity, focusing primarily 

on sensitivity analyses that help quantify how biased the meta-analysis estimates might be. We 

review a number of sensitivity analysis methods to do so, especially recent developments that 

are straightforward to implement and interpret and that use somewhat less stringent statistical 

assumptions than earlier methods. We give recommendations for how these methods could 

be applied in practice and illustrate using a previously published meta-analysis. Sensitivity 

analyses can provide informative quantitative summaries of evidence strength, and we suggest 

reporting them routinely in meta-analyses of potentially biased studies. This recommendation in 

no way diminishes the importance of defining study eligibility criteria that reduce bias and of 

characterizing studies’ risks of bias qualitatively.
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1. INTRODUCTION

Meta-analyses contribute critically to cumulative science (5, 14), but they can produce 

biased estimates and misleading conclusions if their constituent primary studies are 

themselves biased. Nonrandomized studies may be particularly prone to unmeasured 

confounding, misclassification, selection bias, and other biases. We provide practical 

guidance on how meta-analysts can address these biases that affect studies’ internal validity, 

first briefly covering approaches for defining study eligibility criteria that reduce bias 

(Section 2) and for qualitatively assessing studies’ risks of bias (Section 3). We then 

address our primary focus, namely methods for quantitatively assessing how sensitive 
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meta-analysis results may be to residual bias that cannot be eliminated by limiting study 

eligibility (Section 4). This last topic has received relatively less attention both in the 

methodological literature on meta-analysis and in empirical meta-analyses (11), partly 

because early methods were reasonably criticized for invoking strong statistical assumptions 

and requiring extensive statistical expertise to implement and interpret (19). However, as 

we discuss, several recently developed methods have made progress on these fronts – 

although they do still have limitations – and we therefore advocate for routinely using both 

qualitative and quantitative methods to assess risks of bias in individual studies and in the 

meta-analysis as a whole. We illustrate the use of selected quantitative sensitivity analyses 

in an applied example (Section 5). We focus primarily on meta-analyses whose research 

questions concern causation and in which the most critical bias is unmeasured confounding, 

although we comment on other biases throughout, especially in Section 4.3. We do not 

address publication bias and similar selection processes and so refer to biases affecting 

studies’ internal validity simply as “bias”.

2. DEFINING ELIGIBILITY CRITERIA THAT REDUCE BIAS

We recommend that attention to reducing bias in a meta-analysis begin as early as the 

protocol design stage, during which the eligibility criteria for studies’ inclusion in the 

meta-analysis and in primary versus secondary analyses can be crafted to reduce bias. 

Preferably, these eligibility criteria, along with the rest of the meta-analysis protocol, should 

be preregistered formally, with any post hoc deviations disclosed in the final manuscript (19, 

37).

2.1. Eligibility criteria for inclusion in the meta-analysis

First, the meta-analyst must decide whether to include non-randomized studies (NRS) at all, 

and if so, whether to include only certain types of NRS. If an initial scoping review identifies 

a number of relevant, well-conducted randomized studies (RS) on the topic of interest, 

limiting eligibility to RS may provide the least biased results and still permit reasonable 

statistical precision. However, there may be very few (or no) relevant RS, for example 

because it is not feasible or ethical to randomize the exposure. Alternatively, in some 

contexts, RS may be available but may be subject to limitations that NRS help mitigate. For 

example, if the available RS use less externally generalizable samples or shorter follow-up 

periods than NRS, then including NRS in the meta-analysis may better address the research 

question (19). When including NRS in a meta-analysis, we recommend that eligibility 

nevertheless be restricted to study designs that provide reasonably credible evidence given 

the specific biases that are relevant to a given scientific topic (19); however, when few well-

designed NRS are available, deciding how stringent to be can create challenging tradeoffs 

between bias and precision.

Regarding confounding specifically, NRS are generally least susceptible to bias when they 

use longitudinal designs with the exposure measured before the outcome and when they 

control for confounders measured at baseline, ideally including baseline measures of the 

exposure and outcome themselves.a On the other hand, cross-sectional studies that measure 

the exposure, outcome, and any adjusted covariates contemporaneously are usually quite 
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prone to confounding because the temporal ordering of the variables is unclear. That is, 

the direction(s) of causation between the exposure and outcome often cannot be established 

and the adjusted covariates may not permit adequate control of confounding (53, 58). For 

this reason, we typically recommend that cross-sectional studies be excluded altogether in 

meta-analyses whose research questions concern causation, except if the exposure clearly 

precedes the outcome despite their contemporaneous measurement (e.g., if the exposure 

is fixed at birth or the outcome is mortality).b The Summary below provides a more 

detailed, but approximate, ranking of NRS study design features by the level of robustness to 

confounding that they typically provide (adapted with permission from (53)).

SUMMARY: A HIERARCHY OF NONRANDOMIZED DESIGNS FOR 
CONTROLLING CONFOUNDING

In ascending order of robustness to confounding:

1. Cross-sectional data with exposure and outcome measured 

contemporaneously

2. Longitudinal data with exposure preceding outcome and control for baseline 

confounders

3. Longitudinal data with control for baseline confounders and baseline outcome

4. Longitudinal data with control for baseline confounders, outcome, and 

exposure

5. Longitudinal data using time-varying exposures and confounding control

If the meta-analyst is concerned about biases besides confounding, risk-of-bias tools for 

NRS can provide guidance on what design features could be used as inclusion criteria (48). 

When reviewing articles for inclusion, these design features should preferably be assessed 

not based on study authors’ own labels for study designs (e.g., “longitudinal study”), which 

are defined inconsistently, but rather based on studies’ actual design features, such as those 

in the Summary above (19). Methods to conduct literature searches for NRS are discussed 

elsewhere (19).

2.2. Eligibility criteria for inclusion in primary analyses

In meta-analyses that include both RS and NRS or that include NRS whose designs provide 

substantially different levels of robustness to confounding, we recommend pre-specifying 

aMethods to control for confounders and baseline measures of the exposure and outcome include, for example, adjusting for 
covariates, using inverse-probability weighting, and using stratification or subset analyses. Specifically regarding the baseline 
outcome, another method is using within-subject change scores as the outcome in analyses. A common form of subset analysis 
to control for baseline outcome values is to recruit only individuals who have not yet experienced the outcome (e.g., myocardial 
infarcation or mortality).
bMore stringently, meta-analysts could include only cross-sectional studies in which not only (i) the exposure temporally precedes 
the outcome; but also (ii) the confounders temporally precede the exposure (e.g., the confounders might be age, sex, and childhood 
socioeconomic status, and the exposure might be adulthood socioeconomic status). In terms of robustness to confounding, these 2 
criteria are preferable to criterion (i) alone because covariates measured after the exposure are not structurally confounders, and 
adjusting for them may not adequately control for confounding (51). However, in practice, longitudinal studies often do not report 
when adjusted covariates were measured, so it may be difficult to apply criterion (ii) in meta-analyses.
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in the meta-analysis protocol which designs will be included in primary and in secondary 

analyses (19). In general, we recommend analyzing RS and NRS separately, at least in 

secondary analyses (19). Regarding confounding, if the meta-analyst anticipates that the 

literature contains very few (if any) RS, primary analyses could be conducted using any 

available RS plus longitudinal NRS that measure the exposure before the outcome and 

that control for baseline confounders and the baseline outcome; secondary analyses could 

then stratify by randomization status using subset analyses or meta-regression methods (17, 

19, 35, 39, 49). Similar secondary analyses could be conducted using risk-of-bias ratings, 

described in Section 3. Additionally, NRS often report estimates that adjust for different 

sets of confounders, and ideally, the meta-analysis protocol would also pre-specify which of 

these estimates will be extracted. In general, we recommend that the estimate that adjusts 

for the largest number of pre-exposure confounders be extracted for primary analyses, but 

when unadjusted estimates are also available, these could potentially also be extracted for 

secondary analyses.

3. QUALITATIVE METHODS FOR ASSESSING RISKS OF BIAS

We recommend that meta-analyses of NRS conduct detailed risk-of-bias (ROB) assessments 

on each study (19). The ROBINS-I tool provides particularly well-informed guidance on the 

design features that most contribute to risks of confounding and other biases (48); guidance 

on its use and reporting are provided elsewhere (19). We would suggest that meta-analyses 

of NRS report on risks of bias in at least 3 ways: (i) for the meta-analysis as a whole, the 

number and percent of studies occupying each level of the hierarchy given in the Summary 

box above; (ii) for each study, its summary and domain-specific ROB ratings assessed using 

ROBINS-I; and (iii) for each study, the list of pre-exposure confounders that were adjusted 

in the estimate that was extracted for primary meta-analyses.

These methods for detailing each study’s risks of bias and design features are integral for 

meta-analyses of NRS, but it can be challenging to intuit how these individual characteristics 

contribute to the aggregate bias in the meta-analysis results. A common method to do so, 

and that required in Cochrane Collaboration reviews, is the GRADE approach (19, 43). In 

this approach, the meta-analyst first heuristically gauges the “proportion of information” in 

the meta-analysis that is contributed by studies at low versus high risks of various types of 

bias (19, 43). Using this heuristic assessment, the meta-analyst can choose to downgrade 

the overall certainty rating of the meta-analysis results from the default “high certainty” 

to “moderate”, “low”, or “very low”. At the meta-analyst’s discretion, the certainty rating 

could be upgraded again if the pooled estimate is large (GRADE suggests the criterion of 

risk ratio > 2 or < 0.5), if there is evidence of dose-response, or if the biases are thought to 

have attenuated rather than inflated estimates (43).

GRADE and other qualitative approaches to assessing aggregate risks of bias are useful, 

but have limitations. Intuiting how much “information” each study contributes to the meta-

analysis is difficult when studies’ standard errors and estimates differ, and considerable 

subjectivity is involved in deciding how to downgrade or upgrade the overall certainty 

rating, as the GRADE Working Group discusses (43). Additionally, the GRADE approach 

ultimately provides a 4-tiered qualitative rating of the overall certainty of the results, rather 
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than a quantitative summary of how numerical estimates might have been affected by bias. 

For these reasons, we encourage supplementing these qualitative methods with quantitative 

methods for assessing the sensitivity of meta-analysis results to bias (Section 4).

4. QUANTITATIVE METHODS FOR ASSESSING SENSITIVITY TO 

UNMEASURED CONFOUNDING AND OTHER BIASES

Sensitivity analyses are quantitative methods that characterize how numerical estimates 

might be affected by bias. We classify sensitivity analyses into two-stage and one-stage 

methods. Two-stage methods first adjust each study’s point estimate and potentially also 

its variance, and then meta-analyze these bias-corrected estimates. In contrast, one-stage 

methods correct the meta-analysis holistically by specifying the distribution of bias across 

studies, rather than in each study individually. Below, we primarily discuss conceptually 

distinct methods that could be used in the context of unmeasured confounding (although 

many of these methods also accommodate other biases; Section 4.3) and are reasonably 

straightforward to implement in practice without extensive customization. Supplemental 

Tables 1A–1B provide additional details on the methods.

4.1. Two-stage methods: Adjusting each study individually before pooling

Two-stage methods begin by adjusting each individual study using any of 4 broad 

approaches. First, some methods use subjective elicitation, in which expert reviewers 

subjectively specify a numerical value for the severity of bias in each study as well as 

their own uncertainty in making each judgment (50). Each study’s estimate is then corrected 

using the specified bias, and its variance estimate is inflated to accommodate subjective 

uncertainty (50).

Second, external adjustment methods adjust each study using information from an 

“external” study, which itself may or may not be included in the meta-analysis. For example, 

Greenland & O’Rourke (13) proposed adjusting each meta-analyzed NRS using information 

from a comparably designed external study that reports both an estimate that is thought 

to be fully adjusted for confounding (and so is unbiased) and a partially adjusted estimate 

that is subject to the same amount of confounding bias as the meta-analyzed estimate to be 

adjusted.

Third, methods based on multiple imputation are related to external adjustment, but apply 

in the special context in which the meta-analyst has access to individual participant data for 

all studies. Under the assumption that at least some studies are fully adjusted and that, in 

the remaining partially adjusted studies, confounder data are missing at random, individual 

participants’ confounder values are imputed based on relationships among the observed 

variables, using multilevel models to account for heterogeneity across studies in the joint 

distribution of the observed variables (2, 20, 40). Each partially adjusted study can then be 

adjusted based on these imputed confounder values using any standard method for measured 

confounding, such as regression adjustment or propensity score methods.

Fourth, some methods use analytical bias formulas to adjust each study given hypothetical 

sensitivity parameters regarding the severity and distribution of unmeasured confounder(s). 
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For example, Goto et al.’s method (12) assumes that each study has a single, categorical 

unmeasured confounder; under this assumption, each study’s estimate can be corrected 

using 4 sensitivity parameters characterizing the confounder’s prevalences among the 

unexposed and among the exposed subjects as well as the confounder’s strengths of 

association with the exposure and with the outcome (1).c

After obtaining bias-corrected estimates for each study using one of the above methods, two-

stage methods then proceed to meta-analyze the bias-corrected estimates. Some methods 

simply conduct a standard meta-analysis in this second stage, without directly modeling 

additional uncertainty introduced by unmeasured confounding, because they essentially treat 

any sensitivity parameters used to obtain the corrected estimates as hypothetical fixed values 

(12). Other methods inflate the variances of the corrected estimates to reflect statistical error 

associated with the external data (13) or subjective uncertainty associated with subjective 

elicitation (50). In multiple imputation methods, increases in uncertainty due to unmeasured 

confounding are naturally captured by the between-imputation variance, which contributes 

to the final, pooled variance estimate (41). A conceptually unique partial identification 

approach first bounds each study’s causal effect using bounds on the possible values of 

the outcome variable, then bounds the pooled estimate by taking the intersection of all the 

studies’ bounds (27). This approach is unusual in that it provides an interval rather than a 

point estimate, assumes there is no effect heterogeneity across studies, and may often yield 

no interval at all in meta-analyses of more than a few studies.

4.1.1. Advantages and disadvantages.—The key advantage of two-stage methods 

is that they allow case-by-case adjustment of each study based on extensive information 

regarding its magnitude of bias. When such information is available, is accurate, and 

fulfills any necessary statistical assumptions (Supplemental Table 1A), these methods can 

allow for accurate and precise bias correction. With sufficiently detailed data from fully 

adjusted studies, some methods have the important advantage of directly and objectively 

correcting inference for uncertainty introduced by unmeasured confounding (2, 13, 20, 40). 

Additionally, there is a rich literature on methods to handle confounding and other biases in 

individual studies (reviewed in (23, 61)), and in principle two-stage methods could use any 

of these existing methods in the first stage.

However, two-stage methods’ reliance on extensive information about each study is also 

a disadvantage, as this information may often be unattainable for any given study, let 

alone when meta-analyzing many existing studies. For example, external adjustment and 

multiple imputation methods require extensive data from fully adjusted studies, and if 

these “fully adjusted” studies in fact still have residual confounding, the methods may 

not adjust adequately. Two-stage methods using analytical formulas require fairly detailed 

information and assumptions about the unmeasured confounder(s), for example that there is 

a single, categorical unmeasured confounder with known prevalences (12). Of the two-stage 

methods, those using subjective elicitation require perhaps the fewest “inputs”, but at the 

cIn practice, Goto et al. (12) in fact specified the same 4 sensitivity parameters for all studies, but the method would naturally allow 
specification of different sensitivity parameters for each study.
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cost of relying critically on expert reviewers’ ability to numerically estimate the severity of 

confounding bias in each study (50).

4.1.2. Software.—Multiple imputation methods can be implemented using well-

established R packages (4, 20). To our knowledge, no software is available for the other 

methods, but all would be straightforward to implement in any command language for 

statistical analysis (e.g., R or SAS) by coding a few lines of analytical bias formulas.

4.2. One-stage methods: Adjusting the meta-analysis holistically after pooling

One-stage methods occupy 2 broad categories: bias correction methods and E-value analog 

methods (Supplemental Table 1B).

4.2.1. Bias correction methods.—These methods specify a hypothetical distribution 

of bias across studies and then obtain a bias-corrected pooled estimate or distribution of 

effects. McCandless et al. (36) proposed a Bayesian approach in which log- and logit-normal 

hyperpriors are specified on the distribution across studies of 3 sensitivity parameters: (i) 

the unmeasured confounder’s strength of association with the outcome, conditional on the 

exposure and on any measured confounders; (ii) the confounder’s prevalence among the 

unexposed group; and (iii) the confounder’s prevalence among the exposed group. Assuming 

that, across studies, the sensitivity parameters are independent of one another and of studies’ 

causal population effects, McCandless et al. (36) then obtained a bias-corrected likelihood 

and posterior for the meta-analysis by arithmetically correcting studies’ estimates using 

these 3 sensitivity parameters. Critically, the bias formula they used to do so assumes that 

each study has a single, binary unmeasured confounder that does not interact with the 

exposure and that is independent of any measured confounders, conditional on the exposure 

(25). The latter assumption is highly problematic because it is in fact always violated when 

the measured and unmeasured confounders affect the exposure (18, 52); thus, while we 

do not recommend applying this method as-is, the general Bayesian approach could be 

adapted to use other bias formulas that obviate this assumption. Unlike two-stage methods 

that require the meta-analyst to specify sensitivity parameters for each study individually, the 

Bayesian framework requires the meta-analyst to specify only the means and variances of 

the sensitivity parameters’ hyperpriors across studies.

Another method considers confounding bias that is additive on the scale on which studies’ 

estimates are meta-analyzed (e.g., the log-risk ratio scale) and that is assumed to be 

distributed normally across studies, again independently of studies’ causal population effects 

(34). This method characterizes evidence strength in the meta-analysis in terms of the 

proportion P > q  of causal population effects that are meaningfully strong, defined as 

effects above a threshold (q) that the meta-analyst has chosen to represent a meaningfully 

strong causal effect in the scientific context (e.g., risk ratio [RR] = 1.1 or some other 

threshold).d (For meta-analyses with pooled estimates in the apparently preventive direction, 

meaningfully strong causal effects could be defined as those below a threshold, such as 

dMathur & VanderWeele (31) discussed a number of methods to choose these thresholds, which included considering the size of 
discrepancies between naturally occurring groups of interest, effect sizes produced by well-evidenced interventions, cost-effectiveness 
analyses, or minimum subjectively perceptible thresholds.
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RR = 0.90.) Additionally, the meta-analyst can estimate the proportion of effects below a 

second, possibly symmetric, threshold in the opposite direction from the pooled estimate. 

These proportion metrics were recently introduced in the general context of random-effects 

meta-analysis in order to better convey evidence strength across heterogeneous effects than 

the pooled estimate alone (31).e

To bias-correct the proportion of meaningfully strong causal effects, Mathur & VanderWeele 

assumed that the additive bias is log-normal across studies (34). The meta-analyst would 

specify as sensitivity parameters the mean and variance across studies of these biases. 

Mathur & VanderWeele discuss methods to choose these parameters (34); for example, 

the variance of the biases could be calculated by first specifying the proportion of the 

confounded heterogeneity estimate τc
2  that is in fact due to heterogeneous bias. The metric 

P > q can then be estimated using simple arithmetic expressions involving these sensitivity 

parameters along with estimates from the confounded meta-analysis (34). Comparable 

nonparametric methods can estimate P > q without making the usual assumption in meta-

analysis that the causal population effects are normal (33) or independent (35), and 

they provide inference that performs better in small meta-analyses or those with extreme 

true proportions. These methods specify a single fixed value for the bias in all studies 

(“homogeneous bias”). In some cases, assuming homogeneous bias yields a conservative 

estimate: for example, if the bias-corrected mean estimate is greater than the threshold 

q, then estimating P > q under the assumption of homogeneous bias will typically be 

an underestimate (representing greater sensitivity to unmeasured confounding) if in fact 

the bias is heterogeneous. in the Supplement, we detail the conditions under which the 

nonparametric estimate P > q is conservative, and we provide simple alternative expressions 

that are conservative under other conditions (e.g., when the bias-corrected mean estimate is 

less than q).

4.2.2. E-value analog methods.—As described above, bias correction methods 

specify the severity of bias across studies to obtain a corrected pooled estimate. 

Conversely, E-value analog methods characterize the severity of bias that would be required, 

hypothetically, to shift the pooled estimate to the null or to otherwise “explain away” the 

results of the meta-analysis. These methods are thus similar to the E-value, a recently 

introduced sensitivity analysis for unmeasured confounding in individual studies that does 

not require assumptions on the nature of unmeasured confounder(s) (8, 54). This standard 

E-value represents the minimum strength of association, on the RR scale, that unmeasured 

confounder(s) would need to have with both the exposure and the outcome, conditional on 

any measured covariates, to fully explain away the observed exposure-outcome association 

in an individual study (8, 54). When the confounded estimate in an individual study, RRc, is 

apparently causative RRc > 1 , the E-value is:

eFor example, these metrics can help identify if: (i) few effects of scientifically meaningful size exist despite a “statistically 
significant” pooled estimate; (ii) some large effects also exist despite an apparently null point estimate; or (iii) strong effects in 
the direction opposite of the pooled estimate also regularly occur (31). These metrics can also sometimes help adjudicate apparent 
conflicts between multiple meta-analyses (24, 30).
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E‐value = RRc + RRc RRc − 1 4.1.

When instead RRc < 1, one would first take its inverse before applying Eq. (4.1) (8, 54). 

Additional details on the E-value, including how to apply and interpret it for effect measures 

other than RRs, are discussed elsewhere (8, 54, 55, 57), and reporting guidelines are 

provided in (57). The same considerations apply for the meta-analysis analogs discussed 

below. It is critical to note that the E-value and its meta-analysis analogs do not estimate the 

actual severity of bias, but rather describe a hypothetical severity of bias that could suffice 

to explain away results. Additionally, the E-value is conservative in that it considers the 

maximum bias that could be generated by a given strength of confounder associations, but 

actual unmeasured confounders might not generate that much bias (8, 54).

As a simple E-value analog for a meta-analysis, Eq. (4.1) could be directly applied to 

the pooled estimate transformed to the RR scale (34). This E-value analog represents 

the average strengths of association across studies, on the RR scale, that unmeasured 

confounder(s) would need to have with studies’ exposures and outcomes in order to shift 

the pooled estimate to the null. Additionally, one can consider the severity of confounding 

that would be required to shift the confidence interval for the pooled estimate to include the 

null; to do so, RRc in the above expression would simply be replaced with the confidence 

interval limit closer to the null (34, 54). These metrics do not make assumptions on the 

distribution of the bias in the confounded population effects, although again, the bias must 

be independent of studies’ standard errors (Supplement).

Like most sensitivity analyses for meta-analyses, this simple E-value analog is limited to 

characterizing evidence strength only in terms of the pooled estimate and its confidence 

interval. Other E-value analogs instead characterize evidence strength in terms of the 

aforementioned proportion of meaningfully strong causal effects, P > q (34). For example, 

Mathur & VanderWeele (34) proposed a metric, G(r, q), that represents the minimum average 

strengths of association on the RR scale that unmeasured confounder(s) would need to have 

with both the exposure and the outcome in order to reduce to less than some value r (e.g., 

0.15) the proportion of studies with causal population effects stronger than q. The rationale 

for this approach is that, when effects are heterogeneous, one might define “explaining 

away” the results of the meta-analysis in terms of substantially reducing the proportion 

of meaningfully strong effects in this way. Letting μc and τc
2 denote the pooled estimate 

and heterogeneity estimate from the confounded meta-analysis, σB*
2  denote the across-study 

variance of the log-normal bias, and Φ denote the normal cumulative distribution function, 

the metric G(r, q) can be estimated as follows for a confounded pooled estimate that is 

apparently causative (μc > 0 on the log-RR scale):f

fThese expressions are straightforward generalizations of those given in (34). That paper had defined T (r, q) and G(r, q) for the case 

of homogeneous bias σB*
2 = 0 ; here we give expressions that accommodate heterogeneous bias.
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G(r, q) = T (r, q) + (T (r, q))2 − T (r, q)

SE(G(r, q)) = SE(T (r, q)) ⋅ 1 + 2T (r, q) − 1
2 T (r, q)2 − T (r, q)

4.2.

where

T (r, q) = exp Φ−1(1 − r) τc
2 − σB*

2 − q + μc

SE(T (r, q)) = exp Φ−1(1 − r) τc
2 − σB*

2 − q + μc

Var μc +
Var τc

2 Φ−1(1 − r) 2

4 τc
2 − σB*

2

4.3.

(The intermediate estimate T (r, q) represents multiplicative bias on the RR scale regardless of 

its origin, discussed further in Section 4.3.) Similar expressions for the apparently preventive 

case, μc < 0, appear in the Supplement.

As for P > q, comparable nonparametric methods (33, 35) can estimate G(r, q) in a wider 

range of settings than is possible using the above parametric methods. The nonparametric 

methods assume homogeneous bias across studies, but can sometimes be interpreted as a 

conservative estimate (Supplement).

4.2.3. Advantages and disadvantages.—In contrast to two-stage methods that 

require extensive information and assumptions about the severity of bias in each study, 

one-stage bias correction methods require specification of only a small number of sensitivity 

parameters that characterize the severity of bias across all studies. E-value analog methods 

require yet fewer, if any, sensitivity parameters to be specified because, conversely to bias 

correction methods, E-value methods solve for the severity of bias that would have to 

exist in order to explain away the results of the meta-analysis. This has the advantage of 

reducing “researcher degrees of freedom” associated with choosing sensitivity parameters 

post hoc, which might be especially problematic with two-stage methods (44) and with 

qualitative evidence-grading systems (43). Whereas all two-stage methods require access 

to at least study-level estimates and variances (Supplemental Table 1A), often precluding 

analysis by third parties, certain one-stage methods can be conducted using only statistical 

estimates from the meta-analysis itself, allowing for sensitivity analysis of some published 

meta-analyses for which study-level data are unavailable (34, 54).

However, by eliminating case-by-case specification of bias parameters, one-stage methods 

typically introduce assumptions about the distribution of bias across studies that are 

unnecessary for most two-stage methods. Most one-stage methods either assume that 

sensitivity parameters are homogeneous across studies or that they are are log- or logit-

normal. Diagnostic plots and tests can sometimes be used to rule out severe violations of 

these assumptions; for example, the assumptions of Mathur & VanderWeele (34) imply that 

the population confounded effects are normal, so standard normality tests for meta-analyses 

could be used (16, 59). Nonparametric methods (33) can sometimes be calculated and 
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interpreted under weakened assumptions on the bias distribution (Supplement). Also, most 

one-stage methods make the important assumption that the bias in each study is independent 

of its population causal effect,g which could be violated if, for example, study authors who 

investigate small causal effects tend to adjust for only a few confounders in order to obtain 

“statistically significant” results. We give some practical guidance for navigating statistical 

assumptions in Section 4.4.

4.2.4. Software.—McCandless et al.’s (36) method could be implemented by modifying 

their example R code; as noted in Section 4.2, we consider it critical to use a 

different bias formula when applying the general Bayesian framework. All other one-stage 

methods discussed above (33, 34) can be implemented using the website http://www.evalue-

calculator. com/meta/, or the R package EValue (28), for which vignettes are available (29). 

We provide a step-by-step tutorial for using this website and R package in the Supplement.

4.3. Biases other than confounding

Although we have focused on methods that can provide sensitivity analyses at least 

for unmeasured confounding, some of these methods also naturally accommodate other 

biases in NRS or RS, such as participant selection, measurement error, missing data, or 

noncompliance (Supplemental Tables 1A–1B). For example, in principle, meta-analysts 

could subjectively elicit any type of bias (50). Bayesian methods have been proposed for 

other biases (47, 60). Methods to handle psychometric artifacts arising from, for example, 

range restriction of the outcome or imperfect construct validity are detailed elsewhere (42).

One-stage sensitivity analyses for unmeasured confounding (33, 34) could be readily 

adapted for certain other biases for which expressions equivalent to the E-value are now 

available for individual studies (selection bias (46), differential measurement error (56), and 

combinations of these biases with unmeasured confounding (45)). These E-value equivalents 

represent the severity of bias, in terms of sensitivity parameters that are specific to the bias 

under consideration, that would be required shift the effect of an individual study to the null. 

To apply these results for a meta-analysis, the meta-analyst could first estimate T (r, q), which 

represents multiplicative bias on the RR scale regardless of origin, exactly as described 

above (33, 34), and then could calculate a bias-specific analog to G(r, q) by transforming 

T (r, q) using the relevant bias-specific “E-value” expression (45, 46, 56).

4.4. Overall sensitivity analysis recommendations

We recommend that meta-analyses of NRS routinely report one or more sensitivity analyses 

for unmeasured confounding and potentially for other biases as relevant to the scientific 

context and study designs. This recommendation in no way detracts from the importance 

of also implementing the recommendations in Sections 2–3. As noted above, all sensitivity 

analysis methods make statistical assumptions of varying stringency, and many sensitivity 

analyses require extensive information characterizing the amount of bias in each study. 

Additionally, many methods are not yet implemented in software.

gHowever, these methods do not assume that the bias is independent of the confounded estimates: naturally, studies with more severe 
bias may tend to estimate systematically larger or smaller effect sizes.
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Given these considerations, one possible practical approach for choosing among the methods 

is as follows. First, the meta-analyst could calculate and report the following simple E-value 

analogs: (i) the E-value for the pooled estimate and its confidence interval limit closer to 

the null, which respectively represent the average severity of confounding across studies that 

would be required to shift the pooled estimate, and to shift its confidence interval, to the 

null (34, 54); and (ii) a nonparametric estimate of G(r, q), which represents the severity of 

homogeneous confounding that would need to be present in each study in order to reduce 

to less than r the proportion of causal population effects stronger than a chosen threshold, q 
(33, 34). As discussed in Section 4.2 and the Supplement, the metric G(r, q) is perhaps most 

informative when it is calculated and interpreted under conservative assumptions, rather than 

under the strict assumption that the bias truly is homogeneous.

We believe that, as a generic starting point, reporting these simple metrics is reasonable 

because these metrics apply to a fairly broad range of meta-analyses of NRS: (i) they do 

not make assumptions about the nature of unmeasured confounder(s) themselves within 

studies (e.g., the metrics accommodate multiple confounders, non-binary confounders, and 

confounders that interact with the exposure); (ii) they require no specification of sensitivity 

parameters; and (iii) they are straightforward to implement using standard study-level data 

and available software (28, 29). Additionally, these metrics characterize the sensitivity to 

unmeasured confounding of both the pooled estimate (and its confidence interval) and 

the proportion of meaningfully strong causal effects; they thus provide a straightforward 

way to summarize the distribution of causal effects in the meta-analysis in terms of both 

its mean and its variability. (If the heterogeneity estimate τc
2 is 0, then the metric G(r, q)

would be omitted.) As such, the metrics provide complementary information: depending on 

the distribution of population effects, the point estimate may be more or less sensitive to 

confounding than the percentage of meaningfully strong effects.

Given the results of these simple sensitivity analyses, we recommend that the meta-analyst 

then attempt to assess and report whether it is actually plausible that the meta-analyzed 

studies are subject to confounding as severe as that indicated by the E-values and by G(r, q). 
Examples can be found in existing meta-analyses (3, 10, 26). This assessment would be 

based on substantive knowledge of the exposures and outcomes under consideration and 

the ROB assessments described in Section 2. For example, more unmeasured confounding 

would be plausible in a meta-analysis of cross-sectional studies than in an otherwise 

comparable meta-analysis of longitudinal studies that control for an ample set of baseline 

confounders, including baseline values of the exposure and outcome (53, 58). Additionally, 

examining the confounding associations of measured confounders with the exposure and 

outcome, for example from studies that report both adjusted and unadjusted estimates, 

can also help inform assessments of the plausible severity of unmeasured confounding. 

However, even if measured confounders have strong confounding associations, residual 

unmeasured confounding above and beyond these strong measured confounders may be 

considerably less severe. Also, because the E-value considers maximum bias, even if 

unmeasured confounders do in fact have confounding associations similar in magnitude 

to the E-value, this does not necessarily mean that these confounders could actually explain 

away the effect, only that the evidence is less clear. Last, some empirical studies have more 
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broadly assessed the extent of agreement or disagreement between NRS and RS on the same 

topic (e.g., those included in the same meta-analysis); we summarize several such results 

in the Supplement. However, it is critical to note that disagreements between NRS and RS 

cannot be interpreted as direct estimates of confounding bias, but rather of the aggregation of 

confounding bias plus any other systematic differences between study designs. Furthermore, 

the severity of confounding differs across meta-analyses and scientific topics.

In general, we would advise also conducting sensitivity analyses that consider more precise 

forms of heterogeneous bias across studies. One possible approach is to apply one-stage 

methods that assume log-normal bias across studies and do not make assumptions about 

the nature of confounder(s) within each study; as discussed above, these methods also 

characterize the heterogeneous distribution of population effects (34). If the meta-analyst 

is concerned about a specific, single unmeasured confounder with known prevalences, 

one-stage Bayesian methods that similarly assume log-normal and logit-normal sensitivity 

parameters across studies could be adapted (36), again replacing the existing bias formula 

with one that obviates the problematic conditional independence assumption. If the meta-

analyst has access to the specific forms of external data or individual participant data 

required by two-stage methods (Supplemental Table 1A), then these methods could be 

applied to obviate distributional assumptions on the bias and to provide potentially more 

accurate bias-corrected estimates, albeit by introducing different statistical assumptions.

SUMMARY: SENSITIVITY ANALYSIS RECOMMENDATIONS

1. When meta-analyzing NRS, report sensitivity analyses for unmeasured 

confounding and potentially other biases, even when following the principles 

in Sections 2–3.

2. As a starting point, consider reporting (i) the E-value for the pooled estimate 

and its confidence interval; and (ii) the amount of homogeneous confounding, 

G(r, q), that would be required to substantially reduce the proportion of 

meaningfully strong causal effects.

3. Consider also conducting further one-stage or two-stage sensitivity analyses 

that accommodate more precisely specified forms of heterogeneous bias.

4. Interpret and report the results of these sensitivity analyses in the context of 

studies’ risks of bias.

5. APPLIED EXAMPLE

We now illustrate the use and interpretation of selected one-stage sensitivity analyses by 

applying them to a published meta-analysis. Kodama et al. (22) meta-analyzed longitudinal 

studies that assessed the association of lower versus higher maximal aerobic capacity 

with all-cause mortality (Supplemental Figure 1). Prior to correction for unmeasured 

confounding, our replication of their meta-analysis using 16 studies yielded a pooled RR 

of 1.73 (95% confidence interval [CI]: [1.50, 1.99]; p<0.001; heterogeneity τc = 0.20). All 

studies were longitudinal and adjusted for some, but not all, possible confounders. The 
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aerobic capacity measure was arithmetically adjusted for average age and sex differences, 

but many studies did not adjust for other possible confounders, such as smoking, body 

mass index, physical activity, and underlying diseases. Kodama et al. (22) did not report on 

whether each study measured confounders at baseline and did not rate studies’ risks of bias.

We first conducted the simple sensitivity analyses described in Section 4.4. (The Supplement 

provides a step-by-step tutorial on how to conduct all analyses described below.) Computing 

the E-value for the pooled estimate indicated that unmeasured confounder(s) associated with 

both lower aerobic capacity and higher all-cause mortality by average risk ratios of 2.85-fold 

each could potentially shift the pooled estimate to the null; average confounding associations 

of 2.36-fold each could potentially shift the confidence interval to the null. To characterize 

the heterogeneous distribution of causal effects, we considered effects larger than RR = 1.1 

to represent meaningfully strong detrimental effects of lower aerobic capacity. We therefore 

chose q = log(1.1) because we conducted analyses on the log-RR scale. Prior to correction 

for unmeasured confounding, we estimated that the percentage of studies with meaningfully 

strong population effects (RR > 1.1) was nearly 100%.

We then estimated that to reduce this percentage to 15%, homogeneous unmeasured 

confounding RRs with both lower aerobic capacity and higher all-cause mortality 

of G r = 0.15, q = log(1.1) = 3.07 (95% CI: [2.35, 4.28]) each could suffice, but weaker 

homogeneous confounding could not (Supplemental Figure 2A) (33). Although control 

of confounding in the meta-analyzed studies was quite limited, these sensitivity analyses 

seem to suggest reasonably robust evidence for effects of aerobic capacity on mortality: it 

seems somewhat implausible that, above and beyond measured confounding, each study had 

sufficiently severe unmeasured confounding (e.g., associations of RR = 2.36 to 3.07 with 

both aerobic capacity and mortality) to shift the pooled estimate or its confidence interval to 

null, or to reduce the percentage of meaningfully strong effects to only 15%.

To supplement these simple sensitivity analyses, we also assessed the sensitivity of 

these results to unmeasured confounding under the assumption that bias was highly 

heterogeneous across studies such that it accounted for 80% of the estimated total 

between-study variance (Supplemental Figure 2B) (34). We estimated that, to reduce 

the percentage of meaningfully strong causal effects to 15%, unmeasured confounding 

RRs with both higher aerobic capacity and lower all-cause mortality of on average 

G r = 0.15, q = log(1.1) = 2.83 (95% CI: [1.67, 4]) across studies would suffice to explain away 

the meta-analysis results in this sense, but weaker confounding would not (34). Again, 

this severity of unmeasured confounding seems somewhat implausible in these longitudinal 

studies, and thus the conclusion that there is a considerable percentage of studies with 

meaningfully large effects seems fairly robust to even substantial degrees of heterogeneous 

unmeasured confounding. This final analysis assumes that the bias was log-normal across 

studies; diagnostic plots did not suggest any severe violation of this assumption.

6. CONCLUSION

Our overall recommendations have been as follows:
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SUMMARY: OVERALL RECOMMENDATIONS

1. Pre-specify study eligibility criteria that reduce risks of bias. Meta-analyses 

addressing causal questions should usually exclude cross-sectional studies 

unless the exposure clearly precedes the outcome temporally.

2. Pre-specify which study designs will be included in primary and in secondary 

analyses. Stratify on designs that provide substantially differing levels of 

evidence, at least in secondary analyses.

3. Qualitatively characterize risks of bias in terms of, at minimum: (i) the 

number and percent of studies occupying each level of robustness to 

confounding; (ii) for each study, its summary and domain-specific ROB 

ratings using ROBINS-I (48); and (iii) for each study, the list of pre-exposure 

confounders that were adjusted.

4. Quantitatively assess sensitivity to residual biases and interpret the results in 

light of the qualitative risk-of-bias assessments.

We have recommended routinely applying quantitative sensitivity analyses on the grounds 

that they provide informative, relatively objective quantitative summaries of evidence 

strength that complement more widespread qualitative approaches (Section 3). This 

recommendation may prove controversial: others have reasonably argued that sensitivity 

analysis methods require unrealistic statistical assumptions and are difficult for non-

statisticians to implement and interpret (19). However, as we have discussed, more recently 

developed sensitivity analyses relax some – though certainly not all – important assumptions 

and are straightforward to implement and interpret. We therefore believe that these methods 

make progress toward resolving these concerns and that the methods, when reported 

responsibly, can contribute substantially to characterizing the credibility of a meta-analysis.

To further advance this field, several future directions seem particularly impactful. First, 

it would be valuable to continue extending quantitative methods, for example to more 

flexibly model the propagation of uncertainty in sensitivity parameters to meta-analysis 

results, to characterize evidence strength using metrics that summarize heterogeneous 

effect distributions rather than only the pooled estimate, and to further accommodate 

heterogeneous bias, especially bias that is correlated with the causal population effects. 

Second, because interpreting sensitivity analyses requires assessing the severity of bias that 

is plausible in the meta-analyzed studies, it would be valuable to continue establishing 
empirical benchmarks for the actual severity of bias in studies on different topics and 

of different designs. We have reviewed some such work in the Supplement, but we 

particularly encourage further developments that more rigorously parse genuine bias from 

other systematic differences between study designs (6, 7).

Third, making datasets publicly available for both original research (with appropriate 

deidentification) and meta-analyses would resolve a critical and largely unnecessary limiting 

factor on meta-analysts’ ability to handle bias. If individual participant data were routinely 

available, much more sophisticated quantitative methods with fewer assumptions could be 
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developed. Meta-analysts themselves often do not make even study-level data available 

publicly or on request (32, 38), largely preventing third parties from conducting sensitivity 

analyses except sometimes by a single method (34). Simple policies and incentives by 

journals can sometimes rapidly improve data availability when ethical (15, 21), with many 

collateral benefits for the credibility and efficiency of both original research and meta-

analyses.

We hope that the methods and recommendations discussed in this review, along with the 

suggested future directions, will help inform a balanced and nuanced view of the credibility 

of meta-analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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