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Abstract

Purpose—A growing area of research in epidemiology is the identification of health-related 

sibling spillover effects, or the effect of one individual’s exposure on their sibling’s outcome. 

The health within families may be inextricably confounded by unobserved factors, rendering 

identification of sibling spillovers challenging.

Methods—We demonstrate a gain-score regression method for identifying exposure-to-outcome 

spillover effects within sibling pairs in linear models. The method can identify the exposure-

to-outcome spillover effect if only one sibling’s exposure affects the other’s outcome; and it 

identifies the difference between the spillover effects if both siblings’ exposures affect the others’ 

outcomes. The method fails with outcome-to-exposure spillover or outcome-to-outcome spillover. 

Analytic results, Monte Carlo simulations, and a brief application demonstrate the method and its 

limitations.

Results—We estimate the spillover effect of a child’s preterm birth on an older sibling’s 

literacy skills, measured by the Phonological Awareness Literacy Screening-Kindergarten test. 

We analyze 20,010 sibling pairs from a population-wide, Wisconsin-based (United States) birth 

cohort. Without covariate adjustment, we estimate that preterm birth modestly decreases an older 

sibling’s test score.

Conclusion—Gain-scores are a promising strategy for identifying exposure-to-outcome spillover 

effects in sibling pairs while controlling for sibling-invariant unobserved confounding.
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INTRODUCTION

A sibling spillover effect (i.e., “interference,” “carryover effect”) is the effect of 

an individual’s exposure on their sibling’s outcome [1-3]. The past two decades of 

epidemiologic research witnessed a burgeoning interest in the role of family environments 

in childhood health, calling attention to the importance of spillovers within families [4-11]. 

Yet, sibling spillovers are largely unexamined in the epidemiologic literature, as most field-

specific advancements in spillover identification have been restricted to infectious diseases 

[12-22]. With growing interest in the familial interdependence of health [5-11], the need for 

analytical tools to identify sibling spillovers is acute.

Unobserved confounding is particularly salient with sibling spillovers. Siblings often share 

family and social environments that affect their outcomes but remain unmeasured even in 

data-rich contexts [10]. Fixed effect (FE) designs that control for unobserved time-invariant 

confounding are immediately appealing [3, 23, 24], but there is little precedent for their 

use to identify sibling spillovers. Sjölander et al. (2016) investigated two-sibling FE models 

for identifying an individual’s exposure on their own outcome in the presence of spillover, 

noting that spillover may be identifiable [3]. Black et al.’s (2021) difference-in-differences 

method with three-sibling clusters measured a lower-bound estimate of the effect of a child’s 

disability on an older sibling’s academic performance [25].

In this paper, we demonstrate a method for identifying spillovers in sibling pairs with gain-

scores (i.e., “change scores,” “difference scores”), a staple of FE estimation that removes 

shared confounding by differencing outcomes [26, 27]. Consistent with applied FE studies, 

we focus on linear models with homogenous effects [23, 24, 26, 27]. First, we briefly 

introduce causal directed acyclic graphs (DAGs), which illustrate our models. Second, we 

discuss various two-sibling models with one- or two-sided spillover and explain how and 

when gain-score methods identify spillover effects. Third, we illustrate our results with 

simulations. Fourth, we apply the method to identify the effect of a younger sibling's preterm 

birth on an older sibling's literacy test performance.

CAUSAL DIRECTED ACYCLIC GRAPHS

Causal DAGs are useful for explaining the identification of causal effects. We review 

necessary terminology for this exposition. Causal DAGs are diagrams consisting of nodes 
(variables) and directed edges (direct causal effects) that represent the assumed data-

generating process (causal model) [28-33]. Paths are sequences of adjacent edges, regardless 

of the arrows’ directions. On causal paths between exposure and outcome, all arrows 

point from the exposure to the outcome. On non-causal paths between an exposure and 

an outcome, at least one arrow points away from the outcome. Causal paths “transmit” 

causal effects, whereas non-causal paths may transmit spurious associations. Colliders are 

variables that receive two inbound arrows on a path (a given variable may be a collider 
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on one path but not on another). Pearl’s d-separation criterion determines which variables 

in data generated by the assumed DAG are conditionally or unconditionally independent: 

two variables are independent if all paths between them are closed; and a path is closed 

if it includes a conditioned noncollider variable, or if it includes an unconditioned collider 

variable [29, 30, 33]. Conversely, two variables may be associated if at least one path 

between them is open (d-connected); and a path is open if it is not closed.

Typically, health researchers attempt to identify causal effects by conditioning on observed 

variables through adjustment via regression analysis, matching, or inverse-probability 

weighting to close all non-causal paths between the exposure and outcome [29, 30, 33]. 

Unfortunately, open non-causal paths containing only unobserved intermediate variables 

cannot be closed by covariate adjustment. In multilevel analyses in which observations 

are clustered into groups (e.g., children in families), however, FE methods can sometimes 

identify causal effects by subtracting out certain types of group-level unobserved 

confounding [23-27]. Next, we describe several sibling spillover models with unobserved 

confounding and show when gain-score estimation can identify spillover effects.

METHOD FOR SIBLING SPILLOVER IDENTIFICATION

Model and assumptions

We present our baseline sibling spillover model and subsequently introduce variations on 

this model. For illustration, we discuss the spillover of a child’s early health shock on their 

sibling’s academic outcome. This example is purposefully generic but broadly applicable, 

drawing upon prior work of health-related spillover effects on academic performance [25] 

while motivating our empirical application.

Our baseline model is a linear two-sibling comparison design with one-sided spillover 

(Figure 1A). Subscript i = 1, …, N indicates family and subscript j = 1,2 indicates sibling. 

Tij represents a binary or continuous exposure (e.g., the health shock), Yij represents a 

continuous outcome (e.g., academic performance), Ui represents unobserved family-level 

confounding (i.e., the FE), and Di represents the gain-score, Di = Yi2 − Yi1. Parameters 

include the spillover effect, θ (Ti1 → Yi2), of sibling 1’s exposure on sibling 2’s outcome; 

the targeted effect, δ (Tij → Yij), of an individual’s exposure on their own outcome; and 

unobserved family-level confounding effects χ (Ui → Ti1), γ (Ui → Ti2), and Ψ (Ui → 
Yij).

All models embed several simplifying assumptions. First, targeted and unobserved family-

level confounding effects on outcomes are sibling-invariant [23, 24]. Second, all effects are 

linear and homogenous. Third, spillovers exist within families but not between families (i.e., 

partial interference) [15, 34]. Aside from permitting partial interference, these assumptions 

align with conventional FE models [3, 23, 24, 26, 27].

Notably, our presentation abstracts from sibling-specific baseline covariates, Cij. Covariates 

may be added to our baseline and subsequent models as long as controlling for Cij in the 

gain-score regression does not induce new biases [35-38].
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Gain-score estimation and identification of spillover effects

This subsection analyzes whether the gain-score estimator point-identifies spillover effects 

(i.e., recovers the spillover effect precisely) for nine different sibling spillover models. that 

differ by whether spillover is one- or two-sided and by whether additional spillovers are 

present.

Gain-score estimation—We investigate the ability of a gain-score estimator to identify 

exposure-to-outcome spillover effects. First, we regress the gain-score on both siblings’ 

exposures,

Di = b1T i1 + b2T i2 + ei, (1)

where b1 and b2 are partial regression coefficients for Ti1 and Ti2, respectively, and ei is the 

residual. We then sum the partial regression coefficients to compute a “spillover coefficient” 

(SC),

SC = b1 + b2 . (2)

We will now interrogate whether the SC identifies causal spillover effects in each of several 

commonly assumed data generating processes in health research.

Settings with one-sided spillover—The object of interest (estimand) is the direct 

spillover effect, θ, of sibling 1’s health shock, Ti1, on sibling 2’s academic performance, Yi2. 

Under the baseline model (Figure 1A), three open paths connect Ti1 and Yi2. The first path, 

Ti1 → Yi2, is the causal spillover effect of interest. The other two paths are non-causal paths 

that may transmit spurious association. The first non-causal path, Ti1 ← Ui → Ti2 → Yi2, 

can be closed by adjusting for Ti2. However, the second non-causal path, Ti1 ← Ui → Yi2, 

cannot be closed by covariate adjustment because it only contains the unobserved variable 

Ui.

Nonetheless, we can identify θ through gain-score regression. Under the assumptions of 

Figure 1A, it can be shown that b1 = θ − δ and b2 = δ, using elementary regression algebra. 

Therefore, the spillover coefficient equals SC = b1 + b2 = θ.

The intuition for this result is that first-differencing exactly offsets confounding biases 

involving Ui [26, 27], and that the SC corrects for the contamination of the spillover estimate 

in b1. Specifically, the coefficient b1 on Ti1 captures the association flowing along the two 

open paths from Ti1 to Di. There are five paths from Ti1 to Di (listed together with their 

corresponding path coefficients):

1. Ti1 ← Ui → Ti2 → Yi2 → Di (non-causal): δχγ

2. Ti1 ← Ui → Yi1 → Di (non-causal): −Ψχ

3. Ti1 ← Ui → Yi2 → Di (non-causal): Ψχ

4. Ti1 → Yi1 → Di (causal): −δ
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5. Ti1 → Yi2 → Di (causal): θ

The first path is closed because the gain-score regression adjusts for Ti2. The second and 

third paths cancel each other out exactly. The fourth path transmits the negative of the 

targeted effect. The fifth path transmits the spillover effect. Hence, the regression coefficient 

b1 = θ − δ identifies the difference between the spillover and targeted effect.

The coefficient b2 on Ti2 captures the association flowing along the open paths from Ti2 and 

Di. There are four paths from Ti2 to Di:

1. Ti2 ← Ui → Yi1 → Di (non-causal): −δχγ

2. Ti2 ← Ui → Yi1 → Di (non-causal): −Ψγ

3. Ti2 ← Ui → Yi2 → Di (non-causal): Ψγ

4. Ti2 → Yi2 → Di (causal): δ

The first path is closed because the gain-score regression adjusts for Ti1; the second and 

third paths cancel each other out; and the fourth path captures the targeted effect. Thus, b2 = 

δ identifies the targeted effect, and SC = b1 + b2 = θ identifies the causal spillover effect.

Many statistical software packages have functions for summing regression coefficients and 

obtaining standard errors. Examples include Stata’s lincom command, R’s contrast package, 

and SAS’s SCORE procedure [39-41].

The analysis is only slightly complicated in the presence of exposure-to-exposure spillover 

(Tij → Tij′)—for example, when one child’s serious illness increases their sibling’s risk of 

illness. When Ti2 → Ti1 (Figure 1B), the interpretation of the SC does not change. However, 

if Ti1 → Ti2 (Figure 1C), then the interpretation of SC = θ changes from representing the 

entire spillover effect of Ti1 on Yi2 to capturing only the direct spillover effect, since the 

indirect component of the spillover effect that operates via the causal path Ti1 → Ti2 → Yi2 

is closed because the regression controls for Ti2. See the Appendix for details.

Settings with two-sided spillover—Analysts may also encounter scenarios with two-

sided spillover. In our example, each siblings’ health shock could affect the other’s academic 

performance (Ti1 → Yi2 and Ti2 → Yi1). Reflecting this possibility, Figure 2A modifies 

the baseline model of Figure 1A to allow spillover Ti2 → Yi1 with effect κ. The partial 

regression coefficients in the gain-score approach identify b1 = θ − δ and b2 = δ − κ, so 

that SC = b1 + b2 = θ − κ. Consequently, with two-sided exposure-to-outcome spillover, the 

SC does not identify the spillover effect of Ti1 on Yi2 but instead the difference between the 

two exposure-to-outcome spillover effects. However, if the analyst can defend assumptions 

about one or more of the signs of the two spillover effects, then the SC remains informative 

even though it no longer point-identifies θ. Specifically, if κ > 0, the SC underestimates (i.e., 

gives a lower bound for) θ. By contrast, if κ < 0, then SC overestimates (gives an upper 

bound for) θ. One can make additional inferences about θ depending on the value of SC and 

the assumed sign of κ. For example, if SC > 0 and κ > 0, then θ > 0. Of note, a finding that 

SC = 0 is uninformative, because it is compatible with the possibility that the two spillover 

effects are equal (θ = κ ≠ 0) or that exposure-to-outcome spillovers are absent (θ = κ = 0).
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If Tij → Tij′ in addition to two-sided spillover (Figures 2B-C), then SC identifies the 

difference between the direct parts of the siblings’ spillover effects that are not mediated by 

Ti1 or Ti2, respectively, i.e., SC will not consider the indirect spillover effects, Tij → Tij′ → 
Yij′. See the Appendix for details.

Settings with spillovers from outcomes—Analysts may also encounter settings with 

outcome-to-outcome spillover (Yij → Yij′) or outcome-to-exposure spillover (Yij → Tij′). 

In our example, siblings’ academic outcomes may affect each other via outcome-to-outcome 

spillover. In contrast, an academic outcome causing a health shock is implausible, but 

outcome-to-exposure spillovers may be relevant elsewhere.

If one sibling’s outcome causes the other sibling’s exposure or outcome (Figure 3), then our 

gain-score approach does not identify spillovers or simple functions of spillovers. See the 

Appendix for details.

SIMULATION

Nine Monte Carlo simulations [42]—one simulation for each model in Figures 1-3—

demonstrated when the method identifies exposure-to-outcome spillover. Our simulation 

equations are1:

Ui, vi1, vi2 ∼ N(0, 1)

Ti1 =
0 if τTi2 + χUi ≤ 0.5
1 if τTi2 + χUi > 0.5

Ti2 =
0 if ϕTi1 + ωYi1 + γUi ≤ 0.2
1 if ϕTi1 + ωYi1 + γUi > 0.2

Yi1 = δTi1 + κTi2 + λYi2 + ψUi + vi1

Yi2 = δTi2 + θ Ti1 + ηYi1 + ψUi + vi2

Di = Yi2 − Yi1

We simulated each model with 1000 runs of 5000 observations each, where each observation 

represented a sibling pair (i.e., family). We set the following parameters at fixed values: θ = 

1When exposures Tij are binary, the equations for Tij are nonlinear; the causal effects on Tij in the models of Figures 1-3 should then 
be read as the coefficients of linear projections onto Tij. This does not affect the identification results of our gain-score approach [26].

Mallinson and Elwert Page 6

Ann Epidemiol. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.5, δ = 1, ψ = 1, χ = 2, and γ = 3. Parameters that distinguish models—κ, τ, φ, ω, η, and 

λ—were set to zero in models where absent and were set to 0.3 in models where present. To 

avoid simultaneity, at least one parameter in each pair (τ, φ), (η, λ), and (κ, ω) was always 

set to zero. In each sample, we regressed the gain-score on siblings’ outcomes and computed 

the spillover coefficient according to equations (1) and (2). We conducted simulations in 

Stata Statistical Software: Release 16 [43]. Simulation code is in the Appendix.

Figure 4 displays the simulation results. The first three rows confirm that the spillover 

coefficient is unbiased in the three settings with one-sided exposure-to-outcome spillover of 

Figure 1, as the average of estimated spillover coefficient equals the known spillover effect, 

SCFigure1 = 0.5 (empirical 95% CI: 0.42, 0.58). The subsequent three rows demonstrate that 

the spillover coefficient in the three models of Figure 2 with two-sided exposure-to-outcome 

spillover identifies the difference between the two spillovers, SCFigure2 = 0.5 − 0.3 = 0.2
(empirical 95% CI: 0.12, 0.28). Since κ > 0, SCFigure2 underestimates the spillover effect, 

θ. The final three simulations show that SCFigure3 is biased in all models of Figure 3 

with spillovers from outcomes. Size and direction of the biases are complicated functions 

of the coefficients in the data-generating model and can be large. The estimated ordinary 

least squares standard errors closely resemble the empirical standard errors for each model, 

indicating that the built-in standard errors in Stata’s lincom command are accurate [39].

EMPIRICAL APPLICATION

We applied the method to estimating the spillover effect of a child’s preterm birth 

(gestational age <37 weeks) on their older sibling’s literacy skills. This analysis builds upon 

evidence that short gestational age and other health shocks may harm children’s academic 

outcomes [25, 44, 45]. If a child is born preterm, parents may reallocate investments (time, 

financial, or otherwise) from older siblings to support the younger sibling's health, thereby 

inhibiting the older siblings' development, including early literacy.

For this application, we analysed Big Data for Little Kids (BD4LK), a longitudinal 

cohort of birth records for all live in-state resident deliveries in Wisconsin during 

2007-2016 (N>660,000 deliveries) that links to multiple administrative data sources, 

including Medicaid data (2007-2016) and children’s Phonological Awareness Literacy 

Screening-Kindergarten (PALS-K) test scores from Wisconsin public schools (2012-2016 

school years). BD4LK’s linking process is described elsewhere [45, 46]. PALS-K evaluates 

readiness for kindergarten-level literacy instruction on six domains (rhyme awareness; 

beginning sound awareness; alphabet knowledge; letter sounds; spelling; word concept) 

[46]. In Wisconsin, children must be five years-old at kindergarten enrolment to qualify 

for PALS-K testing [48]. Our analysis includes 20,010 sibling pairs (40,020 children) that 

were sequentially-born from different deliveries to the same biological mother and had 

non-missing English-language PALS-K test scores and covariates. The Appendix contains 

the full sampling description.

We estimate the following gain-score regression,
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Di = b1PTBi1 + b2PTBi2 + β3Ci2 + vi

where Di= PALSKi2 – PALSKi1 is the gain-score. Subscripts i = 1, … N and j = 1,2 indicate 

family and sibling, respectively, where j = 1 is the younger sibling. PTBij is a binary preterm 

birth indicator (1 if preterm; 0 otherwise), PALSKij is the continuous PALS-K score (0-102 

points), and Ci2 is a vector of covariates measured at the older sibling’s delivery. Covariates 

include maternal age (years), maternal education (no high school diploma; high school 

diploma/equivalent; 1-3 years college; 4+ years college), and Medicaid delivery payment 

(no; yes).

We ran the regression twice, once with and once without covariates, and then computed 

the spillover coefficient, SC = b1 + b2. Assuming the one-sided spillover model of Figure 

1A, SC from the regression without covariates identifies the effect of a younger sibling’s 

preterm birth on the older sibling’s PALS-K score. Additionally, b2 identifies the effect of 

each sibling’s preterm birth on their own PALS-K score. We performed all analyses in Stata 

Statistical Software: Release 16 [43]. The University of Wisconsin-Madison minimal risk 

institutional review board approved our project.

Tables A.1 and A.2 summarize baseline characteristics of our sample (Appendix). Preterm 

birth incidence was slightly greater among older siblings relative to younger siblings 

(6.78% vs. 6.65%). On average, older siblings received slightly lower PALS-K scores (mean 

63.58 points; SD 24.12 points) relative to younger siblings (mean 64.22 points; SD 23.83 

points). Approximately 10% of observed families had discordant preterm birth exposures. 

In the regression without covariate adjustment, the older sibling's preterm birth coefficient 

was b2 = −2.49 points (95% CI −3.83, −1.15 points), the younger sibling's preterm birth 

coefficient was b1 = 0.38 points (95% CI: −0.97, 1.73 points), and the resulting SC was 

−2.11 points (95% CI: −3.82, −0.40 points) (Table 1). This indicates that a younger sibling’s 

preterm birth modestly harmed their older sibling’s PALS-K performance. Figure 5 displays 

these results graphically relative to the assumed data-generating model. However, covariate 

adjustment attenuated the SC to −1.49 points (95% CI −3.21, 0.22 points).

DISCUSSION

We described a simple gain-score approach for identifying spillovers in linear models 

of sibling pairs. This method can point-identify spillovers if only one sibling’s exposure 

affects the other’s outcome, and it can identify the difference in siblings’ spillovers in the 

presence of two-sided spillover. The method leverages the primary benefit of FE estimation: 

controlling for family-level, sibling-invariant, unobserved confounding. Whereas preceding 

epidemiologic research on spillover identification primarily considered infectious diseases, 

our work contributes to the growing literature on spillovers within families.

We acknowledge some limitations. First, we restricted our attention to linear models. This 

method does not necessarily apply to other settings, such as models with binary outcomes 

(see Sjölander et al. [2016] for binary outcomes in our Figure 1A [3]). Second, we accepted 

conventional FE assumptions, which include equal effects of the unobservables on siblings’ 
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outcomes and a constant spillover effect that does not vary by characteristics, such as 

siblings’ age difference. Deviation from these assumptions may induce bias [3, 37, 38]. 

Third, we did not consider families of three or more siblings. Spillovers that originate from 

larger sibships may pose unique challenges that are unaddressed here—for example, whether 

one can identify the effect of a middle child's exposure on the youngest sibling's outcome 

if an eldest sibling's exposure affects all siblings' outcomes. Lastly, we did not investigate 

spillover in the presence of shared mediator or collider variables. Sjölander and Zetterqvist 

(2017) interrogated sibling comparison models with shared mediators and colliders, finding 

that such factors may induce bias [49].

Nonetheless, our paper lays groundwork for subsequent research. Specific avenues that 

advance this method include testing in nonlinear settings or settings with shared mediator 

variables, expanding models to allow three or more siblings, and developing tests for 

assessing bias from outcome-induced spillovers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal directed acyclic graphs for linear data-generating models with one-sided exposure-

to-outcome sibling spillover. Subscripts i and j denote family and sibling, respectively. Tij 

is the exposure, Yij is the outcome, Di is the gain-score, and Ui is an unobserved family-

level confounder. Greek letters denote effects. (1A) does not have exposure-to-exposure 

spillover, whereas (1B) and (1C) have exposure-to-exposure spillovers. The gain-score 

method precisely identifies the spillover effect θ (Ti1 → Yi2) in all three models.
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Figure 2. 
Causal directed acyclic graphs for linear data-generating models with two-sided exposure-

to-outcome sibling spillover. Subscripts i and j denote family and sibling, respectively. Tij 

is the exposure, Yij is the outcome, Di is the gain-score, and Ui is an unobserved family-

level confounder. Greek letters denote effects. (2A) does not have exposure-to-exposure 

spillover, whereas (2B) and (2C) have exposure-to-exposure spillover. The gain-score 

method identifies the differences between the spillover effects θ (Ti1 → Yi2) and κ (Ti2 

→ Yi1) in all three models.
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Figure 3. 
Causal directed acyclic graphs for linear data-generating models with one-sided exposure-to-

outcome sibling spillover and spillover from outcomes. Subscripts i and j denote family 

and sibling, respectively. Tij is the exposure, Yij is the outcome, Di is the gain-score, 

and Ui is an unobserved family-level confounder. Greek letters denote effects. (3A) has 

outcome-to-exposure spillover, and (3B) and (3C) have outcome-to-outcome spillover. The 

gain-score method does not identify the spillover effect θ (Ti1 → Yi2) in any of the three 

models.
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Figure 4. 
Results (average spillover coefficients and empirical 95% confidence intervals [CI]) from 

simulations of the nine sibling spillover models in Figures 1-3. Each simulation consisted 

of 1000 runs of 5000 observations, where each observation represented a sibling pair (i.e., 

family). Subscripts i and j indicate family and sibling, respectively. Tij is the exposure and 

Yij is the outcome. The target quantity is the spillover effect (Ti1 → Yi2), set to θ = 0.5 

in all models. Other spillover effects include κ (Ti2 → Yi1), τ (Ti2 → Ti1), φ (Ti1 → Ti2), 

ψ (Yi1 → Ti2), η (Yi1 → Yi2), and λ (Yi2 → Yi1). Except for θ, all spillover parameters 

were set to zero except in the following cases: κ = 0.3 in Figures 2A-C; τ = 0.3 in Figures 

1B and 2B; φ = 0.3 in Figures 1C and 2C; ω = 0.3 in Figure 3A; η = 0.3 in Figure 

3B; and λ = 0.3 in Figure 3C. The spillover coefficient identifies (i.e., is unbiased) for θ 
in all models of one-sided spillover (Figure 1); identifies the difference between the two 

exposure-to-outcome spillover effects with two-sided spillover (Figure 2); and is biased in 

the presence of spillovers originating from outcomes (Figure 3).
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Figure 5. 
A directed acyclic graph of the relationship between siblings’ preterm birth (gestational 

age <37 weeks) and their score on the Phonological Awareness Literacy Assessment-

Kindergarten test with overlaid estimates. Subscripts i and j denote family and sibling, 

respectively, where j = 1 is the younger sibling and j = 2 is the older sibling. PTBij is a 

preterm birth indicator, PALSKij the test score, Di is a gain-score, and Ui is an unobserved 

confounder. Greek letters denote effects, and θ and δ are estimated using gain-score 

regression.
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Table 1.

Ordinary least squares regression of the difference in siblings’ PALS-K scores
a
 (points) on their preterm birth 

statuses (N = 20,010 sibling pairs)

Unadjusted Regression
Coefficient (95% CI) Adjusted Regression

b

Coefficient (95% CI)

Preterm birth (gestational age <37 weeks)

Older sibling −2.49 (−3.83, −1.15) −2.28 (−3.62, −0.94)

Younger sibling 0.38 (−0.97, 1.73) 0.79 (−0.57, 2.14)

Spillover coefficient
c −2.11 (−3.82, −0.40) −1.49 (−3.21, 0.22)

a
The difference in PALS-K scores equals the older sibling’s PALS-K Score minus the younger sibling’s PALS-K score.

b
Covariates include maternal age at delivery (years), maternal education at delivery (no high school diploma; high school diploma/equivalent; 1-3 

years college; 4+ years college) and Medicaid delivery payment (no; yes), all of which were measured at the time of the older sibling’s delivery.

c
The spillover coefficient is the sum of the partial regression coefficients for the older sibling’s preterm birth indicator and the younger sibling’s 

preterm birth indicator. Assuming one-sided spillover as in Figure 1A, this identifies the effect of a younger sibling’s preterm birth on the older 
sibling’s PALS-K score.

Abbreviations: ”CI” confidence interval; ”PALS-K” Phonological Awareness Literacy Screening-Kindergarten.
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