TABLE 5.
Confusion matrix of each model with optimal probability cutoff of training set.
| Real predicted | Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | |||||
|
|
|
|
|
||||||
| CIRKP | CISKP | CIRKP | CISKP | CIRKP | CISKP | CIRKP | CISKP | ||
| LR | CIRKP | 127 | 62 | 166 | 97 | 15 | 6 | 38 | 35 |
| CISKP | 41 | 206 | 29 | 167 | 5 | 91 | 24 | 140 | |
| SVM | CIRKP | 117 | 36 | 156 | 49 | 16 | 2 | 36 | 18 |
| CISKP | 51 | 232 | 39 | 215 | 4 | 95 | 26 | 157 | |
| RF | CIRKP | 160 | 160 | 192 | 209 | 17 | 19 | 49 | 69 |
| CISKP | 8 | 108 | 3 | 55 | 3 | 78 | 13 | 106 | |
| XGB | CIRKP | 105 | 37 | 161 | 57 | 14 | 5 | 35 | 22 |
| CISKP | 63 | 231 | 34 | 207 | 6 | 92 | 27 | 153 | |
|
| |||||||||
| Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | ||||||
|
|
|
|
|
||||||
| CIRKP | CISKP | CIRKP | CISKP | CIRKP | CISKP | CIRKP | CISKP | ||
|
| |||||||||
| LR | CIRKP | 91 | 46 | 159 | 57 | 0 | 3 | 28 | 20 |
| CISKP | 22 | 103 | 61 | 413 | 1 | 51 | 8 | 55 | |
| SVM | CIRKP | 85 | 27 | 156 | 37 | 0 | 2 | 30 | 21 |
| CISKP | 28 | 122 | 64 | 433 | 1 | 52 | 6 | 54 | |
| RF | CIRKP | 111 | 129 | 202 | 187 | 0 | 11 | 36 | 49 |
| CISKP | 2 | 20 | 18 | 283 | 1 | 43 | 0 | 26 | |
| XGB | CIRKP | 93 | 36 | 169 | 50 | 0 | 2 | 34 | 20 |
| CISKP | 20 | 113 | 51 | 420 | 1 | 52 | 2 | 55 | |
|
| |||||||||
| LR | SVM | RF | XGB | ||||||
|
|
|
|
|
||||||
| REF | CIRKP | CISKP | CIRKP | CISKP | CIRKP | CISKP | CIRKP | CISKP | |
|
| |||||||||
| CIRKP | 624 | 326 | 596 | 192 | 767 | 825 | 611 | 229 | |
| CISKP | 191 | 1,226 | 219 | 1,360 | 48 | 727 | 204 | 1,323 | |
RF model is severely overfitted to CIRKP group. The in-cluster performance of cluster 6 is acceptable but low AUC value is caused by insufficient positive test samples.