Skip to main content
. 2022 Mar 26;20:143. doi: 10.1186/s12967-022-03339-1

Table 2.

Performance of the prediction models generated by the seven machine learning algorithms

Models AUC 95% CI SE (recall) SP AC F1 PPV NPV
Lower bound Upper bound
LightGBM 0.815 0.747 0.882 0.741 0.797 0.768 0.768 0.797 0.741
XGBoost 0.779 0.706 0.853 0.682 0.785 0.732 0.725 0.773 0.697
AdaBoost 0.805 0.738 0.872 0.659 0.772 0.713 0.704 0.757 0.678
Artificial Neural Network 0.800 0.730 0.869 0.659 0.911 0.768 0.747 0.862 0.680
Decision Tree 0.579 0.503 0.655 0.576 0.595 0.579 0.587 0.598 0.603
Support Vector Machine 0.791 0.720 0.862 0.612 0.886 0.744 0.712 0.852 0.680
Logistic Regression 0.798 0.728 0.868 0.718 0.759 0.738 0.739 0.763 0.714

SE: sensitivity; SP: specificity; AC: accuracy; PPV: positive predictive value; NPV: negative predictive value