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The development of live biotherapeutics against Clostridioides difficile infection 
towards reconstituting gut microbiota
Yongrong Zhang, Ashley Saint Fleur, and Hanping Feng

Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, United States

ABSTRACT
Clostridioides difficile is the most prevalent pathogen of nosocomial diarrhea. In the United States, 
over 450,000 cases of C. difficile infection (CDI), responsible for more than 29,000 deaths, are 
reported annually in recent years. Because of the emergence of hypervirulent strains and strains 
less susceptible to vancomycin and fidaxomicin, new therapeutics other than antibiotics are 
urgently needed. The gut microbiome serves as one of the first-line defenses against C. difficile 
colonization. The use of antibiotics causes gut microbiota dysbiosis and shifts the status from 
colonization resistance to infection. Hence, novel CDI biotherapeutics capable of reconstituting 
normal gut microbiota have become a focus of drug development in this field.
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1. Introduction

In 1935, Ivan C. Hall et al. isolated a new bacterial 
species from the feces of healthy newborn infants. 
The bacteria discovered in this study was named 
Bacillus difficilis due to the difficulty encountered in 
its isolation and culture.1 It was classified as 
Clostridium difficile in the 1970s, and now 
Clostridioides difficile.1,2 Hall et al.’s study is the 
first documented case of C. difficile in human 
intestinal microbes. Later, more studies reported 
the isolation of C. difficile from healthy infants 
and asymptomatic adults which endowed the bac
terium with the role of normal intestinal commen
sal. In fact, C. difficile colonization is found in up to 
15% of healthy adults, and its prevalence is even 
higher in hospitalized patients and residents of 
long-term care facilities.3–5 In the 1970s, as the 
surge of antibiotic-associated colitis increased, 
toxin-producing C. difficile was eventually identi
fied as one of the major pathogens responsible for 
the disease.6 Two exotoxins, toxin A and B (TcdA 
and TcdB), are its main virulence factors that can 
disrupt the architecture of the intestine and induce 
severe inflammation.7,8 C. difficile has been listed as 
one of the top antibiotic resistance threats to public 
health by the Center for Disease Control and 

Prevention (CDC).9 The clinical spectrum of CDI 
can vary widely, ranging from asymptomatic colo
nization of the gastrointestinal (GI) tract to severe 
disease leading to toxic megacolon or intestinal 
perforation. Based on CDC guidelines, asympto
matic colonization does not require any treatment. 
Symptomatic CDI often occurs after antibiotic 
treatment and long-term hospitalization. It is 
believed that the perturbation of homeostasis of 
gut microbes by antibiotic treatment is highly cor
related to the infection.

The human GI tract is naturally a huge reservoir 
of microbes in which trillions of microorganisms 
inhabit. This group of microorganisms is called gut 
microbiota (Box 1). The interaction between 
microbiome (Box 1) and host is absolutely 
a hotspot of research in recent years. It has aroused 
extensive attention and been widely studied not 
only in infectious diseases but also in other 
disorders.10,11 As technological advances and in- 
depth understanding of the gut microbiome have 
increased in the past decade, research has revealed 
that host-residential bacteria interaction may influ
ence the formation of host neurological systems, 
nutrition metabolization, and host immune 
responses.9–12 In addition, recent clinical studies 
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demonstrated that the gut microbiota may affect 
the efficacy of oncology medications in 
patients.1314,15 Although under normal circum
stances the host and gut microbiome are mutually 
beneficial, dysbiosis (Table 1) of the gut microbiota 
has been associated with many diseases.10–12 

Recently, significant progress has been made in 
developing live biotherapeutics that help to restore 
the normal gut microbiota and treat CDI. In this 
review, we briefly summarize the role of gut micro
biota in the pathogenesis of CDI and discuss the 
current development of live biotherapeutics 
against CDI.

2. Gut microbiota and C. difficile infection

C. difficile survives in harsh environments in the form 
of spores that are highly tolerant to heat, oxygen, 
ultraviolet light, common disinfectants, and 
antibiotics.16 Ubiquitous spores in the environment, 
especially in hospitals and healthcare facilities, are the 
leading source of C. difficile transmission via the oral- 
fecal route. Healthy individuals upon oral ingestion of 
C. difficile spores may not develop any sign of disease 
but shed spores and bacterial debris in their feces, 
which was defined as colonization by Crobach et al.17 

Colonization does not necessarily proceed to sympto
matic infection. In fact, an intrinsic homeostasis in the 
gut microbial niche allows a resistance to C. difficile 
colonization and infection (Figure 1). Within the 
niche, the microorganisms benefit each other but 
competitively restrain the colonization of opportunis
tic pathogens at the same time. ‘Good’ bacteria build 
up an ‘unfavorable’ environment in which C. difficile 
are not able to expand and thrive. Although persistent 
colonization as asymptomatic carriage can last for 
months, as long as the homeostasis of the gut micro
biome is maintained, infection may not occur.5,18 

Based on the current knowledge, gut resident com
mensals contribute to homeostasis conferring resis
tance to symptomatic infection in three major 
mechanisms including nutrition competition, pro
duction of inhibitory metabolites and secretion of 

Figure 1. The role of gut microbiota in CDI development.

Table 1. Glossary.

TERMS DEFINITION

MICROBIOTA Microorganisms, composed of bacteria, fungi, virus, 
protozoa and archaea, inhabiting a defined 
environment.

MICROBIOME Generally, microbiota, its genes, gene p 
roducts and activities in niches in a habitat.

METABOLOME A large array of small molecule metabolites produced by 
microbiota into the inhabited environment during the 
metabolism of food and xenobiotics. In the case of the 
gut metabolome, metabolites from both microbiota 
and hosts should be included.

DYSBIOSIS There is no consensus that defines dysbiosis despite 
a high frequency of usage in microbiome studies. It is 
often described as a state, in which alterations to the 
microbiota of hosts and its functional components may 
be correlated with undermined host immunity and 
increasing susceptibility to diseases, for example 
blooming of C. difficile. Dysbiosis usually features: i) 
impaired microbial diversity; ii) loss of beneficial 
commensal bacteria; iii) thriving of pathogens.
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bactericidal molecules.18–22 These mechanisms have 
been well discussed in other reviews2324,25 and there
fore will not be discussed in this review.

CDI often occurs upon disruption of the home
ostasis of gut microbiota (Figure 1). Loss of the 
total number of gut microorganisms and diversity 
of microbiota have been frequently reported in 
CDI patients.26,27 Perturbation of gut microbiota 
will consequently lead to an imbalanced living 
environment, including altered metabolome, pH, 
and epithelial mucus, of which opportunistic 
pathogens like C. difficile will take advantage to 
expand.27–29 Once C. difficile dominates, it will 
produce two exotoxins that will disrupt the intest
inal epithelium and cause inflammation.7,8 Meta- 
analysis showed that carriers of toxigenic strains 
are at a higher risk for the development of an 
infection compared to non-colonized patients.26 

Therefore, colonization with toxigenic C. difficile 
and dysbiosis are prerequisites of CDI. Direct 
perturbation of microbiota is mainly induced by 
antibiotics and proton pump inhibitors (PPIs), 
while some chemotherapies and advanced age 
may also affect the intestinal microbiome 
components.31–33 Among them, antibiotic treat
ment is still the leading risk of primary and recur
rent CDI.

Since gut dysbiosis leads to the loss of C. difficile 
colonization resistance, therapeutic strategies aim
ing to restore a normal gut microbiota have gained 
attention in the past decade and achieved some 
remarkable success. These strategies are pleiotropic 
as they not only restore the microbiome structure 
but also recover its biofunctions. When the gut 
residential microbe community recovers, the bio
functions that produce a normal metabolome will 
be re-established and shift to C. difficile coloniza
tion resistance as described earlier in this review. 
To date, these strategies mainly include full fecal 
microbiota transplantation (FMT) and precise fecal 
bacterial/probiotic strain(s) engraftment. Strategies 
directly targeting C. difficile are also emerging. In 
addition, compounds, such as ribaxamase and pre
biotics, have been investigated for their ability to 
manipulate the gut microbes to defend against 
CDI.34–36

In next sections, we will summarize the interven
tions using live microorganisms to treat CDI that 
directly or indirectly restore the homeostasis of the 

gut microbiome, including their mechanisms, pre
clinical and clinical progress, and benefits versus 
risks.

3. FMT and its derivatives

FMT treatment for diarrhea can trace its history 
back to 1700 years ago by a Chinese physician.37 

The first FMT used to treat CDI-related pseudo
membranous colitis was recorded in 1958.38 Not 
until the past decade, have FMT and its derivatives 
been extensively studied and widely applied in 
patients with CDI, particularly those with recurrent 
CDI. Numerous pre-clinical and clinical studies 
have demonstrated the promising efficacy of FMT 
and its derivatives in treating CDI, although differ
ences exist between the regimens (Table 2).

3.1 FMT

Utilizing a dynamic computer-controlled in vitro 
model of the human colon, a very recent study has 
dissected how FMT rescues the gut microbiome 
from antibiotic therapy-induced loss of microbial 
diversity and abnormal bioactivities.30 Shortly after 
FMT application, the fermentation activity, mea
sured by pH and redox potential, gas production 
and short-chain fatty acids (SCFA) production, 
quickly recovered to baseline. It also shortened the 
recovery time of the bacterial profile at both diver
sity and richness levels.30 Similar to C. difficile treat
ment, restoration of normal colonic microbial 
ecology by FMT restores bile acid metabolism and 
normal bile acid composition in the colon, produ
cing an unfavorable environment for C. difficile 
spore germination and allowing clinical recovery 
of recurrent CDI patients.39,40 Jillian R.-M. Brow 
et al. further found that the ratio of inflammatory to 
non-inflammatory fatty acids decreased although 
the total fatty acid levels were restored in patients’ 
gut.40 Patients post-FMT developed similar micro
bial structure as donors’ for a certain period.41 

Another clinical study also showed that FMT dra
matically reduced the abundance of antibiotic- 
resistant bacteria in the 2 months after administra
tion, suggesting fecal antibiotic resistance gene car
riage decreased in direct relationship to the degree 
to which donor microbiota was engrafted.42
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The above findings and many more have estab
lished FMT as an evidence-supported treatment 
option for recurrent CDI. According to the 2017 
IDSA/SHEA clinical practice guidelines, FMT is 
recommended for patients with multiple recur
rences of CDI.43 The development of FMT thera
peutics is riding on the crest of a wave. Most of the 
registered clinical trials in the United States target
ing gut microbiome to treat CDI or recurrent CDI 
are FMT (Table 3). Several whole-stool FMT pro
ducts in the pipeline including RBX2660, VE303, 
CP101, and RBX7455 have been in clinical trials. 
Among them, RBX2660 is the only one now in 
clinical trial phase 3. As a commercial FMT regi
men, RBX2660 showed favorable clinical efficacy 
and safety results in its phase 2 clinical trials.44,45

Although highly efficacious, FMT is associated 
with risks, such as heterogeneity among donors, 
batches and preparations, and unknown long- 
term impact post FMT treatment.46 The major 
risks of FMT include: 1) Side effects, such as con
stipation, diarrhea, bloating, etc., often occurred 
after transplantation; 2) It may transfer potential 
pathogens. Although the donors have been 
screened for recognized pathogens, uncertain 
pathogens may still exist. The screening procedure 
for donors was updated by the United States Food 
and Drug Administration (FDA) in 2019 because of 
cases of invasive infection caused by extended- 
spectrum beta-lactamase (ESBL)-producing 
Escherichia coli in two immunocompromised 
patients after FMT;47 3) Disorders or diseases 
other than infectious disease may be transferred to 
the recipients. Most of the clinical trial studies only 
have a 6-month follow-up period, and no data so 
far have demonstrated the long-term impact of 
FMT. As we discussed in the beginning, based on 
current knowledge, the gut microbiome plays 
a vital role in many aspects of human physiological 
functions. Therefore, it is hard to predict whether 

the donors may transfer their own characteristics to 
the recipients, for instance, obesity, diabetes, colon 
carcinoma, neurological disorders, etc.

3.2 Defined FMT

The defined FMT is intrinsically a precise engraft
ment with a designated fecal bacterial composition. 
As an alternative to FMT, the defined FMT has 
multiple advantages. First, the bacterial composi
tion is designable and controllable. The absence 
and presence of certain bacterial strains are fre
quently and consistently observed in CDI patients 
pre- and post-therapy. Thus, replenishment of 
those bacteria that defined a healthy state may 
inhibit CDI in vivo. Tvede and Rask-Madsen 
initiated the proof-of-concept study in which they 
treated 5 CDI patients through rectal administra
tion with a mixture of equal volume of 10 bacterial 
cultures isolated from the feces of healthy donors.48 

The strains were chosen based on their character
istics as probiotics, their inhibitory effects to 
C. difficile in vitro, and absence in CDI patients. 
Similarly, Cammarota et al. introduced a 15-strain 
consortium derived from successful engraftments 
in patients cured by FMT.49 For both studies, in 
response to the treatment procedure, patients were 
promptly relieved of CDI symptoms. Second, the 
defined FMT can lower the risk of antibiotic resis
tance. Petrof and colleagues adopted a regimen 
possessing a broader spectrum of intestinal 
microbes (33 strains).50 Unlike Tvede’s and 
Cammarota’s, the strains in Petrof’s study were 
prepared to mimic fecal microbiota. The selected 
strains (except Bifidobacterium spp.) were formu
lated in an inferred relative ratio based on the 
MetaREP metagenomic database of stool sample 
datasets from healthy donors. The authors also 
considered antibiotic susceptibility and safety, 
while attempting to generate as much taxonomic 

Table 2. Key features of FMT and its derivatives.
SOURCE CULTIVATED COMPOSED STRAINS DOSAGE OF EACH COMPOSITION

TRADITIONAL FMT HDa No Unknown Unknown
DEFINED FMT HD/CPb Yes Designated bacteria mixture Designated
FMT SPORES HD No Firmicutes species Unknown

a: healthy donors; b: FMT cured CDI patients.
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diversity as possible. If any selected organism was 
suspected to be resistant to antibiotics, then it 
would be ruled out of the mixture. Third, the regi
men is reproducible, low cost, stable and can be 
quality controlled. Variations of the FMT products 
widely exist between individual donors. Even the 
same donor may not produce identical microbiota 
at different times. Therefore, reproducibility is one 
of the biggest pitfalls for FMT products. However, 
the defined FMT is a synthetic bacterial mixture 

cultured in vitro that can be easily produced and 
genetically monitored. For example, in Petrof’s 
study, all purified candidates were identified by 
16S rRNA sequencing to guarantee the genomic 
background. Since all bacteria are culturable 
in vitro, the time and cost required for donor 
screening will be saved. Fourth, an absence of 
viruses and other pathogens in the administered 
mixture can be ensured, thereby improving patient 
safety.50

Table 3. Registered clinical trials use live microorganisms as interventions to treat CDI in the United States.
NCT Number Status Conditions Intervention Commercial name Phase Ref.

NCT04090346 Enrolling by invitation Recurrent CDI FMT Phase 4
NCT03973697 Recruiting Recurrent CDI FMT Phase 2
NCT03970200 Recruiting Severe CDI FMT Phase 2
NCT03931941 Recruiting Recurrent CDI FMT RBX2660 Phase 3
NCT03829475 Recruiting IBD/CDI Bezlotoxumab and/or FMT Phase 2
NCT03795233 Suspended CDI FMT Phase 1&2
NCT03788434 Recruiting Recurrent CDI FMT VE303 Phase 2
NCT03621657 Completed (has results) CDI FMT Phase 2
NCT03617445 Suspended Recurrent CDI FMT Phase 2
NCT03548051 Terminated CDI FMT Phase 1&2
NCT03497806 Active, not recruiting CDI and recurrent CDI FMT CP101 Phase 2
NCT03298048 Terminated Has Results Recurrent CDI FMT Phase 2
NCT03268213 Active, not recruiting CDI/UC/indeterminate colitis FMT Early Phase 1
NCT03244644 Completed Recurrent CDI FMT RBX2660 Phase 3
NCT03183141 Recruiting Recurrent CDI FBSa SER-109 Phase 3
NCT03183128 Completed Recurrent CDI FBS SER-109 Phase 3 131

NCT03110133 Completed Recurrent CDI FMT CP101 Phase 2
NCT03106844 Completed IBD/CDI FMT Phase 1&2
NCT03005379 Recruiting Recurrent CDI FMT Phase 2&3
NCT02981316 Completed Recurrent CDI FMT RBX7455 Phase 1 132

NCT02589964 Terminated CDI Probiotic Florajen-3 Phase 1
NCT02589847 Completed Recurrent CDI FMT RBX2660 Phase 2
NCT02465463 Completed CDI FMT Phase 1&2
NCT02437487 Completed Recurrent CDI FBS SER-109 Phase 2 56

NCT02423967 Completed Recurrent CDI FMT Phase 1
NCT02403622 Terminated Recurrent CDI FMT Phase 2
NCT02343328 Terminated Recurrent CDI FMT Phase 1
NCT02299570 Completed Recurrent CDI FMT RBX2660 Phase 2 44,45

NCT02269150 Active, not recruiting Prophylaxis of CDI FMT Phase 2 133

NCT02255305 Recruiting Recurrent CDI FMT Phase 2
NCT02134392 Recruiting Recurrent CDI FMT Phase 1
NCT02127398 Recruiting Recurrent CDI FMT Phase 2
NCT01972334 Completed Recurrent CDI FMT Phase 2
NCT01925417 Completed Recurrent CDI FMT RBX2660 Phase 2 42,134

NCT01914731 Completed Recurrent CDI FMT Phase 1 135

NCT01868373 Enrolling by invitation Primary and recurrent CDI Defined FMT Phase 1
NCT01704937 Completed Recurrent CDI FMT Phase 1 136

NCT01680874 Completed Primary and recurrent CDI Probioticb Phase 2 137,138

NCT01259726 Completed Prevention of recurrent CDI NTCD VP20621 Phase 2 92

NCT01202630 Suspended Recurrent CDI Probioticc Bio-K, CL1285 phase 3
NCT02127814 Completed AAD, CDI Probioticd NAa

NCT03562741 Recruiting Recurrent CDI FMT NA
NCT02830542 Unknown Recurrent CDI FBS SER-262 Phase 1
NCT02636517 Active, not recruiting CDI, IBD, UC, Crohn’s Disease FMT NA
NCT02557685 Unknown CDI FMT Phase 2
NCT02326636 Completed CDI FMT NA
NCT02076438 Terminated AAD, CDI Probiotice Culturelle NA
NCT01973465 Unknown CDI FMT NA
NCT01905709 Recruiting CDI FMT NA
NCT01873872 Unknown CDI Probiotics Theralac & Culturelle NA
NCT01703494 Unknown CDI FMT Phase 2 41

NCT01077245 Withdrawn CDI Probiotic CBM588 MIYA-BM Phase 2

a: FBS = Fecal bacterial spores; NA = Not applicable. b: equal amounts of Lactobacillus acidophilus NCFM® (ATCC 700396), Lactobacillus paracasei Lpc-37 (ATCC 
SD5275), Bifidobacterium lactis Bi-07 (ATCC SC5220), and Bifidobacterium lactis Bl-04 (ATCC SD5219). c: Lactobacillus acidophilus CL1285® and Lactobacillus 
casei. d: Lactobacillus reuteri. e: Lactobacillus Rhamnosus GG
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Despite these advantages, challenges also exist. 
In the United States, only one registered ongoing 
clinical trial using defined FMT as intervention was 
found on the Clinical trials website (Table 1). In 
Europe, the result of a randomized controlled clin
ical trial (RCT) was released recently. In this study, 
a total of 98 participants with recurrent CDI were 
enrolled, which presents the largest trial on this 
topic to date. The treatment did not show 
a superior efficacy compared to conventional FMT 
(cure rate 52% vs 76%), although it was comparable 
to vancomycin treatment (cure rate 52% vs 45%).51 

The regimen of 12 well-characterized bacterial 
strains, selected only based on previous experi
ences, was a simple equal volume mixture of bac
terial candidates. Nowadays, as the development of 
metagenomic and culturomic techniques pro
gresses, more bacterial strains have been isolated 
from gut microbiota and identified to be closely 
related to CDI dysbiosis.52,53 Species composition 
and interactions are both important determinants 
of the C. difficile inhibition phenotype, as a simple 
cocktail of selected strains may not achieve ideal 
inhibitory outcomes but oppositely may assist 
C. difficile growth.53 Therefore, regarding the inter
action of bacteria with each other in the mix and 
with other members of gut commensals of hosts, 
a personalized bacterial cocktail may be required to 
treat individuals.

3.3 Fecal bacterial spores

Another FMT derived strategy is the mixture of 
fecal bacterial spores. SER-109, a pipeline product 
of Seres Therapeutics, Inc., is approaching the mar
ket. The company has released inspiring primary 
endpoint results from its phase 3 trial using SER- 
109 to treat recurrent CDI. The patients had 
a significantly lower recurrence rate of 11.1% in 
the SER-109 treatment group versus 41.3% in the 
placebo group 8 weeks after treatment.54 The drug 
is a consortium of spores of multiple Firmicutes 
species fractionated from the stools of healthy 
human donors and encapsulated.55,56 Firmicutes 
play an important role in colonization 
resistance.57 The SER-109 was manufactured with 
a sterilization process to reduce potential pathogens 
and fecal matter and debris. The entire spore ecol
ogy of SER-109 is more physiologic than defined 

FMT as all healthy donors’ spores were represented 
without depleting or enriching for specific spore 
species based on sequencing and microbiology stu
dies. However, SER-109 had failed to achieve its 
primary endpoint in phase 2 in 2016. The chief 
scientist of the company revealed two important 
modifications for their phase 3 study: detection 
method for C. difficile and dosage of SER-109. 
Instead of amplifying C. difficile genes, ELISA for 
detecting toxins was performed to differentiate 
active infection and asymptomatic colonization, 
implying that the microbiota niche shifted back to 
a balanced state of colonization resistance after 
treatment.58 The dosage of the drug was also 
emphasized to play a critical role in its efficacy.58

4. Probiotics

The current consensus definition of probiotics is 
“live strains of strictly selected microorganisms 
that, when administered in adequate amounts, con
fer a health benefit on the host” by an expert panel 
of the International Scientific Association for 
Probiotics and Prebiotics (ISAPP) since 
October 2013.59 According to the consensus, pro
biotics should be well-known strains that provide 
health benefit in single or multiple mechanisms. 
Hence, the defined FMTs described in a previous 
section of this review indeed meet the criteria of 
a probiotic.59 Since the initial aim of defined FMTs 
was to mimic fecal microbiota, we categorized them 
as FMT derivatives. In fact, as the in-depth study of 
FMT advances, the gut commensal will be a source 
of next-generation probiotics.60 The wide range of 
the probiotic definition will surely encourage inno
vation in the field. Although not all mechanisms of 
probiotics have been confirmed in humans, diverse 
mechanisms are likely to drive probiotic benefits to 
host health, such as production of antimicrobial 
products, cross-feeding the resident commensal, 
direct interaction with immune cells, etc.61 In this 
section, we will summarize the non-FMT probiotic- 
related interventions in CDI prevention.

4.1 Traditional probiotics

The traditional probiotics, such as strains of 
Lactobacillus, Bifidobacterium, and Saccharomyces 
have been suggested as dietary supplements for 
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CDI.62 The mechanisms of probiotics against CDI 
are similar to FMT. A consortium of probiotics, 
including five Lactobacilli strains, two 
Bifidobacterium standard strains, and 
Bifidobacterium infantis obstructs the proliferation 
of C. difficile through affecting the diversity of gut 
microbiota and regulating SCFA production, even
tually attenuating C. difficile colonization.63 

Lactobacillus and Bifidobacterium species have 
also been shown to colonize the intestine regardless 
of concurrent antibiotic use, competing with 
C. difficile for nutrition.64,65 Saccharomyces boular
dii was reported to lessen antibiotic induced micro
biota shifts.66,67,68 In addition, S. boulardii 
produces a protease capable of digesting 
C. difficile toxins, which are etiologies of the dis
ease, and modulates a host of inflammatory signal
ing pathways to inhibit toxin-induced 
inflammation.76–79

The traditional probiotics have a long history as 
safe and effective diet supplements or drugs with 
health benefit. A major outbreak, associated with 
the C. difficile NAP1/027/BI strain in the hospital 
Pierre-Le Gardeur (PLGH) in Quebec, promoted 
the use of probiotic Bio-K+, containing three 
Lactobacillus strains, to every adult inpatient on 
antibiotics in this hospital. The data collected by 
the Ministry of Health in Quebec showed no epi
sodes of Lactobacillus bacteremia during the entire 
10-year experience and that CDI incidents were 
lower in this hospital.70,71 Although in particular 
immunocompromised individual treatment with 
S. boulardii should be avoided or well managed 
due to fungemia concerns,72,73 it has been used to 
prevent and treat diarrheal diseases such as anti
biotics associated with diarrhea (AAD) for many 
decades.74,75 Hence, the overall safety of using tra
ditional probiotics to treat CDI is not a major con
cern. Moreover, the probiotic products can be 
easily and economically prepared and given to 
patients daily as yogurt, drinks, cheese, or 
capsules.64,85–87,88,89 Unlike FMT bacteria, the pro
biotics are frequently used as prophylactics or adju
vant therapy to reduce the risk of AAD and/or 
primary CDI in many clinical trials across the 
world. Inconsistent conclusions drawn from these 
clinical trials may be the reason that probiotics are 
not recommended for CDI treatment and 

prevention by current clinical practice guidelines. 
However, a meta regression analysis emphasized 
the efficacy of probiotics in reducing CDI incidence 
in a high-risk population.79 In this study, a total of 
19 published RCTs, comprising 6261 subjects and 
using different regimens of four probiotic species 
(Lactobacillus, Saccharomyces, Bifidobacterium, 
and Streptococcus), were analyzed. The authors 
found that the timing of probiotic administration 
was critical to prevent CDI. Future research is still 
needed to focus on optimal probiotic dose, species, 
and formulation since no superior regimens were 
concluded in this study.

4.2 Newly emerging commensal probiotics

Given the broad definition of probiotics, several 
commensal bacteria may now be categorized as 
probiotics since they have been frequently demon
strated to play important roles in combatting CDI. 
Most of them are in the preclinical stage of devel
opment. In order for the emerging probiotics to 
assert benefits in CDI patients, more clinical studies 
are needed to examine criteria, such as dose 
responses, biological plausibility, replication of 
findings, etc.59 Here are some examples of the 
newly identified probiotic candidates.

Clostridium scindens was identified as a probiotic 
candidate from commensals to treat CDI through 
a subtle workflow described by Buffie and 
colleagues.80 They first analyzed the microbiota 
composition in mice after different antibiotic regi
mens and identified 11 strains that were strongly 
associated with C. difficile colonization resistance. 
Then, an inference-modeling approach was applied 
to samples of hospitalized patients in parallel with 
the murine samples. C. scindens was identified as 
the strongest correlated bacteria to enhance resis
tance to CDI in both human and murine CDI. 
Further study indicated that C. scindens mediated 
inhibition was bile acid dependent.

CBM588 is a probiotic consisting of 
Clostridium butyricum, a bacterium that pro
duces a robust amount of butyrate. It has been 
used as a live biotherapeutic probiotic to treat 
CDI patients in a phase 2 clinical trial, although 
the trial was eventually suspended due to lack 
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of enrollment. Preclinical studies showed that 
C. butyricum activated neutrophils and Th1 and 
Th17 cells to elicit the protective effects against 
CDI.81

Li et al. investigated the role of Bacteroides the
taiotaomicron in defending against CDI in a mouse 
model. Similar to the FMT control, mice adminis
tered B. thetaiotaomicron had fewer copies of 
C. difficile as well as less colonic inflammation. 
Meanwhile, both FMT and B. thetaiotaomicron 
improved the gut microbiota composition and 
reversed the CDI-induced change in bile acid com
position, suggesting that B. thetaiotaomicron is 
a good probiotic candidate to combat CDI.82 The 
cell-wall associated glycans of B. thetaiotaomicron 
were shown to suppress the production of the gly
cosylated toxins of C. difficile in vitro.83 As 
a cephalosporinase-producing anaerobe, the pre- 
colonized B. thetaiotaomicron produced β- 
lactamase enzymes to inactivate intraintestinal β- 
Lactam antibiotics during antibiotic treatment, 
providing protection for commensal recovery and 
preventing overgrowth of C. difficile in a mouse 
model.84

5. Non-toxigenic C. difficile spores

Nontoxigenic C. difficile (NTCD) strains that lack 
the genes for active toxin production are frequently 
found in the hospital environment and colonize 
hospitalized patients, although patients are usually 
asymptomatic for CDI. One hospital study found 
that asymptomatic colonized patients had less 
chance of developing active CDI,85 implying pre- 
colonization with NTCD would be a potential treat
ment to protect hospitalized patients from recur
rent CDI. Several preclinical studies have 
demonstrated the efficacy of NTCD or low- 
virulent C. difficile to prevent CDI.95–99 The 
mechanism might be that a certain population of 
NTCD occupies the living space and outcompetes 
the invading strains. Recently, Lesile et al. revealed 
that consumption of glycine by the first colonized 
strain of C. difficile would decrease germination of 
the second lethal strain, consequently limiting colo
nization by the lethal one.90

VP20621, a commercial product of Viropharma 
Inc, is an oral liquid drug containing the spores of 
NTCD strain M3 and has completed phase 2 

clinical trial. The released results indicated that 
the drug was quite safe and tolerable as patients 
took daily dosages ranging from 104 to 108 CFU for 
7 or 14 days and only had similar mild side 
effects.91,92 NTCD-M3 was isolated from human 
patients.87 In its phase 2 trial, the average fecal 
colonization rate of NTCD-M3 was 69% (71% 
with 107 spores/d and 63% with 104 spores/d). 
Recurrence of CDI occurred in 13 (30%) of 43 
placebo patients and in 14 (11%) of 125 NTCD- 
M3 patients. The NTCD-M3 colonization became 
completely undetectable after week 22 of follow-up, 
implying the restoration of the normal microbiota, 
which may then provide protection against subse
quent CDI. Notably, the dosage of 107 spores/d for 
7 days had a lower recurrence than the dosage of 
107 spores/d for 14 days. The gut microbiome pro
file alteration between pre- and post-spore treat
ment needs further investigation to dissect how 
NTCD competes against invasive C. difficile and 
restores the microbiota.

At the time of writing, NTCD-M3 is the only 
biotherapeutic using single-species bacteria that has 
demonstrated efficacy in reducing recurrent CDI in 
the clinic. Compared to FMT-related strategies, the 
NTCD-M3 has a clearer genetic background. 
Preparation is reproducible and low cost. 
However, there are a couple of concerns about 
widespread clinical use, such as antibiotic resis
tance gene transfer and toxin gene acquisition.93 

Horizontal gene transfer occurs both between bac
teria of the same species and between different 
species through variant mechanisms.94–96, 

C. difficile strains are known to be resistant to 
a wide spectrum of antibiotics. Extensive use of 
a highly antibiotic resistant strain of NTCD would 
increase the risk of spreading antibiotic resistance 
to other bacteria in the gastrointestinal tract. 
Meanwhile, the co-colonized toxigenic C. difficile 
strain may convert the NTCD to a toxin producer 
strain by horizontal gene transfer.97

6. Bacteriophages

Bacteriophages are viruses that can infect and 
replicate within their host bacteria and even
tually lyse their hosts. Although the use of 
C. difficile-specific bacteriophages does not 
directly target gut microbiota, this approach 
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precisely targets C. difficile without using anti
biotics. To date, no treatment against CDI 
using bacteriophages is in clinical practice, 
although they have been widely used in humans 
in European countries to treat other 
infections.98 Several preclinical studies have 
demonstrated bacteriophages and phage- 
derived products as potential therapeutics to 
inhibit C. difficile growth and toxin production 
both in vivo and in vitro.99–102 Although these 
results are promising, there are several draw
backs with the current bacteriophage strategies. 
All the C. difficile phages with complete gen
omes in the public database are temperate 
phages, which can be replicated either by the 
lytic or the lysogenic cycle.103 When the tem
perate phage goes into a lysogenic cycle, it 
becomes integrated into the host genome to 
replicate with the host chromosome or replicate 
within the host as a plasmid.103 The lysogenic 
cycle creates phage resistance, leaving the host 
C. difficile strain tolerant to the phage mediated 
eradication. Genetically engineered phages that 
are deficient of lysogen-related genes seemed to 
be a solution. Selle et al. developed an engi
neered C. difficile phage carrying a self- 
targeting CRISPR-Cas array to directly target 
the bacterial chromosome.104 This recombinant 
phage was demonstrated to be more efficient at 
killing C. difficile both in vitro and in vivo while 
lysogens still accumulated 24 hours post infec
tion. To avoid lysogeny formation, the authors 
removed a region of the genome encoding the 
cI repressor and integrase gene (wtPhage Δlys 
and crPhage Δly). Although no lysogeny from 
in vitro infection with wtPhage Δlys and 
crPhage Δly was detected, lysogens appeared 
in feces of mice treated with each, suggesting 
other unknown mechanisms may exist to drive 
the lysogenic replication cycle in C. difficile 
phages. Unfortunately, this particular character
istic of phages may play an important role in 
horizontal gene transfer that contributes to bac
terial evolution and may generate superbugs. 
Phages transferring antibiotic resistance to 
their host strains have been demonstrated. 
Goh et al. found that phage phiC2 was able to 
promote the transfer of the transposon Tn6215, 
which encodes erythromycin resistance, 

between C. difficile strains.105,106 Furthermore, 
C. difficile toxins may also originate from 
phages. The complete functional binary toxin 
locus was identified in the genome of phage 
phiSemix9P1.106 Besides, use of phage may 
risk promoting biofilm since LuxS encoding 
enzyme mediated induction of prophages likely 
contributes to C. difficile biofilm structure.107 

Finally, the host specificity as its advantage is 
also a disadvantage for phage therapy. There is 
not a universal phage regimen that can kill all 
C. difficile variants. Hence, a personalized bac
teriophage regimen may be necessary for CDI 
treatment.108 C. difficile isolation and sequen
cing may be needed prior to treatment admin
istration to determine which phage or phage 
combination may be applicable to the specific 
patient.

Overall, bacteriophage therapy is a potential can
didate to treat CDI that avoids antibiotic usage and 
disturbs the gut microbiome. More knowledge 
about the phage-C. difficile interaction is needed 
to safely translate this therapeutic concept to 
human patients.

7. Recombinant live biotherapeutic products

According to the FDA-updated guidance in 2016, 
recombinant live biotherapeutic products (LBPs) 
are composed of genetically modified microorgan
isms with the purposeful addition, deletion, or 
modification of genetic material.109 The genetic 
modifications can empower additional functions 
of LBPs besides their intrinsic effects on gut micro
biota, and are therefore potentially more promising 
in fighting against CDI. Although to date, no 
recombinant LBPs have been approved by the 
FDA for human diseases, many are in development 
to target a range of diseases including metabolic 
disorders, inflammatory bowel disease (IBD), col
orectal cancer, and infectious diseases.

7.1 Using probiotic bacteria as chassis

Probiotic bacteria such as E. coli Nissle 1917, 
Lactobacillus spp., Salmonella Typhi, etc., are 
often used as the chassis of the recombinant 
LBPs since genetic toolboxes in those bacteria 
have been well established.110,111 For example, 
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Synlogic has developed a series of recombinant 
LBPs using E. coli Nissle 1917 as chassis to treat 
metabolic disorders.112 Another in the pipeline 
product of Precigen Actobio in the clinical trial 
phase 1b/2 for type-1 diabetes adopted 
Lactococcus lactis as chassis.113 In the context of 
CDI, two lactic acid bacterial strains, 
Lactobacillus casei and Lactobacillus acidophilus, 
engineered to display C. difficile surface layer 
protein A (SlpA) were proposed by Vedantam 
et al. to compete with C. difficile for epithelial 
adherence.114 The proposed strains were demon
strated to protect hamsters and piglets from death 
or diarrhea post infection of C. difficile strain 630. 
SlpA is the most abundant component of 
C. difficile cell wall and mediates the attachment 
of the bacteria to mucus layer of host intestine 
that may contribute to colonization.115 Vaccine 
studies have shown SlpA as a candidate to elicit 
protective immune responses against CDI in mice 
but not hamster models.116,117 However, 
C. difficile has a high level of variability of SlpA 
between strains.118 Therefore, it is risky for ther
apeutic development to target one of the SlpA 
variants solely.

7.2 Using probiotic yeast as chassis

Probiotic yeast S. boulardii has not been broadly 
used as a live vector for the delivery of therapeutic 
proteins until 2020 since the first report in 2013. 
119–123 As a probiotic, the treatment efficacy of 
S. boulardii has already been widely assessed in 
various gut disorders. As an LBP chassis, 
S. boulardii’s lack of sporulation and stable coloni
zation in the gut may further ease safety 
concerns.124 The eukaryotic yeast is unlikely to 
transfer antibiotic resistant genes. In addition, 
S. boulardii is tolerant to the acidic environment 
and grows well at 37°C.125 Therefore, S. boulardii is 
an attractive vehicle to deliver therapeutics in the 
gut. Recent genomic sequencing studies uncovered 
the similarities between Saccharomyces cerevisiae 
and S. boulardii that expands the genetic toolbox 
to engineer S. boulardii, paving the way to produ
cing heterologous proteins in S. boulardii.126 

Several studies have generated auxotrophic strains 
of S. boulardii and demonstrated the expression of 
heterologous proteins by this probiotic yeast.127,128 

Chen et al. recently reported a rationally designed 
S. boulardii strain (Sb-ABAB) that has superior 
prophylactic and therapeutic efficacy in mouse 
models of primary and recurrent CDI.122 The con
cept of this design was to utilize a well-documented 
non-colonizing probiotic to constitutively deliver 
therapeutic antibodies in situ to combat intestinal 
colonized pathogens, such as C. difficile. Chen 
et al.’s report is the first recombinant LBP to use 
probiotic yeast as chassis to deliver therapeutic 
antibodies. S. boulardii may also be able to deliver 
other therapeutics, including bacteriocin, cyto
kines, peptides, and small molecular drugs.120–123 

In order to improve the yield of target cargoes, the 
components of the gene cassettes, such as signal 
peptides, promotors/terminators, selection mar
kers, etc., and maintenance of the exogenous gene 
of interests as plasmids or chromosomal integra
tion have been modified in those studies. Among 
them, Chen et al. and Liu et al. have demonstrated 
the in vivo activity of the yeast-secreted heterolo
gous proteins after passing through animal GI 
tract.121,122

Particularly to Chen and colleagues’ study, Sb- 
ABAB carries a plasmid harboring a nanobody- 
encoding gene with an uracil auxotrophic selection 
marker. It is also the first recombinant LBP to 
target C. difficile toxins. Several advantages exist 
in this immunotherapy-based recombinant LBP. 
First, multiple-effects-in-one confers this engi
neered S. boulardii a powerful candidate to battle 
C. difficile. Clearly, the administration of this engi
neered Sb-ABAB more efficiently protected the 
host from diarrhea and weight loss and enhanced 
survival compared to control vehicles. In addition 
to the probiotic effects described above, the deliv
ered cargo, a tandem tetra-specific VHH antibody 
named ABAB, neutralized C. difficile toxins TcdA 
and TcdB simultaneously and efficiently. Although 
S. boulardii was shown to secrete an enzyme that 
degrades C. difficile toxins,69 ABAB is more precise 
and potent, targeting the toxins directly. Further 
analysis indicated that the secreted endogenous 
ABAB was stable in vivo and sufficient to decrease 
intestinal toxin accumulation, accompanied by 
a decrement of host intestinal damage and inflam
mation. Dramatically fewer C. difficile colonies 
were recovered from feces of mice administered Sb- 
ABAB, implying that colonization resistance was 
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increased. Further exploration is needed to dissect 
the impact of Sb-ABAB on regulating the entire 
microbiome. Secondly, it is a less costly way to 
deliver therapeutic antibodies to protect high-risk 
patients from CDI. Antibody drugs are currently 
one of the most popular but pricy therapeutics in 
the market. Bezlotoxumab (commercial name 
Zinplava) is a human monoclonal antibody against 
C. difficile TcdB. It is the first approved antibody by 
the FDA for the prevention of recurrent CDI. The 
average wholesale price of Bezlotoxumab is 
$4560 per vial.129 The cost of antibody drugs is 
partially due to the complexity of manufacture. By 
contrast, S. boulardii is economical to manufacture 
through fermentation. Hence, utilizing the live sur
rogate to deliver therapeutic antibodies in a real- 
time fashion will reduce the manufacturing process 
and save costs. Thirdly, it will simplify the regimen 
with concurrent administration with antibiotics. 
Unlike other probiotic bacteria, S. boulardii is not 
suppressed by vancomycin. Therefore, when used 
as a prophylactic, the engineered S. boulardii can be 
taken with antibiotics in a way that will be easy to 
follow by high-risk patients. Finally, the clear 
genetic and safety background of S. boulardii will 
accelerate its translation to human patients.

There are also limitations to S. boulardii based 
recombinant LBPs. The dissemination of synthetic 
DNA material is a general concern of the FDA of all 
genetically modified LBPs, although the current Sb- 
ABAB adopted an auxotrophic selection marker to 
avoid spreading antibiotic resistance. The glycosyla
tion profile of yeast produced proteins is different 
from human proteins and that may interfere with 
the function of therapeutics in humans, hence pos
sibly shrinking the pool of candidates.130 Despite 
many efforts, the yield of target cargoes is still 
a limitation since none of the studies discussed ear
lier demonstrated an abundant secretion amount.

8. Conclusions

Due to the wide usage of antibiotics, antibiotic 
resistance has become a challenge in clinics to 
treat infectious diseases. C. difficile is one of the 
representative superbugs that is hard to treat 
with antibiotics. As knowledge grows, the role 
of gut microbiota in human health turns more 
transparent and gains more attention. Over the 

past decade, numerous studies have provided 
evidence to support that homeostasis of gut 
microbiome will shield hosts from invasion by 
opportunistic pathogens. Thus, ideas about 
reconstituting the disturbed microbiome to 
treat CDI are emerging. Precise and generic 
intestinal engraftments with various microbiota 
have been widely explored. Remarkable mile
stones have been achieved in CDI treatment 
using microbiota, although the long-term 
impact on human health is unknown. 
Genetically modified probiotics that specifically 
target C. difficile pathogenesis provide a brand- 
new direction for the treatment of this antibiotic 
resistant superbug. Despite a short history, 
microbial therapies in the C. difficile field open 
up a new era in drug development targeting gut 
disorders. Meanwhile, criteria about using 
microbiota are also in urgent need to unify the 
application in patients.
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