Skip to main content
. 2022 Mar 26;22:398. doi: 10.1186/s12913-022-07769-x

Table 5.

Conditional logit estimations for simple model (model I) and models incorporating subject-related interactions (models II-IV)

n = 114 Model I (simple model) Model II Model III Model IV
Variable β^  (SE) p-value (LogW) β^ (SE) p-value (LogW) β^ (SE) p-value (LogW) β^ (SE) p-value (LogW)
Provider 0.1404 (0.853) 0.1354 (0.868) 0.1275 (0.894) 0.1398 (0.855)
L1: Modality manufacturer -0.0585 (0.0603) -0.0569 (0.0607) -0.0589 (0.0608) -0.0573 (0.0613)
L2: RIS/PACS provider -0.0615 (0.0631) -0.0652 (0.0636) -0.0653 (0.0637) -0.0647 (0.0641)
L3: AI-software startup 0.12 (0.0608) 0.1221 (0.0613) 0.1242 (0.0614) 0.122 (0.0617)
Application <0.0001 (11.578) 0.0013 (2.889) 0.0014 (2.852) <0.0001 (4.586)
L1: Diagnostics (routine diagnostics) 0.2984 (0.0622) 0.2909 (0.2433) 0.2886 (0.2387) 0.1655 (0.2519)
L2: Process efficiency (scan time reduction) -0.3896 (0.0579) -0.7046 (0.2504) -0.6696 (0.238) -0.8704 (0.2511)
L3: Screening support (mammography) 0.0911 (0.0642) 0.4136 (0.2434) 0.381 (0.2413) 0.7049 (0.254)
Quality <0.0001 (9.727) 0.0524 (1.281) 0.0521 (1.283) 0.0519 (1.285)
L1: Same -0.2421 (0.039) -0.3084 (0.1583) -0.3033 (0.153) -0.3032 (0.1531)
L2: Better 0.2421 (0.039) 0.3084 (0.1583) 0.3033 (0.153) 0.3032 (0.1531)
Time savings <0.0001 (13.702) <0.0001 (14.064) <0.0001 (14.127) <0.0001 (14.449)
L1: Low -0.4339 (0.0637) -0.4414 (0.0643) -0.4427 (0.0644) -0.451 (0.0649)
L2: Medium 0.039 (0.0584) 0.0382 (0.0589) 0.0382 (0.059) 0.0398 (0.0594)
L3: High 0.3949 (0.0587) 0.4031 (0.0592) 0.4045 (0.0593) 0.4113 (0.0598)
Price Price per study -0.1607 (0.0176) <0.0001 (20.895) -0.1634 (0.0178) <0.0001 (21.275) -0.1593 (0.0178) <0.0001 (21.185) -0.1618 (0.018) <0.0001 (20.554)
No-choice No-choice -1.4499 (0.1198) <0.0001 (33.422) -1.4611 (0.1209) <0.0001 (33.361) -1.4762 (0.1214) <0.0001 (33.885) -1.4851 (0.1222) <0.0001 (33.926)
Subject-related interactions Gender[M]* Application[Diagnostics] -0.0899 (0.246) 0.0014 (2.862) -0.0903 (0.2414) 0.0014 (2.850) -0.0783 (0.2417) 0.001 (3.009)
Gender[M]* Application[Process] 0.3435 (0.2523) 0.306 (0.2402) 0.3241 (0.2403)
Gender[M]* Application[Screening] -0.2536 (0.2453) -0.2157 (0.2434) -0.2458 (0.244)
Gender[F]* Quality[Better] 0.1605 (0.1663) 0.0161 (1.793) 0.1571 (0.1611) 0.021 (1.679) 0.1585 (0.1613) 0.0205 (1.689)
Budget responsibility[Y]* Price -0.0347 (0.0105) 0.001 (3.005) -0.0366 (0.0106) 0.0005 (3.278)
Specialization[Mammography]*Application [Screening] 0.3873 (0.0932) <0.0001 (4.068)
Model fit AICc 2197.69 2186.10 2177.31 2162.70
BIC 2242.88 2261.25 2257.44 2252.79
-2LogLikelihood 2179.53 2155.67 2144.82 2126.10
LogLikelihood -1089.77 -1077.84 -1072.41 -1063.05

SE Standard Error, LogW LogWorth, AICc Corrected Akaike Information Criterion, BIC Bayesian Information Criterion