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ABSTRACT

Stroke frequently produces attentional dysfunctions including symptoms of hemispatial neglect,
which is characterized by a breakdown of awareness for the contralesional hemispace. Recent
studies with functional MRI (fMRI) suggest that hemineglect patients display abnormal intra-
and interhemispheric functional connectivity. However, since stroke is a vascular disorder
and fMRI signals remain sensitive to nonneuronal (i.e., vascular) coupling, more direct
demonstrations of neural network dysfunction in hemispatial neglect are warranted. Here, we
utilize electroencephalogram (EEG) source imaging to uncover differences in resting-state
network organization between patients with right hemispheric stroke (N = 15) and age-
matched, healthy controls (N = 27), and determine the relationship between hemineglect
symptoms and brain network organization. We estimated intra- and interregional differences in
cortical communication by calculating the spectral power and amplitude envelope correlations
of narrow-band EEG oscillations. We first observed focal frequency-slowing within the right
posterior cortical regions, reflected in relative delta/theta power increases and alpha/beta/
gamma decreases. Secondly, nodes within the right temporal and parietal cortex consistently
displayed anomalous intra- and interhemispheric coupling, stronger in delta and gamma bands,
and weaker in theta, alpha, and beta bands. Finally, a significant association was observed
between the severity of left-hemispace search deficits (e.g., cancellation test omissions)

and reduced functional connectivity within the alpha and beta bands. In sum, our novel
results validate the hypothesis of large-scale cortical network disruption following stroke and
reinforce the proposal that abnormal brain oscillations may be intimately involved in the
pathophysiology of visuospatial neglect.

AUTHOR SUMMARY

Stroke patients often exhibit a disabling deficit of visual awareness in the hemifield opposite to
their brain lesion, known as hemineglect. Recent studies with functional MRI (fMRI) suggest
that hemineglect patients display abnormal functional coupling (i.e., connectivity) within and
between brain hemispheres. However, since stroke is a vascular disorder and fMRI measures
nonneuronal (i.e., vascular) coupling, we here provide direct evidence of neural network
dysfunction in hemineglect by using electroencephalogram (EEG) source imaging, which
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EEG network correlates of visuospatial neglect

Electroencephalogram (EEG):

A recording of brain activity where
non-invasive sensors are attached to
the scalp to detect the electrical
signals produced by neurons.

Network Neuroscience

measures the electrical fluctuations of large neuronal populations. Overall, we observed a
breakdown of interhemispheric network connectivity within alpha/beta rhythms, which
specifically correlated with the degree of patients’ hemispatial errors. The high temporal
resolution and frequency content of EEG signals could lead to more sensitive markers and
targeted rehabilitation approaches of hemineglect.

INTRODUCTION

Apart from motor or sensory impairments, the sequelae of ischemic stroke may cause a signif-
icant impact on attentional function. This is most apparent when stroke damage leads to symp-
toms of hemispatial neglect (Dominguez-Borras, Armony, Maravita, Driver, & Vuilleumier,
2013; P. O. Vuilleumier & Rafal, 2000), which is characterized by an inability to attend to
and process information from the left (or more rarely right) side of space (i.e., contralateral
to the lesion site). Hence, right-hemisphere stroke patients exhibit an impairment in detecting
visual (or auditory) stimuli in their left hemifield (and vice versa for patients with left hemi-
sphere stroke). Despite the fact that this is a major source of disability in patients’ daily life,
current treatments for hemineglect remain minimally effective. Moreover, untreated hemine-
glect leads to poorer recovery prognosis and reduced benefits from rehabilitation therapies for
other neurological deficits.

Therefore, a deeper understanding of this clinical phenomenon is required for several in-
terdependent reasons: (a) to better identify the neurobiological targets for rehabilitation; (b) to
determine the underlying pathophysiological anomalies, in particular whether local and/or
distributed brain dysfunction is crucially implicated; and (c) to elucidate the neural mecha-
nisms that give rise to perceptual consciousness.

To address these issues, in line with recent work, here we investigate how brain activity dy-
namics is altered following focal hemispheric stroke, at both local and global levels, and what is
the functional impact of such changes on attentional performance in patients. To this aim, we
use electroencephalogram (EEG) recording and adopt a network framework by reducing the
whole brain to a manageable number of regions of interest (ROls; nodes), whose functional
activity is considered to covary with each other through pairs-wise connections (edges).
Utilizing this approach, emerging work has suggested that hemineglect might be associated
with significant disruptions of brain functional connectivity. Specifically, several functional
neuroimaging studies reported that the visuospatial deficits in hemineglect are accompanied
with abnormal interhemispheric and/or intrahemispheric connectivity (Baldassarre et al.,
2014; Fellrath, Mottaz, Schnider, Guggisberg, & Ptak, 2016; Guggisberg et al., 2014; Sasaki
et al, 2013; Yordanova et al., 2016). Most recently, using functional MRI (fMRI), Ramsey
and colleagues showed that recovery from hemineglect is linked to the return of previously
depressed interhemispheric connectivity between nodes of sensorimotor and attention net-
works (Ramsey et al., 2016). However, since stroke is a vascular disorder and fMRI signals re-
main sensitive to nonneuronal (i.e., vascular) coupling, stronger validation of neural network
dysfunction in hemineglect is warranted. Physiologically speaking, fMRI measures local changes
in brain metabolism, which generally echo (but lag by a few seconds) electrophysiological
activation/deactivation patterns of neuronal populations (Bentley, Li, Snyder, Raichle, &
Snyder, 2016; Hermes, Nguyen, & Winawer, 2017; Hutchison, Hashemi, Gati, Menon, &
Everling, 2015). Interestingly, studies comparing noninvasive electrophysiological methods
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Functional network

connectivity (FNC):

A general term for the degree of
functional coupling between brain
regions, here measured by the
amplitude envelope correlation
(AEC).

Network-based statistic (NBS):

A statistical-correction method for
comparing network connectivity
matrices based on the largest
connected components.

Hyperconnectivity:

An increase in the amplitude
envelope correlation (AEC) between
brain regions.

Hypoconnectivity:

A decrease in the amplitude
envelope correlation (AEC) between
brain regions.

Network Neuroscience

such as magnetoencephalography/electroencephalography (M/EEG) with fMRI found a tight
spatiotemporal correspondence between the amplitude envelopes of neural oscillations and
neurovascular fMRI signals (Brookes et al., 2011; de Pasquale et al., 2010; Mantini, Perrucci,
Del Gratta, Romani, & Corbetta, 2007), although there are several instances of dissociations
between fMRI and neuronal signals (Scholvinck, Maier, Ye, Duyn, & Leopold, 2010).
Furthermore, abundant research in both human and nonhuman primates has linked specific
oscillatory activities with attentional functions in the normal brain, particularly implicating
modulations of the alpha range in relation to selective visuospatial orienting (Marshall,
Bergmann, & Jensen, 2015b), but also the theta and beta ranges in relation to task-dependent
interactions across networks (Bauer et al., 2012; Fiebelkorn, Pinsk, & Kastner, 2018), as well as
the gamma band in relation to local intra-areal processing of sensory information (Szczepanski
etal., 2014). However, how such coordinated oscillatory activities are disrupted by stroke and
affected by clinical neglect deficits still remain unresolved.

Given the linkage between M/EEG and fMRI signals and their relation to attentional pro-
cesses, the goal of our current study was to investigate the neural substrates of hemineglect
using source space EEG, which reflects genuine neuroelectric activity uncontaminated by vas-
cular dynamics. Specifically, we performed (a) functional whole-brain connectivity compari-
sons between stroke patients and healthy controls, and (b) regression analyses to identify
changes connectivity patterns more selectively associated with visuospatial deficits (i.e., per-
ceptual omissions during search tasks) in the left and right hemifields, respectively.

RESULTS
Group Functional Connectivity in Patients Compared to Healthy Elderly Controls

We defined the EEG source space functional network connectivity (FNC) graphs for both the
stroke patients (n = 15) and the age-matched healthy controls (n = 27), and then contrasted the
graphs from each group in order to test for changes in connectivity patterns across the different
frequency bands. As illustrated in Figure 1, this revealed three main patterns in the patients
relative to controls: (a) the delta band showed a mixed pattern of both increased and
decreased FNC; (b) the theta-, alpha-, and beta- bands all displayed decreased FNC, but with
distinctive anatomical distributions; and (c) the gamma band demonstrated selective and
localized increases in FNC.

More specifically, using a network-based statistic (NBS) correction threshold of p < 0.05,
we found the delta band demonstrated significant but limited changes with mainly intrahemi-
spheric hyperconnectivity, predominating between the right paracentral lobule (BA4) and oc-
cipital areas (BA18) (d = 0.063, t = 3.28; d = —0.063, t = 3.58, for sources in right and left
cuneus, respectively), but also a more limited interhemispheric hypoconnectivity between the
right lateral occipital cortex (BA18) and left inferior prefrontal cortex/pars triangularis (BA45)
nodes (d = —0.064, t = —3.36).

For the theta band, we observed mainly long-range, intrahemispheric hypoconnectivity
changes along the anterior-posterior axis that, remarkably, were present on both sides.
These decreases were the largest between the left pericalcarine (BA17) and left inferior pre-
frontal gyrus/pars orbitalis (BA47) nodes (d = —0.079, t = —4.51), as well as between the right
pericalcarine (BA17) and right frontal pole (BA11) nodes (d = —0.081, t = —4.15).

In sharp contrast, the beta band showed an opposite pattern of hypoconnectivity, mainly
affecting interhemispheric connections, particularly those centered on posterior right-
hemisphere (RH) areas. These interhemispheric changes affected connectivity between
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CONNECTIVITY GROUP CONTRAST: Stroke > controls
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Figure 1. Group differences in EEG source functional connectivity. Significant differences of the
magnitude of amplitude envelope correlations between stroke patients and controls. Line thickness
represents larger absolute connectivity difference (Pearson’s correlation coefficient r). Red color in-
dicates greater connectivity for patients versus controls, while blue color indicates greater connectiv-
ity for controls versus patients (only significant connectivity components are displayed, p < 0.05
network-based statistic corrected).

homologous areas of the superior parietal and temporal cortices. The greatest reductions in
connectivity were found for the right hemisphere, between the right superior parietal lobule
(BA7) and left posterior cingulate gyrus (d = —=0.051, t = —=5.59), as well as between the right
middle temporal (BA20) and right precuneus (BA3) nodes (d = —0.041, t = —4.93).

Alpha-band hypoconnectivity was characterized by a more focal cluster of reduced con-
nections emerging from the posterior right hemisphere. The most salient interhemispheric dis-
connectivities were observed between right posterior temporal (BA20) and left superior
parietal (BA7) nodes (d = —0.130, t = —4.65), as well as between right inferior parietal
(BA39) and left superior parietal (BA7) nodes (d = -0.126, t = -5.32).

Finally, the gamma band displayed a local hyperconnectivity pattern predominating mainly
within the anterior right hemisphere. These difference were maximal between the right pre-
central (BA6) and right superior frontal (BA32) gyri (d = 0.065, t = 2.50), between the right
precentral (BA6) and right inferior temporal (BA20) gyri (d = 0.064, t = 2.30), as well as be-
tween the right precentral (BA6) and right frontal pole (BA10) (d = 0.062, t = 2.35).

Relationships Between Network Connectivity and Visuospatial Bias in Hemineglect Patients

Although group-level analyses indicated anomalous FNC between stroke patients and control
subjects, they do not disambiguate which network connections, if any, may be related to the
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Visuospatial neglect:

Cognitive deficit characterized by
reduction or loss of spatial awareness
for the contralesional space, most
commonly after unilateral stroke or
brain injury.

Network Neuroscience

emergence of visuospatial deficits. Many of our patients presented signs of hemispatial ne-
glect, as commonly observed in right brain-damaged patients ( ), but to
a varying degree. The FNC changes described above could more generally reflect the effect
of posterior stroke damage. Hence, in order to disentangle neurobehaviorally specific from
nonspecific connections in stroke-associated hemineglect, we performed regression analyses
directly testing for any relation between individual patients’ FNC matrices and the severity of
neglect symptoms, as indexed by the number of left/right omission errors in the visual cancel-
lation test. These errors are considered as one of the most reliable markers of neglect (

).

Using a NBS correction threshold of p < 0.05, we found significant brain—behavior relation-
ships that distinctively affected the alpha, beta, and gamma bands. Changes in the delta and
theta bands did not predict the severity of visuospatial neglect.

As seen in , the alpha band demonstrated a remarkable contrast between omissions
in left and right space, implicating near mirror image interhemispheric connections. Consistent
with the group-level hypoconnectivity described above, the number of leftward misses was
associated with selective decreases in connectivity between extrastriate visual regions in the
right inferior temporal gyrus (BA20) with the left precuneus (BA3) (beta = —0.99) and left peri-
calcarine region (BA17) (beta = —0.98). Conversely, the number of misses within the right
hemifield (typically reflecting more extensive spatial neglect) was significantly predicted by
increases in alpha-band connectivity within a homologous set of visual and parietal nodes,
which included the left inferior temporal cortex (BA20) and the left precuneus (BA3).

REGRESSION ANALYSIS: connectivity vs spatial bias J
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Figure 2. Alpha (8-12 Hz) connectivity as a function of neglect symptoms. Depicted connections
correspond to changes in individual FNC components correlating with the number of omissions in
the left and right hemifields, respectively, during the cancellation task. Red/blue values indicate
statistically significant beta coefficients (p < 0.05 network-based statistic corrected). Further con-
junction analysis (see text) revealed that reduced connections associated with left omissions (in left
panel) were those showing the most significant overlap with general stroke-related decreases at the
group level.
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REGRESSION ANALYSIS: connectivity vs spatial bias
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Figure 3. Beta (13-30 Hz) connectivity as a function of neglect symptoms. Depicted connections
correspond to changes in individual FNC components correlating with the number of omissions in
the left and right hemifields, respectively, during the cancellation task. Red/blue values indicate
statistically significant beta coefficients (p < 0.05 network-based statistic corrected). R. bankssts =
right bank of the superior temporal sulcus.

Importantly, a separate regression with the total number of left and right misses (see Supporting
Information Figure 52) did not reveal any shared connections with either left or right omissions,
but limited reductions in connectivity between left medial parietal and right inferior frontal
areas, reinforcing the idea that the changes in alpha band may be specifically related to spa-
tially directed attentional processing.

Figure 3 shows results from similar regression analyses for the beta band, demonstrating an
association of leftward omissions with a different pattern of reduced functional connections
between the right posterior-superior temporal region (BA22) and anterior brain regions in
the left middle frontal gyrus (BA6) (beta = —0.67) and left inferior frontal gyrus/pars orbitalis
(BA47) (beta = —0.70). Reductions were also seen within the anterior left hemisphere. No sig-
nificant associations were observed for the number of rightward errors, nor were there any
systematic functional connectivity changes that regressed with the total number of left and
right omissions (see Supporting Information Figure S3).

Lastly, as can be seen in Figure 4, the relationship between leftward omissions and FNC
within the gamma band revealed a node also implicated within the beta band, namely, the
right posterior-superior temporal region (BA22) that acted as a hub for reduced connections
with mirror areas in left temporal regions. Also similar to the beta band, additional reductions
were seen within the anterior left hemisphere. However, surprisingly, these negative changes
contrasted with the overall increases in connectivity observed for the gamma band at the
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REGRESSION ANALYSIS: connectivity vs spatial bias
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Figure 4. Gamma (30-40 Hz) connectivity as a function of neglect symptoms. Depicted connec-
tions correspond to changes in individual FNC components correlating with the number of omis-
sions in the left and right hemifields, respectively, during the cancellation task. Red/blue values
indicate statistically significant beta coefficients (p < 0.05 network-based statistic corrected). R.
bankssts = right bank of the superior temporal sulcus.

group level (see Figure 1). There was no correlation between connectivity patterns in gamma
band and omissions in right space.

Conjunction Analysis Between Group Functional Connectivity Abnormalities and Correlates of
Visuospatial Errors

Finally, we asked whether the abnormal functional components seen as a direct marker of
stroke at the group level are consistent with those that interindividually predict stronger left-
ward visuospatial deficits. In other words, is there evidence for a distinctive disruption of FNC
components associated with clinical symptoms of hemineglect? This question was addressed
by using a standard conjunction analysis, with the aim to identify the overlapping or “in com-
mon” components that were significant in the group-wise difference test and in the behavioral
regression test. Accordingly, a correct test for a logical AND requires that all the comparisons
in the conjunction are individually significant at p < 0.05 (Nichols et al., 2005). Hence we
performed a conjunction of tests (i.e., global null hypothesis) to identify the overlap—if any—
between only the statistically significant (p < 0.05 corrected) group-level FNC difference maps
(i.e., Figure 1) and the counterpart visuospatial regression maps (i.e., Figures 2 and 3), across
the statistically significant alpha, beta, and gamma bands.

Interestingly, among all abnormal connections, we identified a single overlap with a net-
work component that includes a node in the right inferior temporal gyrus (BA20, MNI coor-
dinates X = 49, Y = =31, Z = -23) within the alpha band. This network component was
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interhemispherically disconnected with the left precuneus (BA3) and left pericalcarine region
(BA17), identical to the connections illustrated in the left panel of . This suggests that
among connections globally disrupted by right hemispheric stroke, these may be the most re-
liable marker of left hemineglect symptoms.

Group Spectral Power in Patients Compared to Healthy Elderly Controls

Absolute power. In addition to interregional FNC measures, regional source spectral power
(i.e., current source density) differences were estimated between stroke patients and controls
using independent ¢ tests across the five EEG bands (false discovery rate [FDR] corrected).
Absolute power was consistently more elevated in the right (damaged) hemisphere of patients
relative to controls for all EEG bands (delta, theta, beta, gamma) except for alpha, where no
significant differences were detected (p < 0.05 corrected). As seen in
, absolute delta power was stronger within posterior parietal areas (t = 3.1, p < 0.05
corrected), theta power within widespread regions with a maximum over supramarginal re-
gions (t = 3.8, p < 0.05 corrected), while beta was higher mostly over frontal (t = 2.7, p <
0.05 corrected), and gamma mostly over precentral motor regions (¢t = 3.8, p < 0.05 corrected).
illustrates the absolute power spectral density of hemineglect
and control groups at the sensor level (using a current source density montage at electrode P4,
over the right parietal cortex). Interestingly, no significant associations were detected between
absolute EEG power changes and visuospatial performance (p < 0.05 corrected).

Relative power. We also tested for differences in relative (%) power, often used to normalize
spectra under a constant value of broadband (1-40 Hz) power, and reflecting the degree of
spectral slowing (i.e., greater relative power in lower frequencies) or spectral acceleration
(i.e., greater relative power in higher frequencies). As evidenced by

, neglect was associated with relative spectral slowing of right posterior cortical
regions, with relative delta power being more elevated in patients mainly within the inferior
parietal/posterior temporal junction (t = 3.6, p < 0.05 corrected) while relative theta power was
higher within the superior parietal cortex (t = 3.4, p < 0.05 corrected). Conversely, relative
alpha power was maximally reduced within the inferior parietal/posterior temporal junction
(t = -3.6, p < 0.05 corrected), in conjunction with relative beta (t = —4.4, p < 0.05 corrected)
and relative gamma (t = -3.2, p < 0.05 FDR corrected) reductions within the superior parietal
lobe. illustrates the relative power spectral density of
hemineglect and control groups at the sensor level (using a current source density montage
at electrode P4, over the right parietal cortex). No significant associations were detected
between relative EEG power changes and visuospatial performance (p < 0.05 corrected).

Relating Connectivity and Oscillatory Power Changes With Lesion Topology

Given that changes in functional connectivity (FC) and source power were topographically
specific, a reasonable question to ask is whether connectivity differences could be explained
firstly by changes in signal power? According to this hypothesis, reduced connectivity would
indirectly reflect a degraded signal-to-noise ratio caused by a loss of source EEG power. The
latter could result in particular from neuronal loss at the site of the stroke lesion. However,
additional analyses allowed us to rule out this hypothesis, given the rather limited overlap be-
tween anatomical regions with maximal lesion extent and those with strongest disruptions of
connectivity. As shown in , the location of largest lesion over-
lap occurred in fronto-insular cortex (which was common to no more than 10 patients), en-
compassing regions such as BA44, BA45, and BA6. This co-localized with 5 RH nodes/parcels
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of the Desikan—Killiani atlas used for FNC calculations: entorhinal, insula, temporal pole, su-
perior temporal, and precentral regions (see for their exact
locations in MNI space). Importantly, removal of these particular nodes (or their connections)
from our analysis did not alter our principal findings, which highlight alpha/beta disconnec-
tivity with more posterior temporo-parietal foci (see for an-
atomical verification).

On the other hand, although regions with significant relative power differences (indicative
of relative frequency shifts in EEG power) did partly overlap with temporo-parietal nodes pre-
senting abnormal FC power in alpha/beta bands (see ), this
was clearly not the case for absolute source power (see ),
which provides a more direct measure of electrical signal strength. Notably, each narrow-band
EEG frequency range (from delta to gamma) exhibited a unique topographical fingerprint (e.g.,
see ), arguing against a simple generative mechanism of reduced EEG signal-to-noise
ratio due to neuronal loss that would presumably lead to a broadband attenuation of electrical
activity across the full EEG frequency spectrum.

Instead, and given the partial FC overlap with nodal reductions in relative alpha/beta power,
we suggest that this pair of EEG rhythms may act as carrier waves for attentional information
( ) compared to other frequency channels (e.g., delta, theta, gamma), and that it is
their relative degradation compared to other frequencies that may be an index of impaired
network communication ( ).

DISCUSSION

Overall, our EEG results converge with previous M/EEG studies reporting electrocortical abnor-
malities in stroke patients with hemineglect (

; ; ; ) and
add novel neurophysiological evidence to support recent findings of neurometabolic (i.e.,
fMRI) alterations in functional brain networks associated with specific cognitive deficits after
stroke ( ). Remarkably, we found widespread changes of FNC extending far
beyond focal areas of structural brain lesions in RH, including connections with the
opposite/intact left hemisphere (LH), with very distinctive patterns across different frequency
bands. Moreover, a conjunction analysis that sought to overlap (a) group-level FC differences
between patients and controls, together with (b) connections predicting the magnitude of left-
ward visuospatial inattention in a regression analysis, revealed a circumscribed reduction of in-
terhemispheric FC between the posterior right temporal lobe and left precuneal/pericalcarine
regions. This is consistent with and supportive of anatomical lesion studies that have long im-
plicated right posterior temporal and inferior parietal areas as a critical site associated with vi-
suospatial attention deficits ( ;

; ), and with the notion of an impaired interhemispheric
balance in the pathological spatial biases associated with left hemineglect (

; ; ). Importantly, the posterior temporal cortex
has previously been associated with mechanisms of visuospatial awareness in both human and
animal studies and found to be among the most frequent sites of brain damage in hemineglect
( ). Finally, a separate regression with the total number of
(left and right) errors did not reveal any overlap with connections specifically regressing with
either left or right omissions, reinforcing the idea that the changes in alpha-band connectivity
may be specifically related to spatially directed attentional processing.
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Taken together, our results therefore reinforce the theory that network disturbances charac-
terized by a weakened functional communication between key cortical regions is a fundamen-
tal mechanism underlying spatial neglect (

; ; , ), including
both interhemispheric and intrahemispheric disconnectivity.

The Multiplex FNC Signature of Hemineglect

Compared to age-matched healthy subjects, our source space analyses of amplitude envelope
correlations indicated that patients with RH stroke displayed a multiplex reorganization of neu-
ral connectivity that spans the full frequency range captured by EEG, involving delta, theta, al-
pha, beta, and gamma rhythms, and that covers both hemispheres in a frequency-specific
manner. Specifically, delta FC was mainly elevated within posterior RH regions, while it was
reduced between the posterior RH and anterior LH. These changes are consistent with nonspe-
cific effects of brain lesions on focal delta activity ( ) and they did not cor-
relate with neglect symptoms. On the other hand, theta connectivity mainly exhibited a bilateral
reduction of long-range intrahemispheric connections, partially consistent with recent work
reporting reductions in fronto-parietal theta and beta coherence in other EEG studies of stroke
patients with hemineglect ( ; ). However, we found
that the theta connectivity difference did not correlate directly with neglect severity, suggesting
that previously reported changes in this band may reflect task-specific abnormalities during goal
directed attention or nonspecific effects of stroke on executive aspects of attention unrelated
to spatial neglect (see ).

In contrast, we found that alpha and beta rhythms both demonstrated important reductions in
intra- and interhemispheric connectivity of posterior temporal and parietal cortices, that is, re-
gions traditionally found to be implicated in hemineglect ( ;

; ). Furthermore, a subset of these connections was sig-
nificantly associated with neglect symptoms, in particular those linking right temporo-parietal
areas with left posterior parietal regions in the alpha band and with left prefrontal regions in the
beta band (see and 3). Remarkably, changes in alpha-band connections significantly
correlated with the severity of visuospatial biases and implicated symmetrical regions over the
extrastriate visual cortex (pericalcarine and lingual), where hypoconnectivity with the LH pre-
dicted more left visual field omissions, while the converse (hypoconnectivity with the right hemi-
sphere) was observed for right visual field omissions. This topographically specific
disconnection pattern is compatible with the role of alpha rhythms in contralateral visuospatial

attention ( ; ;

; ; ), as well as
previous studies on hemineglect utilizing functional ( ; )
and structural ( ; ) neuroimaging

to delineate the functional neuroanatomy of visuospatial deficits. In particular, it is thought that
lateralized modulation of alpha activity across hemispheres might gate sensory information flow
from early visual areas to the ventral temporo-occipital stream, under top-down influences from
the dorsal attention network ( ; ;

). Moreover, it is interesting to note that while the alpha band was im-
plicated in the disconnectivity pattern of the posterior right temporal lobe with sensory visual
areas, the beta band was distinctively involved in disconnectivity with left prefrontal areas,
which presumably subserve more executive processes of attention ( ).

Importantly, a selective depression of interhemispheric connectivity has in itself been
shown to be a pathological hallmark of hemineglect in both fMRI and EEG studies (
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; ), including for the alpha ( ) and beta bands
( ). Furthermore, increased alpha and/or beta FC has been reported to be
a predictive marker of clinical status after stroke or traumatic brain injury in patients with
motor ( ; ; ) as well as language
( ; ; ) impairments.

Finally, we also found connectivity changes in the gamma range, including increases within
right frontal areas at the whole group level, as well as decreases between right temporo-parietal
and LH regions that correlated with neglect symptoms and partly overlapped with beta changes.
These divergent effects make it difficult to associate them with a clear functional role in
spatial deficits after stroke. Moreover, gamma-range neuronal activity is usually associated with
local interactions between nearby cortical populations rather than with long-distance interac-
tions at network level ( ). Given theoret-
ical proposals linking gamma activity to conscious perceptual processes ( )
one tentative hypothesis might be that a reduction of synchronous activity in gamma band be-
tween right posterior brain areas and left fronto-temporal networks would reflect the loss of
access of spatial representations held in the right hemisphere ( ) to LH pro-
cesses mediating conscious awareness and verbal report, in line with work in split-brain pa-
tients demonstrating an intimate link between conscious behavior and language abilities of
the LH ( ). Furthermore, through phase-amplitude coupling, gamma-
band activity has recently been demonstrated to be modulated by both alpha and theta rhythms
(observed to be disrupted above) in the service of spatial attention ( ;

). Hence, it is possible that hemineglect constitutes
a clinical syndrome resulting from a concerted disruption of a family of nested rhythms
( ), rather than a single one. Within this theoretical frame-
work, communication between two regions can be established by phase synchronization of
oscillations at lower frequencies (i.e., theta, alpha, beta, <25 Hz), which serve as temporal ref-
erence frame for information carried by high-frequency activity (i.e., gamma, >40 Hz)
( ). However, this interpretation still remains speculative and the role
of phase—amplitude coupling in neglect, if any, remains unsettled and undoubtedly needs fur-
ther investigation to be clarified. Finally, given the lack of significant overlap between rightward
omissions (which are specific markers of hemineglect) and group-level connectivity differences
in the beta and gamma bands, it is equally possible that such reorganization may be the result of
naturalistic recovery of cortical function that has occurred since the time of the stroke.

Limitations

The first important limitation of our study is that it was not preregistered and that it lacked a
patient control group with stroke but without presentation of hemineglect symptoms. This
would have had the benefit of additionally controlling for a general and deleterious effect
of stroke itself on brain activity. We acknowledge this as an important shortcoming in the strict
context of our primary analysis of group-wise differences. However, beyond this comparison
in the first step of our analysis, the current study was able to leverage hemineglect-specific
behavior with the second, most important step of analysis (i.e., regression), as well as with
its functional intersection with the group-wise stroke-related difference (i.e., conjunction).
This double-step approach allowed us to exploit the full sample of patients and circumvent
difficulties associated with a dichotomous diagnosis of neglect ( ).
Hence, despite the lack of separate patient subgroups, we are confident that the network com-
ponent(s) that ultimately survived this sequential statistical selection are not only robust but
also clinically relevant. However, in light of the limited number of participants in our study,
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this does not exclude a potential region-of-interest bias due to the pooling of different anatom-
ical lesion locations within this sample of stroke patients.

Secondly, as already noted above, the connectivity values may have been contaminated by
degraded signal-to-noise ratio and global losses in source EEG power due to neuronal tissue
damage. However, as shown by our supplementary analyses, we consider this interpretation
unlikely for several reasons, most notably because connectivity changes included both de-
creases and increases, they did not correspond to the local peaks of absolute source power
that constitutes a more direct measure of electrical signal strength, and distinct patterns were
observed for each EEG frequency sub-band. Taken together, this argues against a single, global
mechanism of reduced EEG signal-to-noise ratio due to neuronal loss. Instead, and given the
partial FC overlap with nodal reductions in relative alpha/beta power, we suggest that this pair
of EEG rhythms may act as major carrier waves for attentional information ( ),
distinct from other frequency channels (e.g., delta, theta, gamma), and hence it is their refative
degradation compared to other frequencies that may constitute a functional index of impaired
network communication ( ).

Other potential limitations are reflective of the imaging modality we used, that is, EEG.
Although EEG provides a direct measure of neural activity, it is most sensitive to sources within
the cortical mantle. Hence, our analyses were restricted to cortical network dynamics and did
not allow for reliable assessment of subcortical structures that may play an important role in the
control of attention ( ; ). Another weakness involves the
relatively low number of EEG channels that constitute the 10-20 montage, raising potential con-
cerns of excessive source localization error and/or spread, which would lead to spurious activity
mixing between cortical ROls. Here, given the clinical nature of our study, we found that the 10—
20 montage met an important trade-off between EEG setup time and patient fatigue during daily
rehabilitation sessions. Secondly, our methodology allows for replication and application in
standard clinical settings where high-density EEG is not routinely available. In this context, a
number of studies have shown that low-density montages may be used to reconstruct a consid-
erably greater number of dipolar sources than there are sensors (i.e., electrodes) (for a review see

). In particular, a source localization simulation study with low-resolution
electromagnetic tomography analysis (sSLORETA) using 1,000 cortical sources (i.e., patches)
of ~1 cm? ( ) and an electrode montage based on the 10-20 system indicated
a mean localization accuracy of ~0.5 cm and source spread of ~0.7 cm, which remains within
the lowest inter-ROI distances of the Desikan—Killiany atlas (~1.5 cm) used in the present study.
Importantly, as the Desikan—Killiany atlas contains ROls of variable patch sizes, empirical work
has not revealed a systematic bias between patch size and sLORETA reconstruction accuracy
( ). Lastly, in
line with published work leveraging a similar low-density EEG montage in clinical conditions
( ), our analysis pipeline included EEG signal orthogonalization prior to FC
estimation, which has been shown to minimize any instantaneous (i.e., at zero-phase lag) activ-
ity that is spuriously shared between ROIs and that may have arisen from (low-resolution) source
blurring ( ). Nevertheless, as source localization errors cannot entirely be
excluded, caution must be exercised regarding the precise anatomical locations of cortical net-
work nodes, given the use of a generic head template and low-density montage in this study.

Conclusion

In a nutshell, our results show that the hemineglect syndrome following RH stroke is associ-
ated with a widely distributed but anatomically specific disruption of cortical network connec-
tivity that involves temporo-occipital regions of the right hemisphere and their functional
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interactions both within and between the two hemispheres. In particular, losses in the connec-
tivity of the posterior RH with left parieto-occipital cortex in alpha channels and with left pre-
frontal cortex in beta channels appear to be critically involved in impaired control of
visuospatial attention toward the contralesional/left hemispace. Better mapping and under-
standing of these neurophysiological markers of hemineglect is an important step toward de-
signing novel tools to assess poststroke deficits in patients and more effective rehabilitation
approaches. For example, by directly training alpha oscillations by using neurofeedback
( ; ) or transcranial alternating stimulation (also known as
tACS) ( ).

MATERIALS AND METHODS
Study Participants

Stroke patients participated after giving their written informed consent. The study was ap-
proved by Geneva State Ethics Committee and accorded with the Helsinki Declaration.
Patients were admitted after a first RH stroke and consecutively recruited from a primary clin-
ical center. We excluded patients with bilateral lesions, previous neurological or psychiatric
disorders, impairment in primary visual perception (except partial visual field defect), psychi-
atric disorders, severe motor difficulties in the right upper limb, pusher syndrome (i.e., contra-
lateral trunk deviation with active resistance to any attempt of external correction), or current
psychotropic treatment. In total, we recruited 15 right-hemisphere-lesioned patients (mean
age: 59.4; SD: 11.3; 2 women, 13 men) who fulfilled these criteria and were prospectively
admitted to two primary clinical centers at the Clinique de Réadaptation of SUVA in Sion
( ) and the Foundation Valais de Coeur of Sion and Sierre (

).

Spatial neglect was assessed using a standard clinical battery similar to other research in our
group ( ;
). Details on clinical tests are provided below. Time since stroke onset was
7.5 months on average (D 5.3 months). Hemianopia or quadranopia was present in 4 out of
15 patients (26%).

All patients underwent structural MRI scans to delineate the location and extent of brain
damage. Individual stroke lesions were manually delineated and the group average lesion
map was created using the MRICron toolbox ( ). The
maximal lesion overlap affected posterior parts of the lateral prefrontal cortex, the anterior
and middle temporal lobe, as we all as the deep paraventricular white matter in the right hemi-
sphere (see ).

As we sought to explore electrophysiological differences between stroke patients and the
healthy population, we also collected data from a control group of 27 matched healthy adults
(mean age: 56; SD: 7; males: 23, females: 4), randomly sampled from the Human Brain
Institute (HBI) normative database ( ) (

). Importantly, the healthy subject in the HBI data were collected
using the same EEG amplifier (Mitsar-201) and EEG montage (10-20 international montage) as
the recordings in stroke patients.

Clinical Battery for Visuospatial Neglect

A series of standard paper-and-pencil tasks were presented to each patient at their first visit, in
order to determine the presence and severity of baseline visuospatial biases in attention.
Neglect severity was measured with the Schenkenberg line bisection task (
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) (18 horizontal lines, 10-20 cm) and a variant of the bell cancellation
test ( ) (35 animal targets among distractor objects)
( ). In the latter animal cancellation test,
the search sheet was divided into seven virtual columns, each containing five targets. In total,
there were 15 targets in the left side, 15 in the right side, and 5 in the central column. Clinical
neglect was defined as abnormal performance in the line bisection test (cutoff: rightward de-
viation > 11%) ( ) and target cancellation test (cutoff:
left-right omissions > 4 out of 15 omissions) ( ). However, some patients
showed deficits in one of these tests only, and all those selected for our sample (n = 15) dem-
onstrated some signs of hemineglect according to at least one of these tests (86% of patients
had cancellation deficits, 79% had line bisection deficits), as commonly observed after RH
damage ( ; ). However, neglect severity varied substan-
tially between patients (leftward omission error range: 13%—100%; mean: 77%; SD: 29%). A
group summary of the clinical and behavioral characteristics of the patients is reported in

EEG Recording and Processing

A multichannel EEG cap was used to measure whole-scalp activity in each baseline recording.
This consisted of resting-state measurement of 3 min under eyes open conditions, during
which participants gazed at an empty black computer screen with their head comfortably po-
sitioned against at headrest. All EEG recordings were performed in standardized conditions
during the patient’s clinical rehabilitation visits. Using a similar clinical EEG setup as in pre-
ceding work ( ), scalp voltages were recorded with a 19 Ag/AgCl electrode
cap (Electro-cap International, Inc., ) according to the 10-20 in-
ternational system. The ground electrode was placed on the scalp, at a site equidistant be-
tween Fpz and Fz. Electrical signals were amplified with the Mitsar 21-channel EEG system
(Mitsar-201, CE0537, Mitsar, Ltd. ), and all electrode imped-
ances were kept under 5 kQ. For online recording, electrodes were referenced to linked ear-
lobes, and then the common average reference was calculated off-line before further analysis.
EEG data was recorded at 250 Hz and then filtered with a 0.5-40 Hz band-pass filter off-line.

All EEG data were imported into the MATLAB toolbox EEGLAB v12 (

) for off-line processing. We used Infomax ICA decomposition to remove usual eye
movement such as saccades or blinking ( ). Recordings were further cleaned
with an automated z-score-based method, using the FASTER plugin (

), rejecting 1-s epochs that deviated from the mean by more than 1.5 standard deviations,
in light of frequent occurrences of involuntary head movements in the stroke patients. This
strict selection procedure avoided an inflation of spurious increases in connectivity while pre-
serving a large dataset in each individual. Finally, EEG discontinuities were minimized by uti-
lizing Hann windowing (MATLAB hann() window function) on all clean epochs before
concatenating them into continuous EEG.

Source Space Measures of EEG Activity

Artifact-free EEG data were processed in MATLAB with the Brainstorm Toolbox (
). In line with previous approaches using a similar EEG setup

in clinical populations ( ), we first computed a head model of the cortex
surface for each EEG recording using the (symmetric) boundary element method from
OpenMEEG ( ) and then estimated unconstrained

cortical sources by using the minimum-norm sLORETA algorithm implemented in Brainstorm.
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To normalize sources across participants, we projected (warped) the sources from each par-
ticipant onto the MNI/Colin27 template brain surface ( ). The 15,000 voxel
source space was then divided into 68 cortical ROIls according to the Desikan—Killiany neu-
roanatomical atlas ( ). Temporal source activities across all the voxels in
each ROI were then averaged and band-pass filtered in the following six frequency bands:
delta 1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 13-30 Hz, and gamma 30-45 Hz. For every
subject, each frequency band was quantified in Brainstorm to examine differences in spectral
power and FC between the patient and control groups.

Spectral Power

Band-limited EEG power was estimated with a standard fast Fourier transform approach using
Welch’s method (MATLAB pwelch() function) and a Hanning windowing function (4-s epoch,
50% overlap). Relative spectral power (i.e., % power) was calculated as the ratio of the mean
power in a specific EEG band and the broadband power (1-45 Hz). Multiple comparison cor-
rection was performed using the FDR option in the Brainstorm Toolbox.

Functional Connectivity

A single time course was constructed for each ROI, which was then defined as a node in a
network graph. Connectivity between nodes was subsequently estimated using the amplitude
envelope correlation, yielding a 68 x 68 node adjacency matrix. The first step in estimating the
amplitude envelope correlation is to compensate for spatial leakage confounds by using a bi-
directional orthogonalization procedure ( ) to
remove all shared signal at zero lag between filtered EEG signals. After this, we computed the
instantaneous amplitude (i.e., envelope) across time for each frequency band by using the ab-
solute value of the Hilbert transform. Finally, the linear correlation between the amplitude time
series of each node pair was calculated using the Pearson correlation coefficient (

). For visualization of group differences (i.e., ), we reported the absolute
difference in Pearson correlation (r) which may be regarded as a standardized measure of ef-
fect size ( ).

Statistical Analyses

Source space (voxel-wise) statistical comparisons of band-limited spectral power were per-
formed using the Brainstorm Toolbox via independent two-tailed t tests with a p < 0.05 thresh-
old. Separately, we used the GraphVar Toolbox (

) for statistical comparisons of network connectivity using intergroup t tests with a p <
0.05 threshold. Individual neglect severity was measured by performance on the cancellation
test and subsequently used in a between-subject regression analysis (with a p < 0.05
threshold).

Our statistical analyses followed a stepwise approach. First, we performed a direct compar-
ison of whole-brain connectivity changes in stroke patients versus healthy controls, regardless
of neglect severity. This allowed us to optimize our statistical power by considering the whole
sample data and avoid a dichotomous categorization of neglect presence versus absence
based on arbitrary criteria, given that neglect diagnosis may vary according to the test used
( ; ) and that many of our patients showed some ne-
glect deficits in one task but not in others. Next, we performed a regression analysis to identify
those connections whose strength varied as a function of the severity of neglect deficits. The
specificity of this relationship was further ensured by a final conjunction test (
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) to isolate neglect-related changes among the stroke-
related anomalies in connectivity patterns. Impaired visuospatial attention was quantified by
the absolute number of omitted targets (i.e., errors) within the left and right hemifields during
the cancellation test in each individual patient. Please note we preferred the absolute rather
than the relative number of omissions (e.g., difference between left and right) as the latter did
not reliably reflect the stroke severity and extent of network damage in EEG. This is because
stroke-related lateralized damage in brain network should induce a proportional degree of la-
teralized behavioral deficit, while a numerically similar difference in relative number (left mi-
nus right) could occur with different absolute values and different extent of brain damage. A
similar quantitative analysis of brain-behavior relationships using deviation severity on the
line bisection test did not yield any significant results and was not further reported.

For all tests, and to statistically correct for multiple comparisons in FC measures, we used
the NBS ( ) based on MATLAB code from the Brain
Connectivity Toolbox ( ). We performed n = 5,000 permutations
to generate a null network model based on a random shuffle of all connections. Basically, the
NBS is used to control the family-wise error rate when the null hypothesis is tested indepen-
dently at each of the N(N-1)/2 edges comprising the connectivity matrix. The NBS may provide
greater statistical power than conventional procedures such as FDR, when the set of edges at
which the null hypothesis is rejected constitutes large component(s). The theoretical basis of
the NBS is to consider the pairwise similarity matrix of functional connections by using the
framework of graph theory, insofar as conventional cluster statistics are applied to a graph
structure, with the main difference that graph components (i.e., significantly interconnected
nodes) play the role of voxel clusters. This proceeds as follows. First, the test statistic computed
for each link is thresholded to construct a set of suprathreshold links. Any connected struc-
tures, or components in graph terminology, that may be present in the set of suprathreshold
links are then identified. Lastly, using permutation tests, a p value is assigned to each identified
component by indexing its size with the null distribution of maximal component size. As a
result, in the NBS framework, it is not possible to declare individual links (pairwise connec-
tions) as being significant, but only the network component to which they belong can be de-
clared significant. Hence, the individual (i.e., link level) connection t values were reported
mainly indicatively, together with d as the absolute difference in Pearson correlation (r), which
may be regarded as a standardized measure of effect size.

Data Availability

Anonymized EEG data and MATLAB analysis scripts that were used in this study are available
from the corresponding author upon request.
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