Skip to main content
. 2022 Mar 8;13:827451. doi: 10.3389/fmicb.2022.827451

TABLE 5.

Confusion matrix of each model with optimal probability cutoff of training set.

Real predicted Cluster 0 Cluster 1 Cluster 2 Cluster 3




CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP
LR CIRKP 127 62 166 97 15 6 38 35
CISKP 41 206 29 167 5 91 24 140
SVM CIRKP 117 36 156 49 16 2 36 18
CISKP 51 232 39 215 4 95 26 157
RF CIRKP 160 160 192 209 17 19 49 69
CISKP 8 108 3 55 3 78 13 106
XGB CIRKP 105 37 161 57 14 5 35 22
CISKP 63 231 34 207 6 92 27 153

Cluster 4 Cluster 5 Cluster 6 Cluster 7




CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

LR CIRKP 91 46 159 57 0 3 28 20
CISKP 22 103 61 413 1 51 8 55
SVM CIRKP 85 27 156 37 0 2 30 21
CISKP 28 122 64 433 1 52 6 54
RF CIRKP 111 129 202 187 0 11 36 49
CISKP 2 20 18 283 1 43 0 26
XGB CIRKP 93 36 169 50 0 2 34 20
CISKP 20 113 51 420 1 52 2 55

LR SVM RF XGB




REF CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

CIRKP 624 326 596 192 767 825 611 229
CISKP 191 1,226 219 1,360 48 727 204 1,323

RF model is severely overfitted to CIRKP group. The in-cluster performance of cluster 6 is acceptable but low AUC value is caused by insufficient positive test samples.